Old Company Name in Catalogs and Other Documents On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding. Renesas Electronics website: http://www.renesas.com April 1st, 2010 Renesas Electronics Corporation Issued by: Renesas Electronics Corporation (http://www.renesas.com) Send any inquiries to http://www.renesas.com/inquiry. #### Notice - 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. - Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. - 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. - 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information. - 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. - 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein. - 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc. - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots. - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support. - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life. - 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges. - 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you. - 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. - 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics - 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. - (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries. - (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics. # Renesas Starter Kit for R32C/111 User's Manual RENESAS SINGLE-CHIP MICROCOMPUTER R32C/100 Series WS TOOL #### Disclaimer By using this Renesas Starter Kit (RSK), the user accepts the following terms. The RSK is not guaranteed to be error free, and the entire risk as to the results and performance of the RSK is assumed by the User. The RSK is provided by Renesas on an "as is" basis without warranty of any kind whether express or implied, including but not limited to the implied warranties of satisfactory quality, fitness for a particular purpose, title and non-infringement of intellectual property rights with regard to the RSK. Renesas expressly disclaims all such warranties. Renesas or its affiliates shall in no event be liable for any loss of profit, loss of data, loss of contract, loss of business, damage to reputation or goodwill, any economic loss, any reprogramming or recall costs (whether the foregoing losses are direct or indirect) nor shall Renesas or its affiliates be liable for any other direct or indirect special, incidental or consequential damages arising out of or in relation to the use of this RSK, even if Renesas or its affiliates have been advised of the possibility of such damages. #### **Precautions** This Renesas Starter Kit is only intended for use in a laboratory environment under ambient temperature and humidity conditions. A safe separation distance should be used between this and any sensitive equipment. Its use outside the laboratory, classroom, study area or similar such area invalidates conformity with the protection requirements of the Electromagnetic Compatibility Directive and could lead to prosecution. The product generates, uses, and can radiate radio frequency energy and may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment causes harmful interference to radio or television reception, which can be determined by turning the equipment off or on, you are encouraged to try to correct the interference by one or more of the following measures; - ensure attached cables do not lie across the equipment - reorient the receiving antenna - increase the distance between the
equipment and the receiver - · connect the equipment into an outlet on a circuit different from that which the receiver is connected - power down the equipment when not is use - consult the dealer or an experienced radio/TV technician for help NOTE: It is recommended that wherever possible shielded interface cables are used. The product is potentially susceptible to certain EMC phenomena. To mitigate against them it is recommended that the following measures be undertaken: - The user is advised that mobile phones should not be used within 10m of the product when in use. - The user is advised to take ESD precautions when handling the equipment. The Renesas Starter Kit does not represent an ideal reference design for an end product and does not fulfil the regulatory standards for an end product. # **Table of Contents** | Chapter 1. Preface | 1 | |------------------------------------|----| | Chapter 2. Purpose | 2 | | Chapter 3. Power Supply | 3 | | 3.1. Requirements | 3 | | 3.2. Power–up Behaviour | 3 | | Chapter 4. Board Layout | 4 | | 4.1. Component Layout | 4 | | 4.2. Board Dimensions | 5 | | Chapter 5. Block Diagram | 6 | | Chapter 6. User Circuitry | 7 | | 6.1. Switches | 7 | | 6.2. LEDs | 7 | | 6.3. Potentiometer | 7 | | 6.4. Serial port | 7 | | 6.5. Debug LCD Module | 8 | | 6.6. Option Links | 8 | | 6.7. Oscillator Sources | 15 | | 6.8. Reset Circuit | 15 | | Chapter 7. Modes | 17 | | 7.1. Boot mode | 17 | | 7.2. User Mode | 17 | | Chapter 8. Programming Methods | 18 | | Chapter 9. Headers | 19 | | 9.1. Microcontroller Ring Headers | 19 | | 9.2. Application Headers | 23 | | Chapter 10. Code Development | 26 | | 10.1. Overview | 26 | | 10.2. Compiler Restrictions | 26 | | 10.3. Breakpoint Support | 26 | | 10.4. Memory Map | 27 | | Chapter 11. Component Placement | 29 | | Chapter 12. Additional Information | 30 | # Chapter 1. Preface #### Cautions This document may be, wholly or partially, subject to change without notice. All rights reserved. No one is permitted to reproduce or duplicate, in any form, a part or this entire document without the written permission of Renesas Technology Europe Limited. #### **Trademarks** All brand or product names used in this manual are trademarks or registered trademarks