

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

Document No. U13262EJ2V0UM00 (2nd edition)
(Previous No. IEU-1363)
Date Published May 1998 N CP(K)

1993

Common items

µPD170×× Series
4-bit Single-chip Microcontroller

User’s Manual

Printed in Japan
©

2

[MEMO]

3

SIMPLEHOST and emlC-17K are trademarks of NEC Corporation.

PC/AT is a trademark of IBM Corporation.

Windows is either a registered trademark or a trademark of Microsoft

Corporation in the United States and/or other countries.

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and

ultimately degrade the device operation. Steps must be taken to stop generation of static electricity

as much as possible, and quickly dissipate it once, when it has occurred. Environmental control

must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using

insulators that easily build static electricity. Semiconductor devices must be stored and transported

in an anti-static container, static shielding bag or conductive material. All test and measurement

tools including work bench and floor should be grounded. The operator should be grounded using

wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions

need to be taken for PW boards with semiconductor devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided

to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence

causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input

levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each

unused pin should be connected to VDD or GND with a resistor, if it is considered to have a

possibility of being an output pin. All handling related to the unused pins must be judged device

by device and related specifications governing the devices.

3 STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS

does not define the initial operation status of the device. Immediately after the power source is

turned ON, the devices with reset function have not yet been initialized. Hence, power-on does

not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until

the reset signal is received. Reset operation must be executed immediately after power-on for

devices having reset function.

4

Purchase of NEC I2C components conveys a license under the Philips I2C Patent Rights to use these

components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined

by Philips.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited
without governmental license, the need for which must be judged by the customer. The export or re-export of this product
from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales
representative.

The information in this document is subject to change without notice.
No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from use of a device described herein or any other liability arising from use
of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a
customer designated “quality assurance program“ for a specific application. The recommended applications of
a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device
before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

M7 96.5

5

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 408-588-6000

800-366-9782
Fax: 408-588-6130

800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Italiana s.r.1.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 65-253-8311
Fax: 65-250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951

NEC do Brasil S.A.
Cumbica-Guarulhos-SP, Brasil
Tel: 011-6465-6810
Fax: 011-6465-6829

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580

NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 58 00
Fax: 01-30-67 58 99

NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860

NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80 820
Fax: 08-63 80 388

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC
product in your application, please contact the NEC office in your country to obtain a list of authorized
representatives and distributors. They will verify:

• Device availability

• Ordering information

• Product release schedule

• Availability of related technical literature

• Development environment specifications (for example, specifications for third-party tools and
components, host computers, power plugs, AC supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary
from country to country.

J98. 2

6

MAJOR REVISIONS IN THIS VERSION

Page Contents

Throughout Assembler changed (AS17K → RA17K)

Throughout In-circuit emulator IE-17K-ET added

p. 8 Related Documents in INTRODUCTION changed

in previous edition µPD170×× Product Development and List of Functions in CHAPTER 1 GENERAL deleted

p. 79 6.7.3 Notes on using general register pointer added

p. 102 Diagram of the relationship between program status word (PSWORD) and status flip-flop in

Figure 8-1. Configuration of ALU Block added

p. 104 Operation and description of instructions added to Table 8-1. ALU Processing Instructions

p. 106 The following descriptions added to 8.2.3 Status flip-flop functions :

(1) Z flag

(2) CY flag

(3) CMP flag

(4) BCD flag

p. 108 Table 8-2. Results for Binary 4-bit and BCD Operations changed

p. 110 Table 8-3. Arithmetic Operation Instructions added

p. 121 Table 8-4. Logical Operation Instructions added

p. 124 Table 8-6. Bit Testing Instructions added

p. 126 Table 8-7. Compare Instructions added

p. 138 Example 3 added to 9.4.2 Symbol definition of register file and reserved words

p. 160 Description added to 12.2.6 Interrupt enable flip-flop (INTE)

p. 183 Remarks added to:

13.4.3 Releasing halt status by key input

13.4.4 Releasing halt status by timer carry (basic timer 0 carry)

p. 183, 184 Remark and Caution added to 13.4.5 Releasing halt status by interrupt

in previous edition 12.6 Current Dissipation in Halt and Clock Stop Modes in previous edition deleted

in previous edition CHAPTER 14 ONE-TIME PROM MODEL in previous edition deleted

p. 198 Description added to 14.4 Power-ON Reset

p. 282 15.5.9 (3) SYSCAL entry added

p. 289, 290 A.1 Hardware and A.2 Software changed

p. 293 C.1 Instruction Index (by function) added

p. 295 APPENDIX D REVISION HISTORY added

The mark shows major revised points in this edition.

7

INTRODUCTION

Targeted reader This manual is intended for the users who understand the functions of the µPD170××
series microcontrollers and design application systems using these microcontrollers.

Objective This manual describes the functions common to all the models in the µPD170×× series,

and will serve as a reference manual when you develop a program for a µPD170××
series microcontrollers.

How to read this manual It is assumed that the readers of this manual possess general knowledge about electric

engineering, logic circuits, and microcomputers.

Since the number of registers and memory capacity differ depending on the model of

the microcontroller, the maximum number and permissible range are described in this

manual. For the exact values, refer to the Data Sheet for each microcontroller.

The hardware peripherals are not described in this manual. For the hardware peripherals,

refer to the Data Sheet for each microcontroller.

• To understand the overall functions of the µPD170×× series,

→ Read this manual using the Contents.

• To understand the function of an instruction whose mnemonic is known,

→ Use the APPENDIX C INSTRUCTION INDEX.

• To understand the function of the instruction whose mnemonic is not known but

whose function is known,

→ Refer to 15.3 Instruction List by referring to 15.5 Instruction Functions .

• To learn the electrical specifications of the µPD170×× series,

→ Refer to the Data Sheet for the respective models.

Legend Data significance : Higher digit on left, lower digit on right

Active low : ××× (bar over pin and signal names)

Memory map address : Top-low, bottom-high

Note : Description of Note in the text.

Caution : Information requiring particular attention

Remark : Supplementary explanation

Number : Binary ... ×××× or ××××B

Decimal number ... ×××× or ××××D

Hexadecimal number ... ××××H

8

Related Documents Also use the following documents.

The Data Sheet of each device, and the User’s Manuals of the SE board and device files

are also available.

Document Name Document No.

Japanese English

17K Series/DTS Standard Models Selection Guide U10317J U10317E

RA17K User’s Manual U10305J U10305E

IE-17K/IE-17K-ET CLICE/CLICE-ET U10063J U10063E

User’s Manual

SIMPLEHOSTTM emIC-17KTM/RA17K Compatible Introduction U10445J U10445E

User’s Manual Reference U10496J U10496E

17K Series Project Manager User’s Manual Reference U12810J EEU-1527

MAKE/CNV17K User’s Manual U10596J U10596E

emIC-17K User’s Manual Reference U12829J U12829E

LK17K User’s Manual U12518J U12518E

DOC17K User’s Manual EEU-5006 EEU-1536

9

TABLE OF CONTENTS

CHAPTER 1 GENERAL ... 19
1.1 Internal Configuration of µPD170×× Subseries .. 20

CHAPTER 2 PROGRAM MEMORY (ROM) .. 21
2.1 Program Memory Configuration ... 21
2.2 Program Memory Functions .. 22
2.3 Program Flow .. 22
2.4 Branching Program .. 23

2.4.1 Direct branch .. 23

2.4.2 Indirect branch ... 23

2.4.3 Notes on debugging .. 23

2.5 Subroutine ... 25
2.5.1 Direct subroutine call ... 25

2.5.2 Indirect subroutine call .. 25

2.6 System Call .. 28
2.7 Table Referencing ... 30
2.8 Notes on Using Operand for Branch and Subroutine Call Instructions 30