of their respective companies or organisations. #### Copyright © 2008 Renesas Technology Europe Ltd. All rights reserved. © 2008 Renesas Technology Corporation. All rights reserved. © 2008 Renesas Solutions Corporation. All rights reserved. Website: http://www.renesas.com/ #### Glossary | ADC | Analog to Digital Converter | DAC | Digital to Analog Converter | |-----|-----------------------------|------|---| | E8A | "E8A" emulator | HEW | High-Performance Embedded Workshop | | I/O | Input / Output | LCD | Liquid Crystal Display | | LED | Light Emitting Diode | MCU | Microcontroller Unit | | RSK | Renesas Starter Kit | UART | Universal Asynchronous Receiver / Transmitter | | USB | Universal Serial Bus | PC | Personal Computer | # Chapter 2. Purpose This RSK is an evaluation tool for Renesas microcontrollers. #### Features include: - Renesas Microcontroller Programming. - User Code Debugging. - User Circuitry such as switches, LEDs and potentiometer(s). - Sample Application. - Sample peripheral device initialisation code. The RSK board contains all the circuitry required for microcontroller operation. This manual describes the technical details of the RSK hardware. The Quick Start Guide and Tutorial Manual provide details of the software installation and debugging environment. # Chapter 3. Power Supply ### 3.1. Requirements This RSK board operates from a 5V DC power supply (supplied). A diode provides reverse polarity protection only if a current limiting power supply is used. All RSK boards are supplied with an E8A debugger. This product is able to power the RSK board with up to 300mA. When the RSK is connected to another system then that system should supply power to the RSK. All RSK boards have an optional centre positive supply connector using a 2.1mm barrel power jack. #### Warning The RSK board is neither under nor over voltage protected. Use a centre positive supply for this board. ### 3.2. Power-up Behaviour When the RSK is purchased the RSK board has the 'Release' or stand-alone code from the example tutorial code pre-programmed into the Renesas microcontroller. On powering up the board the user LEDs will start to flash. After 200 flashes or after pressing any switch the LEDs will flash at a rate controlled by the potentiometer. # Chapter 4. Board Layout ### 4.1. Component Layout The following diagram shows the top layer component layout of the board. Figure 4-1: Board Layout ### 4.2. Board Dimensions The following diagram gives the board dimensions and connector positions. All through-hole connectors are on a common 0.1" grid for easy interfacing. Figure 4-2: Board Dimensions # Chapter 5. Block Diagram Figure 5-1 shows the RSK board components and their connectivity. Figure 5-1: Block Diagram Figure 5-2 shows the E8A connections to the RSK. Figure 5-2: E8A RSK Connections # Chapter 6. User Circuitry ### 6.1. Switches There are four switches located on the RSK board. The function of each switch and its connection are shown in Table 6-1: Switch Functions | Switch | Function | Microcontroller | |-------------|---|-------------------------------| | RES | When pressed, the microcontroller is reset. | RESn, Pin 10 | | SW1 / BOOT* | Connects to an IRQ input for user controls. | INT0n, Pin 18 (Port 8, bit 2) | | SW2* | Connects to an IRQ line for user controls. | INT1n, Pin 17 (Port 8, bit 3) | | SW3* | Connects to an IRQ line for user controls. The same switch may also | INT2n, Pin 16 (Port 8, bit 4) | | | function as an ADC trigger input. | | Table 6-1: Switch Functions ### 6.2. LEDs There are six LEDs on the RSK board. The green 'POWER' LED lights when the board is powered. The orange BOOT LED indicates the device is in BOOT mode when lit. The four user LEDs are connected to an I/O port and will light when their corresponding port pin is set low. Table 6-2 below shows the LED pin references and their corresponding microcontroller port pin connections. | LED Reference (As | Colour | Microcontroller Port | Microcontroller | |----------------------|--------|----------------------|-----------------| | shown on silkscreen) | | Pin function | Pin Number | | LED0 | Green | Port 4 bit 0 | 52 | | LED1 | Orange | Port 4 bit 1 | 51 | | LED2 | Red | Port 4 bit 2 | 50 | | LED3 | Red | Port 4 bit 3 | 49 | Table 6-2: LED Port ### 6.3. Potentiometer A single-turn potentiometer is connected to pin AN0 (p10_0, pin 95) of the microcontroller. This may be used to vary the voltage at this pin between AVCC and Ground. ### 6.4. Serial port Serial port UART0 is connected to the standard RS232 header. Serial port UART1 can optionally be connected to the RS232. The connections to be fitted are listed in the Table 6-3. ^{*}Refer to the schematic for detailed connectivity information. | Description | Function | Microcontroller | Fit for RS232 | Remove for RS232 | |-------------|--------------------------|-----------------|---------------|------------------| | | | Port Pin | | | | UART0 | Default serial port (TX) | Port 6_3 | R47 | R70, R59 | | UART0 | Default serial port (RX) | Port 6_2 | R41 | R28, R29 | | UART1 | Spare Serial Port (TX) | Port 6_7 | R59 | R47, R70 | | UART1 | Spare Serial Port (RX) | Port 6_6 | R28 | R29, R41 | Table 6-3: Serial Options Links The board is designed to accept a straight-through RS-232 male-to-female cable. The second transceiver channels are connected to a 0.1" header, J7. UART2 can be connected to this channel by fitting 0Ω link resistors to R63 and R64. ### 6.5. Debug LCD Module The LCD module supplied with the RSK can be connected to the connector 'LCD' for use with the tutorial code. Any module that conforms to the pin connections and has a KS0066u-compatible controller can be used. The LCD module uses a 4-bit interface to