CHAPTER 3 PROGRAM COUNTER (PC) .. 31
3.1 Program Counter Configuration ... 31
3.2 Program Counter Functions .. 31

3.2.1 When branch (BR) instruction is executed ... 31

3.2.2 When subroutine call (CALL) or subroutine return (RET, RETSK) instruction is

executed ... 32

3.2.3 When table reference (MOVT) instruction is executed .. 32

3.2.4 When interrupt is accepted and when interrupt return (RETI) instruction is executed 32

3.2.5 When skip instruction is executed .. 32

3.2.6 On reset ... 33

3.2.7 On system call instruction execution .. 33

3.3 Segment Register (SGR) .. 34
3.4 Notes on Using Program Counter .. 34

CHAPTER 4 ADDRESS STACK .. 35
4.1 Address Stack Configuration .. 35
4.2 Address Stack Functions .. 37
4.3 Stack Pointer (SP) ... 37

4.3.1 Stack pointer configuration .. 37

4.3.2 Stack pointer operation ... 38

4.4 Address Stack Registers ... 40
4.5 Stack Operations, When Subroutine, Table Reference, or Interrupt Is Executed ... 41

4.5.1 When subroutine call (CALL) or return (RET, RETSK) instruction is executed 41

4.5.2 Table reference instruction (MOVT DBF, @AR) ... 43

10

4.5.3 System call instruction (SYSCAL) and return instruction (RETI, RETSK) 44

4.5.4 When interrupt is accepted or when return (RETI) instruction is executed 45

4.6 ASR7 Nesting Level for Stack and PUSH AR and POP AR Instructions 47

CHAPTER 5 DATA MEMORY (RAM) .. 49
5.1 Data Memory Configuration .. 49
5.2 Notes on Specifying Data Memory Address ... 51

CHAPTER 6 SYSTEM REGISTER (SYSREG) ... 53
6.1 System Register Configuration .. 53
6.2 System Register Functions ... 55

6.2.1 Each register functions .. 55

6.2.2 System register manipulation instruction .. 55

6.3 Address Register (AR) ... 56
6.3.1 Address register configuration .. 56

6.3.2 Address register functions ... 56

6.3.3 Table reference instruction (MOVT DBF, @AR) ... 56

6.3.4 Stack manipulation instruction (PUSH AR, POP AR) .. 57

6.3.5 Indirect branch instruction (BR @AR) .. 57

6.3.6 Indirect subroutine call instruction (CALL @AR) .. 57

6.3.7 Address register and data buffer .. 59

6.4 Window Register (WR) ... 60
6.4.1 Window register configuration ... 60

6.4.2 Window register functions ... 60

6.4.3 PEEK WR, rf instruction .. 60

6.4.4 POKE rf, WR instruction .. 60

6.5 Bank Register (BANK) .. 62
6.5.1 Bank register configuration ... 62

6.5.2 Bank register function .. 62

6.6 Index Register (IX) and Data Memory Row Address Pointer
(MP: Memory Pointer) ... 65
6.6.1 Configurations for index register and data memory row address pointer 65

6.6.2 Index register and data memory row address pointer functions ... 66

6.6.3 When MPE = 0, IXE = 0 (no data memory modification) .. 68

6.6.4 When MPE = 1, IXE = 0 (diagonal indirect transfer) ... 70

6.6.5 When MPE = 0, IXE = 1 (data memory address index modification) 72

6.6.6 When MPE = 1, IXE = 1 .. 77

6.7 General Register Pointer (RP) ... 79
6.7.1 General register pointer configuration .. 79

6.7.2 General register pointer functions ... 79

6.7.3 Notes on using general register pointer ... 79

6.8 Program Status Word (PSWORD) ... 81
6.8.1 Program status word configuration ... 81

6.8.2 Program status word function ... 82

6.8.3 Index enable flag (IXE) .. 83

6.8.4 Zero (Z) and compare (CMP) flags ... 83

6.8.5 Carry flag (CY) ... 84

11

6.8.6 Binary coded decimal flag (BCD) .. 84

6.8.7 Notes on executing arithmetic operation .. 84

6.9 Notes on Using System Registers ... 85
6.9.1 Reserved words of system registers .. 85

6.9.2 Handling system register fixed to “0” .. 87

CHAPTER 7 GENERAL REGISTER (GR) .. 89
7.1 General Register Configuration .. 89
7.2 General Register Functions .. 91
7.3 Notes on General Register Use .. 91

7.3.1 Address specification for general register .. 91

7.3.2 Row address in general ... 91

7.3.3 Operation between general register and immediate data.. 93

7.4 Address Generation and Operation for General Register and Data Memory by
Each Instruction .. 94

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU) ... 101
8.1 ALU Block Configuration ... 101
8.2 ALU Block Function ... 101

8.2.1 ALU function .. 101

8.2.2 Functions of temporary registers A and B .. 106

8.2.3 Status flip-flop functions .. 106

8.2.4 Binary 4-bit operation .. 107

8.2.5 BCD operation ... 107

8.2.6 ALU block processing sequence ... 109

8.3 Arithmetic Operation (Binary 4-bit addition/subtraction and
BCD addition/subtraction) ... 110
8.3.1 Addition/subtraction when CMP = 0, BCD = 0 ... 111

8.3.2 Addition/subtraction when CMP = 1, BCD = 0 ... 113

8.3.3 Addition/subtraction when CMP = 0, BCD = 1 ... 115

8.3.4 Addition/subtraction when CMP = 1, BCD = 1 ... 119

8.3.5 Notes on using arithmetic operation instruction ... 119

8.4 Logical Operation ... 120
8.4.1 Logical sum (Logical OR) .. 121

8.4.2 Logical product (Logical AND) .. 122

8.4.3 Logical exclusive sum (Logical exclusive OR) ... 123

8.5 Bit Testing .. 124
8.5.1 True bit (1) testing ... 125

8.5.2 False bit (0) testing .. 125

8.6 Compare ... 126
8.6.1 Comparison of “Equal to” .. 127

8.6.2 Comparison of “Not equal to” .. 127

8.6.3 Comparison of “Greater than” ... 128

8.6.4 Comparison of “Less than” .. 128

8.7 Rotation Processing ... 129
8.7.1 Right rotation processing... 129

8.7.2 Left rotation processing ... 130

12

CHAPTER 9 REGISTER FILE (RF) .. 131
9.1 Register File Configuration ... 131
9.2 Register File Functions .. 133

9.2.1 Register file functions .. 133

9.2.2 Register file manipulation instruction .. 133

9.3 Control Register .. 135
9.3.1 Control register configuration .. 135

9.3.2 Hardware peripheral control functions for control register .. 135

9.4 Notes on Using Register File .. 136
9.4.1 Notes on manipulating control registers (read-only and unused registers) 136

9.4.2 Symbol definition of register file and reserved words .. 137

9.4.3 Notes on using assembler (RA17K) macroinstructions ... 138

CHAPTER 10 DATA BUFFER (DBF) .. 139
10.1 Data Buffer Configuration ... 139
10.2 Data Buffer Functions .. 141
10.3 Notes on Using Data Buffer .. 142

10.3.1 When manipulating addresses for write-only and read-only registers and

an unused address .. 142

10.3.2 Specification of peripheral register address ... 142

10.4 Data Buffer and Table Reference .. 143
10.4.1 Table reference operation ... 143

10.4.2 Table reference program example .. 144

10.5 Data Buffer and Hardware Peripherals .. 148
10.5.1 Controlling hardware peripherals .. 148

10.5.2 Data length when transferring data with peripheral register.. 149

CHAPTER 11 GENERAL-PURPOSE PORTS .. 151
11.1 General-Purpose Port Configuration ... 151
11.2 Function of General-Purpose Ports ... 153