reduce the pin allocation. No contrast control is provided; this must be set on the display module. Table 6-4 shows the pin allocation and signal names used on this connector. The module supplied with the RSK board only supports 5V operation. | | LCD | | | | | | |-----|---------------------------|------------|-----|------------------|------------|--| | Pin | Circuit Net Name | Device Pin | Pin | Circuit Net Name | Device Pin | | | 1 | Ground | - | 2 | 5V Only | - | | | 3 | No Connection | - | 4 | DLCDRS (p2_0) | 70 | | | 5 | R/W (Wired to Write only) | - | 6 | DLCDE (p2_1) | 69 | | | 7 | No Connection | - | 8 | No Connection | - | | | 9 | No Connection | - | 10 | No Connection | - | | | 11 | DLCDD4 (p2_4) | 66 | 12 | DLCDD5 (p2_5) | 65 | | | 13 | DLCDD6 (p2_6) | 64 | 14 | DLCDD7 (p2_7) | 63 | | Table 6-4: Debug LCD Module Connections ### 6.6. Option Links In this section the default configuration is indicated by BOLD text. Table 6-5 below describes the function of the option links associated with serial port configuration. | | Option Link Settings | | | | | | |-----------|----------------------|---------------------------------------|---|------------|--|--| | Reference | Function | Fitted | Alternative (Removed) | Related To | | | | R23 | Serial Port | Disables the RS-232 Transceiver. | Enables the RS-232 Transceiver | R27 | | | | | Configuration | (Must be removed if R27 is fitted.) | | | | | | R27 | Serial Port | Enables the RS-232 Transceiver. | Disables the RS-232 Transceiver | R23 | | | | | Configuration | (Must be removed if R23 is fitted.) | | | | | | R28 | Serial Port | Connects the programming port (Rx) to | Disconnects the programming port (Rx) | R29, R30, | | | | | Configuration | external serial connectors | to external serial connectors | R41 | | | | R29 | Serial Port |
Routes the RS-232 serial port (Rx) to | Disconnects the RS-232 serial port (Rx) | R28, R41 | | | | | Configuration | application board interface (JA6-5) | from application board interface (JA6-5) | | | | | R41 | Serial Port | Connects serial port RXD0 to the | Disconnects serial port pin RXD1 from the | R28, R29 | | | | | Configuration | D-type connector | D-type connector | | | | | R47 | Serial Port | Connects serial port TXD0 to the | Disconnects serial port pin TXD1 from the | R59, R70 | | | | | Configuration | D-type connector. | SERIAL D-type connector | | | | | R59 | Serial Port | Connects the serial programming port | Disconnects the serial programming port | R36, R47, | | | | | Configuration | (Tx) to external connectors (not E8A) | (Tx) to external serial connectors | R70 | | | | R63 | Serial Port | Connects UART2 (Tx) to the RS-232 | Disconnects UART2 (Tx) from the RS-232 | R69 | | | | | Configuration | transceiver | transceiver | | | | | R64 | Serial Port | Connects UART2 (Rx) to the RS-232 | Disconnects UART2 (Rx) from the RS-232 | R73 | | | | | Configuration | transceiver | transceiver | | | | | R69 | Serial Port | Connects UART2 (Rx) to the D-type | Disconnects UART2 (Rx) from the D-type | R64 | | | | | Configuration | connector | connector | | | | | R70 | Serial Port | Routes RS232 serial port (Tx) to | Disconnects RS232 serial port (Tx) from | R47, R59 | | | | | Configuration | application connector (JA6-6). | application board interface (JA6-6) | | | | | R73 | Serial Port | Connects UART2 (Tx) to the D-type | Disconnects UART2 (Tx) from the D-type | R63 | | | | | Configuration | connector | connector | | | | Table 6-5: Serial port configuration links Table 6-6 below describes the function of the option links associated with E8A configuration. | | Option Link Settings | | | | | | |-----------|---|---------------------------------------|---|---------|--|--| | Reference | nce Function Fitted Alternative (Removed) | | | Related | | | | | | | | То | | | | R30 | E8A | Connects the serial programming | Disconnects the serial programming port (Rx) from | R28 | | | | | Configuration | port (Rx) to the E8A connector | the E8A connector | | | | | R36 | E8A | Connects the serial programming | Disconnects the serial programming port (Tx) from | R59 | | | | | Configuration | port (Tx) to the E8A connector | the E8A connector | | | | | R40 | E8A | Connects the serial programming | Disconnects the serial programming port (CK) from | - | | | | | Configuration | port (CK) to the E8A connector | the E8A connector | | | | | R33 | E8A | Connects the CPU port pin p5_0 to the | Disconnects the CPU port pin p5_0 from the | - | | | | | Configuration | E8A connector | E8A connector | | | | Table 6-6: E8A Configuration Links Table 6-7 below describes the function of the option links associated with Power Source configuration. | | Option Link Settings | | | | | | |-----------|----------------------|-------------------------------------|---|-----------|--|--| | Reference | Function | Fitted | Alternative (Removed) | Related | | | | | | | | То | | | | R13 | Power Source | Board can be powered from the PWR | Disconnects the supply from the PWR | R22, R44 | | | | | | connector. | connector. | | | | | R22 | Power source | Connects Board_VCC2 to PWR supply. | Disconnects Board_VCC2 from PWR | R13, R25, | | | | | | | supply. | R26 | | | | R24 | Microcontroller | Supply power to the Microcontroller | Disables 5V power supply to the MCU pin | - | | | | | Power Supply | pin VCC2. | VCC2. Supply current to the sections | | | | | | | | powered from VCC2 pin of the MCU can be | | | | | | | | measured across J5 | | | | | R25 | Power source | Connect Board_VCC2 to CON_3V3. | Disconnect Board_VCC2 from CON_3V3. | R22, R26 | | | | R26 | Power source | Connect Board_VCC2 to CON_5V. | Disconnect Board_VCC2 from CON_5V. | R22, R25 | | | | R42 | Power source | Connect Board_VCC1 to CON_3V3. | Disconnect Board_VCC1 from CON_3V3. | R43, R44 | | | | R43 | Power source | Connect Board_VCC1 to CON_5V. | Disconnect Board_VCC1 from CON_5V. | R42, R44 | | | | R44 | Power source | Connect Board_VCC1 to PWR supply. | Disconnect Board_VCC1 from PWR supply. | R13, R22, | | | | | | | | R42, R43 | | | | R48 | Microcontroller | Supply power to the Microcontroller | Disables 5V power supply to the MCU pin | - | | | | | Power Supply | pin VCC1. | VCC1 Supply current to the sections | | | | | | | | powered from VCC1 pin of the MCU can be | | | | | | | | measured across J6 | | | | Table 6-7: Power configuration links Table 6-8 below describes the function of the option links associated with Analog Voltage Source configuration. | | Option Link Settings | | | | | | |-----------|----------------------|-----------------------------------|-------------------------------------|---------|--|--| | Reference | Function | Fitted | Alternative (Removed) | Related | | | | | | | | То | | | | R89 | Analog Voltage | Links the analog ground to the | Isolates the analog ground from the | - | | | | | Source | digital ground. | digital ground. | | | | | R90 | Analog Voltage | Connects AVCC to CON_AVCC on | Disconnects AVCC from CON_AVCC. | R134 | | | | | Source | JA1. | | | | | | R121 | Voltage Reference | Connects VREF to Board_VCC1. | Disconnects VREF from Board_VCC1. | R122 | | | | | Source | | | | | | | R122 | Voltage Reference | Connects VREF to CON_VREF on JA1. | Disconnects VREF from CON_VREF. | R121 | | | | | Source | | | | | | | R134 | Analog Voltage | Connects AVCC to Board_VCC1. | Disconnects AVCC from Board_VCC1. | R90 | | | | | Source | | | | | | Table 6-8: Analog configuration links Table 6-9 below describes the function of the option links associated with application board interface. | | | Option Link Settings | 3 | | |-----------|-------------------|--|------------------------------------|------------| | Reference | Function | Fitted | Alternative (Removed) | Related To | | R49 | Application Board | Connects MCU port pin p2_4 (pin 66) to | Disconnects MCU port pin p2_4 (pin | R75, R50, | | | Interface | DLCDD4 on Debug LCD Header | 66) from DLCDD4 on Debug LCD | R76 | | | | | Header | | | R50 | Application Board | Connects MCU port pin p2_6 (pin 64) to | Disconnects MCU port pin p2_6 (pin | R75, R49, | | | Interface | DLCDD6 on Debug LCD Header | 64) from DLCDD6 on Debug LCD | R76 | | | | | Header | | | R51 | Application Board | Connects MCU port pin p3_0 (pin 61) to | Disconnects MCU port pin p3_0 (pin | - | | | Interface | IO0 at JA1-15 | 61) from IO0 | | | R52 | Application Board | Connects MCU port pin p3_1 (pin 59) to | Disconnects MCU port pin p3_1 (pin | - | | | Interface | IO1 at JA1-16 | 59) from IO1 | | | R53 | Application Board | Connects MCU port pin p3_2 (pin 58) to | Disconnects MCU port pin p3_2 (pin | - | | | Interface | IO2 at JA1-17 | 58) from IO2 | | | R54 | Application Board | Connects MCU port pin p3_3 (pin 57) to | Disconnects MCU port pin p3_3 (pin | - | | | Interface | IO3 at JA1-18 | 57) from IO3 | | | R55 | Application Board | Connects MCU port pin p3_4 (pin 56) to | Disconnects MCU port pin p3_4 (pin | - | | | Interface | IO4 at JA1-19 | 56) from IO4 | | | R56 | Application Board | Connects MCU port pin p3_5 (pin 55) to | Disconnects MCU port pin p3_5 (pin | - | | | Interface | IO5 at JA1-20 | 55) from IO5 | | | R57 | Application Board | Connects MCU port pin p3_6 (pin 54) to | Disconnects MCU port pin p3_6 (pin | - | | | Interface | IO6 at JA1-21 | 54) from IO6 | | | R58 | Application Board | Connects MCU port pin p3_7 (pin 53) to | Disconnects MCU port pin p3_7 (pin | - | | | Interface | IO7 at JA1-22 | 53) from IO7 | | | R65 | Application Board | Connects MCU port pin p1_5 (pin 73) to | Disconnects MCU port pin p1_5 (pin | R66 | | | Interface | D13 at JA3-34 | 73) from D13 | | | R66 | Application Board | Connects MCU port pin p1_5 (pin 73) to | Disconnects MCU port pin p1_5 (pin | R65 | | | Interface | INT3n at JA1-23 | 73) from INT3n | | | R67 | Application Board | Connects MCU port pin p4_0 (pin 52) to | Disconnects MCU port pin p4_0 (pin | - | | | Interface | LEDO. | 52) from LED0. | | | R68 | Application Board | Connects MCU port pin p4_2 (pin 50) to | Disconnects MCU port pin p4_2 (pin | - | | | Interface | LED2. | 50) from LED2. | | | R71 | Application Board | Connects MCU port pin p2_0 (pin 70) to | Disconnects MCU port pin p2_0 (pin | - | | | Interface | DLCDRS on Debug LCD Header | 70) from DLCDRS on Debug LCD | | | | | | Header | | | R74 | Application Board | Connects MCU port pin p2_1 (pin 69) to | Disconnects MCU port pin p2_1 (pin | - | | | Interface | DLCDE on Debug LCD Header | 69) from DLCDE on Debug LCD | | | | | | Header | | | R75 | Application Board | Connects MCU port pin p2_5 (pin 65) to | Disconnects MCU port pin p2_5 (pin | | |------|-------------------|--|-------------------------------------|------| | K/3 | | | , , , , , , | - | | | Interface | DLCDD5 on Debug LCD Header | 65) from DLCDD5 on Debug LCD | | | D70 | A P C D l | Comparts MCII most visus 2.7 (visus 22) to | Header | | | R76 | Application Board | Connects MCU port pin p2_7 (pin 63) to | Disconnects MCU port pin p2_7 (pin | - | | | Interface | DLCDD7 on Debug LCD Header | 63) from DLCDD7 on Debug LCD | | | | | | Header | | | R77 | Application Board | Connects MCU port pin p5_0 (pin 44) to | Disconnects MCU port pin p5_0 (pin | R78 | | | Interface | WRn at JA3-26 | 44) from WRn | | | R78 | Application Board | Connects MCU port pin p5_0 (pin 44) | Disconnects MCU port pin p5_0 (pin | R77 | | | Interface | to WRLn at JA3-48 | 44) from WRLn | | | R79 | Application Board | Connects MCU port pin p1_7 (pin 71) to | Disconnects MCU port pin p1_7 (pin | R80 | | | Interface | CAN1_ERR | 71) from CAN1_ERR | | | R80 | Application Board | Connects MCU