11.2.1 General-purpose port data register (port register) ... 153

CHAPTER 12 INTERRUPT FUNCTIONS ... 155
12.1 Interrupt Block Configuration ... 155
12.2 Interrupt Functions ... 157

12.2.1 Hardware peripheral .. 157

12.2.2 Interrupt request processing block .. 157

12.2.3 Configuration and function of interrupt request flag (IRQ×××) .. 158

12.2.4 Configuration and functions of Interrupt permission flag (IP×××) .. 159

12.2.5 Stack pointer, address stack register, and program counter ... 160

12.2.6 Interrupt enable flip-flop (INTE) .. 160

12.2.7 Vector address generator (VAG) ... 160

12.2.8 Interrupt stack .. 161

12.3 Acknowledging Interrupts ... 163
12.3.1 Acknowledging interrupts and priority ... 163

12.3.2 Timing chart for acknowledging interrupt ... 165

12.4 Operation After Interrupt Has been Acknowledged ... 169

13

12.5 Interrupt processing Routine .. 170
12.5.1 Saving .. 171

12.5.2 Restoration processing .. 171

12.5.3 Notes on interrupt processing routine .. 173

12.6 Nesting ... 174
12.6.1 Interrupt source priority ... 174

12.6.2 Interrupt limit by interrupt stack .. 175

CHAPTER 13 STANDBY FUNCTIONS ... 179
13.1 Configuration of Standby Block ... 179
13.2 Standby Function .. 180
13.3 Selecting Device Operation Mode with CE Pin .. 180

13.3.1 Controlling operation of internal peripheral hardware .. 180

13.3.2 Enabling and disabling clock stop instruction .. 180

13.3.3 Resetting device .. 180

13.3.4 Signal input to CE pin .. 181

13.4 Halt Function ... 181
13.4.1 Halt status .. 181

13.4.2 Halt release condition .. 182

13.4.3 Releasing halt status by key input .. 183

13.4.4 Releasing halt status by timer carry (basic timer 0 carry) ... 183

13.4.5 Releasing halt status by interrupt ... 183

13.4.6 If two or more release conditions are simultaneously set ... 185

13.5 Clock Stop Function ... 187
13.5.1 Clock stop status ... 187

13.5.2 Releasing clock stop status... 187

13.5.3 Troubles occurring as result of executing clock stop instruction, when CE pin is high,

and remedies therefor ... 189

CHAPTER 14 RESET FUNCTIONS .. 191
14.1 Configuration of Reset Block .. 191
14.2 Reset Function .. 192
14.3 CE Reset ... 193

14.3.1 CE reset when clock stop (STOP s) instruction is not used .. 193

14.3.2 CE reset when clock stop (STOP s) instruction is used .. 194

14.3.3 Notes on CE reset ... 195

14.4 Power-ON Reset .. 198
14.4.1 Power-ON reset during normal operation ... 199

14.4.2 Power-ON reset in clock stop status .. 199

14.4.3 Power-ON reset when supply voltage VDD rises from 0 V ... 199

14.5 Relation between CE Reset and Power-ON Reset ... 201
14.5.1 If VDD pin and CE pin rise simultaneously .. 201

14.5.2 If CE pin rises in forced halt status of power-ON reset ... 201

14.5.3 If CE pin rises after power-ON reset .. 201

14.5.4 Notes on raising supply voltage VDD ... 203

14.6 Power Failure Detection ... 205
14.6.1 Power failure detection circuit ... 205

14.6.2 Notes on detecting power failure by TMCY flag... 208

14

14.6.3 Power failure detection by RAM judgement method .. 210

14.6.4 Notes on detecting power failure by RAM judgement method .. 212

CHAPTER 15 INSTRUCTION SET ... 213
15.1 Instruction Set Outline ... 213
15.2 Legend .. 214
15.3 Instruction List .. 215
15.4 Assembler (RA17K) Macro instructions .. 217
15.5 Instruction Functions ... 218

15.5.1 Addition instructions .. 218

15.5.2 Subtraction instructions ... 230

15.5.3 Logical operation instructions ... 238

15.5.4 Test instructions ... 244

15.5.5 Compare instructions ... 246

15.5.6 Rotation instruction .. 249

15.5.7 Transfer instructions .. 250

15.5.8 Branch instructions .. 272

15.5.9 Subroutine instructions .. 277

15.5.10 Interrupt instructions .. 286

15.5.11 Other instructions ... 288

APPENDIX A DEVELOPMENT TOOLS .. 289
A.1 Hardware .. 289
A.2 Software ... 290

APPENDIX B HOW TO ORDER THE MASK ROM .. 291

APPENDIX C INSTRUCTION INDEX .. 293
C.1 Instruction Index (by function) ... 293
C.2 Instruction Index (by alphabetic order) ... 294

APPENDIX D REVISION HISTORY .. 295

15

LIST OF FIGURES (1/3)

Fig. No. Title Page

2-1 Configuration of Program Memory (ROM) ... 21

2-2 Operations of Branch Instructions and Machine Codes .. 24

2-3 Subroutine Call Instructions Operations .. 26

2-4 Using Subroutine Call Instructions ... 27

2-5 Using System Call Instruction ... 28

3-1 Configuration of Program Counter ... 31

3-2 Program Counter Setting When Each Instruction Is Executed ... 33

4-1 Configuration of Stack ... 36

4-2 Configuration of Stack Pointer .. 38

4-3 Stack Operation Examples When Subroutines Are Called ... 42

4-4 Stack Operation Example When Table Reference Instruction Is Executed ... 43

4-5 Stack Operation Example When Interrupt Occurs ... 46

4-6 Stack Operation Example When PUSH and POP Instructions Are Executed...................................... 48

5-1 Configuration of Data Memory .. 50

6-1 System Register Location on Data Memory Location ... 53

6-2 Configuration of System Register ... 54

6-3 Configuration of Address Register .. 56

6-4 Data Transfer between Address Register and Data Buffer ... 59

6-5 Configuration of Window Register .. 60

6-6 Operations for PEEK and POKE Instructions .. 61

6-7 Configuration of Bank Register ... 62

6-8 Specifying Data Memory Bank ... 63

6-9 Configurations for Index Register and Data Memory Row Address Pointer .. 65

6-10 Example of Operation When MPE = 0, IXE = 0 .. 69

6-11 Example of Operation When MPE = 1, IXE = 0 .. 71

6-12 Example of Operation When MPE = 0, IXE = 1 .. 73

6-13 Example of General Register Indirect Transfer Operation When MPE = 0, IXE = 1 75

6-14 Example of Operation When MPE = 0, IXE = 1 (array processing) ... 76

6-15 General Register Indirect Transfer Example When MPE = 1, IXE = 1 ... 78

6-16 Configuration of General Register Pointer ... 79

6-17 Configuration of General Register .. 80

6-18 Configuration of Program Status Word .. 81

6-19 Functions of Program Status Word .. 82

7-1 Configuration of General Register .. 90

7-2 Example of Specifying General Register Row Address .. 92

7-3 Address Specification for General Register and Data Memory .. 94

7-4 Example Showing Operation between Data Memory and General Register (1) 95

16

LIST OF FIGURES (2/3)

Fig. No. Title Page

7-5 Example Showing Operation between Data Memory and General Register (2) 96

7-6 Example Showing Data Transfer to General Register... 97

7-7 General Register Indirect Transfer Example .. 98

7-8 Example Showing Changing Row Address in General Register .. 100

8-1 Configuration of ALU Block ... 102

9-1 Relations between Register File and Data Memory .. 132

9-2 Configuration of Register File ... 132

9-3 Accessing Example of Register File with PEEK or POKE Instruction .. 134

10-1 Data Buffer Location ... 139

10-2 Configuration of Data Buffer ... 140

10-3 Relations between Data Buffer, Hardware Peripherals and Table Reference (Example).................... 141

10-4 Example of Table Reference ... 143

10-5 Example Showing Data Transfer between Data Buffer and Hardware Peripheral 149