port pin p1_7 (pin 71) to | Disconnects MCU port pin p1_7 (pin | R79 | | | Interface | D15 at JA3-36 | 71) from D15 | | | R81 | Application Board | Connects MCU port pin p1_6 (pin 72) to | Disconnects MCU port pin p1_6 (pin | R82 | | | Interface | CAN0_ERR | 72) from CAN0_ERR | | | R82 | Application Board | Connects MCU port pin p1_6 (pin 72) to | Disconnects MCU port pin p1_6 (pin | R81 | | | Interface | D14 at JA3-35 | 72) from D14 | | | R83 | Application Board | Connects MCU port pin p4_1 (pin 51) to | Disconnects MCU port pin p4_1 (pin | - | | | Interface | LED1. | 51) from LED1. | | | R84 | Application Board | Connects MCU port pin p4_3 (pin 49) to | Disconnects MCU port pin p4_3 (pin | - | | | Interface | LED3. | 49) from LED3. | | | R85 | Application Board | Connects MCU port pin p4_5 (pin 47) to | Disconnects MCU port pin p4_5 (pin | R86 | | | Interface | A21 at JA3-42 | 71) from A21 | | | R86 | Application Board | Connects MCU port pin p4_5 (pin 47) to | Disconnects MCU port pin p4_5 (pin | R85 | | | Interface | CS2n at JA3-45 | 71) from CS2n | | | R87 | Application Board | Connects MCU port pin p4_6 (pin 46) to | Disconnects MCU port pin p4_6 (pin | R88 | | | Interface | A22 at JA3-43 | 46) from A22 | | | R88 | Application Board | Connects MCU port pin p4_6 (pin 46) to | Disconnects MCU port pin p4_6 (pin | R87 | | | Interface | CS1n at JA3-28 | 46) from CS1n | | | R94 | Application Board | Connects MCU port pin p10_0 (pin 95) | Disconnects MCU port pin p10_0 (pin | R96 | | | Interface | to Analog pot | 95) from Analog pot | | | R96 | Application Board | Connects MCU port pin p10_0 (pin 95) to | Disconnects MCU port pin p10_0 | R94 | | • | Interface | ANO at JA1-9 | (pin 95) from AN0 | | | R97 | Application Board | Connects MCU port pin p7_2 (pin 26) to | Disconnects MCU port pin p7_2 (pin | R98 | | | Interface | CLK2 at JA6-10 | 26) from CLK2 | 1.00 | | R98 | Application Board | Connects MCU port pin p7_2 (pin 26) to | Disconnects MCU port pin p7_2 (pin | R97 | | 1100 | Interface | Vp at JA2-15 | 26) from Vp | 137 | | | interface | vp at JAZ-10 | <i>20)</i> ποιπ νρ | | | R99 | Application Board | Connects MCU port pin p7_4 (pin 24) to | Disconnects MCU port pin p7_4 (pin | R101 | |------|-------------------|---|-------------------------------------|------| | | Interface | Wp at JA2-17 | 24) from Wp | | | R101 | Application Board | Connects MCU port pin p7_4 (pin 24) to | Disconnects MCU port pin p7_4 (pin | R99 | | | Interface | TA2OUT at JA2-19 | 24) from TA2OUT | | | R102 | Application Board | Connects MCU port pin p7_5 (pin 23) to | Disconnects MCU port pin p7_5 (pin | R104 | | | Interface | Wn at JA2-18 | 23) from Wn | | | R103 | Application Board | Connects MCU port pin p7_0 (pin 28) to | Disconnects MCU port pin p7_0 (pin | R105 | | | Interface | TxD2 at JA6-8 via a 22R resistor | 28) from TxD2 | | | R104 | Application Board | Connects MCU port pin p7_5 (pin 23) to | Disconnects MCU port pin p7_5 (pin | R102 | | | Interface | TA2IN at JA2-21 | 23) from TA2IN | | | R105 | Application Board | Connects MCU port pin p7_0 (pin 28) to | Disconnects MCU port pin p7_0 (pin | R103 | | | Interface | IIC_SDA at JA1-25 via a 22R resistor | 28) from IIC_SDA | | | R106 | Application Board | Connects MCU port pin p8_0 (pin 20) to | Disconnects MCU port pin p8_0 (pin | R108 | | | Interface | Up at JA2-13 | 20) from Up | | | R107 | Application Board | Connects MCU port pin p7_1 (pin 27) to | Disconnects MCU port pin p7_1 (pin | R109 | | | Interface | RxD2 at JA6-7 via a 22R resistor | 27) from RxD2 | | | R108 | Application Board | Connects MCU port pin p8_0 (pin 20) to | Disconnects MCU port pin p8_0 (pin | R106 | | | Interface | TA4OUT at JA2-20 | 20) from TA4OUT | | | R109 | Application Board | Connects MCU port pin p7_1 (pin 27) to | Disconnects MCU port pin p7_1 (pin | R107 | | | Interface | IIC_SCL at JA1-26 via a 22R resistor | 27) from IIC_SCL | | | R110 | Application Board | Connects MCU port pin p8_1 (pin 19) to | Disconnects MCU port pin p8_1 (pin | R112 | | | Interface | Un at JA2-14 | 19) from Un | | | R111 | Application Board | Connects MCU port pin p10_4 (pin 90) | Disconnects MCU port pin p10_4 (pin | R113 | | | Interface | to CAN0_EN | 90) from CAN0_EN | | | R112 | Application Board | Connects MCU port pin p8_1 (pin 19) to | Disconnects MCU port pin p8_1 (pin | R110 | | | Interface | TA4IN at JA2-22 | 19) from TA4IN | | | R113 | Application Board | Connects MCU port pin p10_4 (pin 90) to | Disconnects MCU port pin p10_4 | R111 | | | Interface | AN4 at JA5-1 | (pin 90) from AN0 | | | R116 | Application Board | Connects MCU port pin p10_5 (pin 89) to | Disconnects MCU port pin p10_5 | R117 | | | Interface | AN5 at JA5-2 | (pin 89) from AN5 | | | R117 | Application Board | Connects MCU port pin p10_5 (pin 89) | Disconnects MCU port pin p10_5 (pin | R116 | | | Interface | to CAN0_STBn | 89) from CAN0_STBn | | | R119 | Application Board | Connects MCU port pin p10_6 (pin 88) to | Disconnects MCU port pin p10_6 | R123 | | | Interface | AN6 at JA5-3 | (pin 88) from AN6 | | | R123 | Application Board | Connects MCU port pin p10_6 (pin 88) | Disconnects MCU port pin p10_6 (pin | R119 | | | Interface | to CAN1_EN | 88) from CAN1_EN | | | R131 | Application Board | Connects MCU port pin p10_7 (pin 87) to | Disconnects MCU port pin p10_7 | R135 | | | Interface | AN7 at JA5-4 | (pin 87) from AN7 | | | R135 | Application Board | Connects MCU port pin p10_7 (pin 87) | Disconnects MCU port pin p10_7 (pin | R131 | |------|-------------------|--------------------------------------|-------------------------------------|------| | | Interface | to CAN1_STBn | 87) from CAN1_STBn | | Table 6-9: Application Board Interface configuration links Table 6-10 below describes the function of the option links associated with Clock configuration. | | Option Link Settings | | | | | | | |-----------|----------------------|---|--|---------|--|--|--| | Reference | Function | Fitted | Alternative (Removed) | Related | | | | | | | | | То | | | | | R120 | Main clock | Connects the external clock to the MCU. | On-board clock (X1) can be connected | R124 | | | | | R124 | Main clock | Connects the on-board clock (X1) to the | External Clock Source can be connected. | R120 | | | | | | | MCU. | | | | | | | R125 | Main clock | Connects the on-board clock (X1) from the | External Clock Source can be connected. | R126 | | | | | | | MCU. | | | | | | | R126 | Main clock | Connects the external clock from the MCU. | On-board clock (X1) can be connected | R125 | | | | | R127 | Sub-clock | Connects the external clock from the MCU. | On-board sub-clock (X2) can be connected | R128 | | | | | R128 | Sub-clock | Connects the on-board clock from the MCU. | External Clock Source can be connected. | R127 | | | | | R129 | Sub-clock | Connects the on-board clock to the MCU. | External Clock Source can be connected. | R130 | | | | | R130 | Sub-clock | Connects the external clock to the MCU. | On-board sub-clock (X2) can be connected | R129 | | | | | R132 | Sub-clock | Parallel resistor for X2 | Not fitted. | - | | | | | R133 | Main clock | Parallel resistor for X1 | Not fitted. | - | | | | Table 6-10: Clock configuration links ### 6.7. Oscillator Sources A crystal oscillator is fitted on the RSK board and used to supply the main clock input to the Renesas microcontroller. The oscillators that are fitted and alternative footprints provided on this RSK board are detailed in Table 6-11 | Component | | | | | | | |---|--------|----------------------------|--|--|--|--| | Crystal (X1) Fitted 16.0MHz (HC49/4H package) | | | | | | | | Crystal (X2) | Fitted | 32.768 KHz (90SMX package) | | | | | Table 6-11: Oscillators / Resonators Warning: When replacing the default oscillator with that of another frequency, the debugging monitor may not function until the debugger settings are modified to suit the debugger. ### 6.8. Reset Circuit The RSK board includes a simple latch circuit that links the mode selection and reset circuit. This provides an easy method for swapping the device between Boot Mode and User mode. This circuit is not required on customers' boards as it is intended for providing easy evaluation of the operating modes of the device on the RSK. Please refer to the hardware manual for more information on the requirements of the reset circuit. | The reset circuit operates by latching the state of the boot switch (SW1) on pressing the reset button. This control is subsequently used to | |--| | modify a port pin state to select which code is executed. | | The reset is held in the active state for a fixed period by a resistor / capacitor network. Please check the reset requirements carefully to | | ensure the reset circuit on the user's board meets all the reset timing requirements. | | | | | | | # Chapter 7. Modes The MCU can be configured in User mode and Boot mode. User mode may be used to run and debug user code, while Boot mode may only be used to program the MCU with program code via the serial interface. Further details of programming the flash are available in the R32C/111 device hardware manual. The RSK board provides the capability of changing between User and Boot / User Boot modes using a simple latch circuit. This is only to provide a simple mode control on this board when the E8A debugger is not in use. To manually enter boot mode, press and hold the SW1/BOOT. The mode pins are held in their boot states while reset is pressed and released. Release the boot button. The BOOT LED will be illuminated to indicate that the microcontroller is in boot mode. More information on the operating modes can be found in the device hardware manual. ### 7.1. Boot
mode The boot mode settings for this RSK board are shown in Table 7-1 below: | CNVSS | CEn | EPMn | LSI State after Reset End | |-------|-----|------|---------------------------| | 1 | 1 | 0 | Boot Mode | Table 7-1: Boot Mode pin settings ### 7.2. User Mode The R32C/111 supports single-chip and microprocessor modes. The default user mode for the RSKR32C111 is Single-chip. | CNVSS | CEn | EPMn | LSI State after Reset End | |-------|-----|------|---------------------------| | 0 | 0 | 1 | Single-chip Mode | | 1 | 0 | 1 | Microprocessor Mode | Table 7-2: User Mode pin settings # Chapter 8. Programming Methods | The board is intended for use with HEW and the supplied E8A debugger only. Please refer to R32C/111 Group Hardware Manual for details of the programming methods using the on-chip serial port and without using E8A debugger. | |--| # Chapter 9. Headers # 9.1. Microcontroller Ring Headers The microcontroller pin headers and their corresponding microcontroller connections are detailed in Table 9-1 to Table 9-4. | Pin | Circuit Net Name | Device pin | Pin | Circuit Net Name | Device pin | |-----|------------------|--------------|-----|------------------|---------------| | 1 | CAN1_OUT | 99 | 2 | CAN1_IN | 100 | | 3 | DA1 | 1 | 4 | DA0 | 2 | | 5 | P9_2 | - | 6 | P9_1 | 4 | | 7 | P9_0 | - | 8 | P14_6 | - | | 9 | P14_5 | - | 10 | P14_4 | - | | 11 | P14_3 | - | 12 | NC | - | | 13 | P14_1 | - | 14 | NC | - | | 15 | NC | - | 16 | E8_CNVSS | 7 | | 17 | CON_XCIN | 8 (via R130) | 18 | CON_XCOUT | 9 (via R127) | | 19 | RESn | 10 | 20 | CON_XOUT | 11 (via R126) | | 21 | GROUND | 12 | 22 | CON_XIN | 13 (via R120) | | 23 | UC_VCC1 | 14 | 24 | NMIn | 15 | | 25 | INT2n | 16 | 26 | INT1n | 17 | | 27 | INT0n | 18 | 28 | TA4IN_Un | 19 | | 29 | TA4OUT_Up | 20 | 30 | CAN0_IN | 21 | | 31 | CAN0_OUT | 22 | 32 | TA2IN_Wn | 23 | | 33 | TA2OUT_Wp | 24 | 34 | Vn | 25 | | 35 | CLK2_Vp | 26 | 36 | IICSCL_RxD2 | 27 (via R115) | Table 9-1: J1 microcontroller header | Pin | Circuit Net Name | Device pin | Pin | Circuit Net Name | Device pin | |-----|------------------|---------------|-----|------------------|------------| | 1 | IIC_SDA_TxD2 | 28 (via R114) | 2 | PTTX | 29 | | 3 | UC_VCC1 | - | 4 | PTRX | 30 | | 5 | GROUND | - | 6 | PTCK | 31 | | 7 | E8_BUSY | 32 | 8 | TxD0 | 33 | | 9 | RxD0 | 34 | 10 | CLK0 | 35 | | 11 | CTSRTS | 36 | 12 | P13_7 | - | | 13 | P13_6 | - | 14 | P13_5 | - | | 15 | P13_4 | - | 16 | RDYn | 37 | | 17 | ALE | 38 | 18 | E8_EPM | 39 | | 19 | UD | 40 | 20 | P13_3 | - | | 21 | GROUND | - | 22 | P13_2 | - | | 23 | UC_VCC1 | - | 24 | P13_1 | - | | 25 | P13_0 | - | 26 | TRSTn | 41 | | 27 | RDn | 42 | 28 | WRHn | 43 | | 29 | WRLn_WRn | 44 | 30 | P12_7 | - | | 31 | P12_6 | - | 32 | P12_5 | - | | 33 | A23_CS0n | 45 | 34 | A22_CS1n | 46 | | 35 | A21_CS2n | 47 | 36 | A20_CS3n | 48 | Table 9-2: J2 microcontroller header | Pin | Circuit Net Name | Device pin | Pin | Circuit Net Name | Device pin | |-----|------------------|------------|-----|------------------|------------| | 1 | A19_LED3 | 49 | 2 | UC_VCC1 | - | | 3 | A18_LED2 | 50 | 4 | GROUND | - | | 5 | A17_LED1 | 51 | 6 | A16_LED0 | 52 | | 7 | A15_IO7 | 53 | 8 | A14_IO6 | 54 | | 9 | A13_IO5 | 55 | 10 | A12_IO4 | 56 | | 11 | A11_IO3 | 57 | 12 | A10_IO2 | 58 | | 13 | A9_IO1 | 59 | 14 | P12_4 | - | | 15 | P12_3 | - | 16 | P12_2 | - | | 17 | P12_1 | - | 18 | P12_0 | - | | 19 | UC_VCC2 | 60 | 20 | A8_IO0 | 61 | | 21 | GROUND | 62 | 22 | A7_DLCDD7 | 63 | | 23 | A6_DLCDD6 | 64 | 30 | A5_DLCDD5 | 65 | | 25 | A4_DLCDD4 | 66 | 31 | A3 | 67 | | 27 | A2 | 68 | 32 | A1_DLCDE | 69 | | 29 | A0_DLCDRS | 70 | 33 | D15_CAN1_ERR | 71 | | 31 | D14_CAN0_ERR | 72 | 34 | D13_INT3n | 73 | | 33 | D12 | 74 | 35 | D11 | 75 | | 35 | D10 | 76 | 36 | D9 | 77 | Table 9-3: J3 microcontroller header | Pin | Circuit Net Name | Device pin | Pin | Circuit Net Name | Device pin | |-----|------------------|--------------|-----|------------------|---------------| | 1 | D8 | 78 | 2 | D7 | 79 | | 3 | D6 | 80 | 4 | D5 | 81 | | 5 | D4 | 82 | 6 | P11_4 | - | | 7 | P11_3 | - | 8 | P11_2 | - | | 9 | P11_1 | - | 10 | P11_0 | - | | 11 | D3 | 83 | 12 | D2 | 84 | | 13 | D1 | 85 | 14 | D0 | 86 | | 15 | P15_7 | - | 16 | P15_6 | - | | 17 | P15_5 | - | 18 | P15_4 | - | | 19 | P15_3 | - | 20 | P15_2 | - | | 21 | P15_1 | - | 22 | GROUND | - | | 23 | P15_0 | - | 24 | UC_VCC1 | - | | 25 | AN7_CAN1_STBn | 87 | 26 | AN6_CAN1_EN | 88 | | 27 | AN5_CAN0_STBn | 89 | 28 | AN4_CAN0_EN | 90 | | 29 | AN3 | 91 | 30 | AN2 | 92 | | 31 | AN1 | 93 | 32 | AVSS | 94 | | 33 | ADPOT_AN0 | 95 | 34 | CON_VREF | 96 (via R122) | | 35 | CON_AVCC | 97 (via R90) | 36 | ADTRGn | 98 | Table 9-4: J4 microcontroller header # 9.2. Application Headers Standard application header connections are detailed in Table 9-5 to Table 9-9. | Pin | Generic Header | RSK board Signal | Device Pin | Pin | Generic | RSK board Signal | Device pin | |-----|----------------|------------------|---------------|-----|---------|------------------|---------------| | | Name | Name | | | Header | Name | | | | | | | | Name | | | | 1 | 5V | CON_5V | - | 2 | 0V(5V) | GROUND | - | | 3 | 3V3 | CON_3V3 | - | 4 | 0V(3V3) | GROUND | - | | 5 | AVcc | CON_AVCC | - | 6 | AVss | AVSS | 94 | | 7 | AVref | CON_VREF | - | 8 | ADTRG | ADTRGn | 98 | | 9 | AD0 | AN0 | 95 | 10 | AD1 | AN1 | 93 | | 11 | AD2 | AN2 | 92 | 12 | AD3 | AN3 | 91 | | 13 | DAC0 | DA0 | 2 | 14 | DAC1 | DA1 | 1 | | 15 | IO_0 | IO0 | 61 | 16 | 10_1 | IO1 | 59 | | 17 | IO_2 | IO2 | 58 | 18 | IO_3 | IO3 | 57 | | 19 | IO_4 | IO4 | 56 | 20 | IO_5 | IO5 | 55 | | 21 | IO_6 | IO6 | 54 | 22 | 10_7 | 107 | 53 | | 23 | IRQ3 | INT3n | 73 | 24 | IIC_EX | NC | | | 25 | IIC_SDA | IIC_SDA | 28 (via R114) | 26 | IIC_SCL | IIC_SCL | 27 (via R115) | Table 9-5: JA1 Standard Generic Header | Pin | Generic Header | RSK board Signal | Device Pin | Pin | Generic Header | RSK board | Device | |-----|----------------|------------------|------------|-----|----------------|-------------|--------| | | Name | Name | | | Name | Signal Name | Pin | | 1 | RESn | RESn | 10 | 2 | EXTAL | CON_XIN | - | | 3 | NMIn | NMIn | 15 | 4 | Vss1 | GROUND | - | | 5 | WDT_OVF | NC | | 6 | SCIaTX | TxD0 | 33 | | 7 | IRQ0 | INT0n | 18 | 8 | SClaRX | RXD0 | 34 | | 9 | IRQ1 | INT1n | 17 | 10 | SCIaCK | CLK0 | 35 | | 11 | UD | UD | 40 | 12 | CTSRTS | CTSRTS | 36 | | 13 | Up | Up | 20 | 14 | Un | Un | 19 | | 15 | Vp | Vp | 26 | 16 | Vn | Vn | 25 | | 17 | Wp | Wp | 24 | 18 | Wn | Wn | 23 | | 19 | TMR0 | TA2OUT | 24 | 20 | TMR1 | TA4OUT | 20 | | 21 | TRIGa | TA2IN | 23 | 22 | TRIGb | TA4IN | 19 | | 23 | IRQ2 | INT2n | 16 | 24 | TRISTn | TRSTn | 41 | | 25 | Reserved | NC | | 26 | Reserved | NC | | Table 9-6: JA2 Standard Generic Header | Pin | Generic Header | RSK board Signal | Device Pin | Pin | Generic Header | RSK board Signal Name | Device Pin | |-----|----------------|------------------|------------|-----|----------------|-----------------------|------------| | | Name | Name | | | Name | | | | 1 | A0 | A0_DLCDRS | 70 | 2 | A1 | A1_DLCDE | 69 | | 3 | A2 | A2 | 68 | 4 | A3 | А3 | 67 | | 5 | A4 | A4_DLCDD4 | 66 | 6 | A5 | A5_DLCDD5 | 65 | | 7 | A6 | A6_DLCDD6 | 64 | 8 | A7 | A7_DLCDD7 | 63 | | 9 | A8 | A8_IO0 | 61 | 10 | A9 | A9_IO1 | 59 | | 11 | A10 | A10_IO2 | 58 | 12 | A11 | A11_IO3 | 57 | | 13 | A12 | A12_IO4 | 56 | 14 | A13 | A13_IO5 | 55 | | 15 | A14 | A14_IO6 | 54 | 16 | A15 | A15_IO7 | 53 | | 17 | D0 | D0 | 86 | 18 | D1 | D1 | 85 | | 19 | D2 | D2 | 84 | 20 | D3 | D3 | 83 | | 21 | D4 | D4 | 82 | 22 | D5 | D5 | 81 | | 23 | D6 | D6 | 80 | 24 | D7 | D7 | 79 | | 25 | RDn | RDn | 42 | 26 | WRn | WRn | 44 | | 27 | CSan | A23_CS0n | 45 | 28 | CSbn | CS1n | 46 | | 29 | D8 | D8 | 78 | 30 | D9 | D9 | 77 | | 31 | D10 | D10 | 76 | 32 | D11 | D11 | 75 | | 33 | D12 | D12 | 74 | 34 | D13 | D13 | 73 | | 35 | D14 | D14 | 72 | 36 | D15 | D15 | 71 | | 37 | A16 | A16_LED0 | 52 | 38 | A17 | A17_LED1 | 51 | | 39 | A18 | A18_LED2 | 50 | 40 | A19 | A19_LED3 | 49 | | 41 | A20 | A20_CS3n | 48 | 42 | A21 | A21 | 47 | | 43 | A22 | A22 | 46 | 44 | SDCLK | NC | | | 45 | CScn | CS2n | 47 | 48 | LWRn | WRLn | 44 | | 47 | HWRn | WRHn | 43 | 46 | ALE | ALE | 38 | | 49 | CASn | NC | | 50 | RASn | NC | | Table 9-7: JA3 Standard Generic Header | Pin | Generic Header | RSK board Signal | Device | Pin | Generic Header | RSK board Signal | Device Pin | |-----|----------------|------------------|--------|-----|----------------|------------------|------------| | | Name | Name | Pin | | Name | Name | | | 1 | AD4 | AN4 | 90 | 2 | AD5 | AN5 | 89 | | 3 | AD6 | AN6 | 88 | 4 | AD7 | AN7 | 87 | | 5 | CAN1TX | CAN0_OUT | 22 | 6 | CAN1RX | CAN0_IN | 21 | | 7 | CAN2TX | CAN1_OUT | 99 | 8 | CAN2TX | CAN1_IN | 100 | | 9 | AD8 | NC | | 10 | AD9 | NC | | | 11 | AD10 | NC | | 12 | AD11 | NC | | | 13 | TIOC0A | NC | | 14 | TIOC0B | NC | | | 15 | TIOC0C | NC | | 16 | M2_TRISTn | NC | | | 17 | TCLKC | NC | | 18 | TCLKD | NC | | | 19 | M2_Up | NC | | 20 | M2_Un | NC | | | 21 | M2_Vp | NC | | 22 | M2_Vn | NC | | | 23 | M2_Wp | NC | | 24 | M2_Wn | NC | | Table 9-8: JA5 Standard Generic Header | Pin | Generic Header | RSK board Signal | Device Pin | Pin | Generic Header | RSK board Signal | Device Pin | |-----|----------------|------------------|------------|-----|----------------|------------------|------------| | | Name | Name | | | Name | Name | | | 1 | DREQ | NC | | 2 | DACK | NC | | | 3 | TEND | NC | | 4 | STBYn | NC | | | 5 | RS232TX | RS232TX | | 6 | RS232RX | RS232RX | | | 7 | SCIbRX | RxD2 | 27 | 8 | SCIbTX | TxD2 | 28 | | 9 | SCIcTX | NC | | 10 | SCIbCK | CLK2 | 26 | | 11 | SCIcCK | NC | | 12 | SCIcRX | NC | | | 13 | Reserved | NC | | 14 | Reserved | NC | | | 15 | Reserved | NC | | 16 | Reserved | NC | | | 17 | Reserved | NC | | 18 | Reserved | NC | |
| 19 | Reserved | NC | | 20 | Reserved | NC | | | 21 | Reserved | NC | | 22 | Reserved | NC | | | 23 | Reserved | NC | | 24 | Reserved | NC | | Table 9-9: JA6 Standard Generic Header ## Chapter 10. Code Development ### 10.1. Overview Note: For all code debugging using Renesas software tools, the RSK board must either be connected to a PC serial port via a serial cable or a PC USB port via an E8A. Due to the continuous process of improvements undertaken by Renesas the user is recommended to review the information provided on the Renesas website at www.renesas.com to check for the latest updates to the Compiler and Debugger manuals. ### 10.2. Compiler Restrictions The compiler supplied with this RSK is fully functional for a period of 60 days from first use. After the first 60 days of use have expired, the linker will limit the object size to a maximum of 64kB. To use the compiler with programs greater than this size you will need to purchase the full tools from your distributor. Warning: The protection software for the compiler will detect changes to the system clock. Changes to the system clock back in time may cause the trial period to expire prematurely. ### 10.3. Breakpoint Support This RSK is supplied with an E8A emulator which supports breakpoints in ROM. For more details on breakpoints & E8A functions please refer to the 'E8A-USB Emulator User's Manual'. ### 10.4. Memory Map The memory map shown below gives the locations of each memory area. #### Notes: - 1. Additional two 4-Kbyte spaces (blocks A and B) for storing data are provided in the flash memory version. - 2. This space can be used in memory expansion mode or microprocessor mode. Addresses from 02000000h to FDFFFFFh are inaccessible. - 3. This space is reserved in memory expansion mode. It can be external space in microprocessor mode. - This space can be used in single-chip mode or memory expansion mode. It can be external space in microprocessor mode. - The watchdog timer interrupt shares the vector table with the oscillation stop detection interrupt and lowvoltage detection interrupt. Figure 10-1: Memory Map For more details please refer to the R32C/111 Hardware manual. Figure 10-2: Flash memory map # Chapter 11. Component Placement Figure 11-1: Component Placement (Top Layer) # Chapter 12. Additional Information For details on how to use High-performance Embedded Workshop (HEW), refer to the HEW manual available on the CD or installed in the Manual Navigator. For information about the R32C/111 microcontrollers refer to the R32C/111 Group Hardware Manual For information about the R32C/111 assembly language, refer to the R32C/100 Software Manual For information about the E8A Emulator, please refer to the E8A Emulator User's Manual Online technical support and information is available at: http://www.renesas.com/renesas_starter_kits #### **Technical Contact Details** America: <u>techsupport.rta@renesas.com</u> Europe: <u>tools.support.eu@renesas.com</u> Japan: csc@renesas.com General information on Renesas Microcontrollers can be found on the Renesas website at: http://www.renesas.com/ Renesas Starter Kit for R32C/111 User's Manual Publication Date Rev.0.90 28.Nov.2008 Published by: Renesas Technology Europe Ltd. Duke's Meadow, Millboard Road, Bourne End Buckinghamshire SL8 5FH, United Kingdom $\hbox{@2008 Renesas Technology Europe and Renesas Solutions Corp., All Rights Reserved.}\\$ # Renesas Starter Kit for R32C/111 User's Manual