10-6 Example Showing Data Transfer between Data Buffer and Hardware Peripheral 150

11-1 Block Diagram of General-Purpose Port .. 152

11-2 Relation between Port Register and Pins .. 153

12-1 Configuration Example of Interrupt Block .. 156

12-2 Configuration Example of Interrupt Request Flag ... 158

12-3 Configuration Example of Interrupt Permission Flag ... 159

12-4 Configuration Example of Interrupt Stack .. 161

12-5 Example of Interrupt Stack Operation (when maximum stack level = 2) ... 162

12-6 Accepting Interrupt .. 164

12-7 Timing Chart of Acknowledging Interrupt ... 166

12-8 Saving and Restoring in Interrupt Processing Routine ... 172

12-9 Saving System Register and Control Register When PEEK and POKE Instructions Are Used 173

12-10 Example of Nesting ... 174

12-11 Interrupt Stack during Nesting .. 176

12-12 Example showing Nesting Exceeding Maximum Stack Level

(when interrupt stack is at level 2) ... 177

12-13 Interrupt Stack Operation, When Maximum Stack Level Is Exceeded with 17K Series Emulator

(IE-17K, IE-17K-ET) Used .. 178

13-1 Configuration Example of Standby Block ... 179

13-2 Halt Release Condition ... 182

13-3 Releasing Clock Stop Status by CE Reset .. 188

13-4 Releasing Clock Stop Status by Power-ON Reset .. 188

13-5 Malfunctioning in Clock Stop Instruction, Due to CE Pin Input, and Remedy 190

17

LIST OF FIGURES (3/3)

Fig. No. Title Page

14-1 Configuration Example of Reset Block ... 191

14-2 CE Reset Operation When Clock Stop Instruction Is Not Used ... 193

14-3 CE Reset Operation When Clock Stop Instruction Is Used .. 194

14-4 Operation of Power-ON Reset .. 198

14-5 Power-ON Reset and Supply Voltage VDD ... 200

14-6 Relation between Power-ON Reset and CE Reset ... 202

14-7 Notes on Raising VDD .. 203

14-8 Restoring from Clock Stop Status .. 204

14-9 Power Failure Detection Flow Chart .. 205

14-10 Status Transition of TMCY Flag .. 206

14-11 Operation of TMCY Flag ... 207

14-12 VDD and Destruction of Data Memory Contents ... 212

18

LIST OF TABLES

Table No. Title Page

4-1 Operations of Stack Pointer (SP) ... 39

4-2 Operation When Subroutine Call or Return Instruction Is Executed .. 41

4-3 Operation When Table Reference Instruction Is Executed ... 43

4-4 Operations When System Call Instruction Is Executed ... 44

4-5 Operation of Stack When Interrupt Is Accepted and Return Instruction Is Executed 45

4-6 Operations of PUSH and POP Instructions ... 47

6-1 Data Memory Address Modification by Index Register and Data Memory Row Address Pointer 67

6-2 Status of Compare Flag (CMP) and Set and Reset Conditions of Zero Flag (Z) 83

7-1 Instructions Manipulating General Register and Data Memory .. 94

8-1 ALU Processing Instructions ... 104

8-2 Results for Binary 4-bit and BCD Operations .. 108

8-3 Arithmetic Operation Instructions ... 110

8-4 Logical Operation Instructions .. 121

8-5 Logical Operation Truth Table ... 121

8-6 Bit Test Instructions ... 124

8-7 Compare Instructions .. 126

14-1 Relation between Internal Reset Signals and Each Reset Operation .. 192

14-2 Comparing Power Failure Detection by Power Failure Detection Circuit and RAM Judgement

Method ... 210

CHAPTER 1 GENERAL

µPD170×× is a lineup of models in the 17K Series 4-bit microcontrollers. These models have functions for TV and

AM/FM radio applications, such as PLL circuit necessary for station selection and voltage synthesizer circuit.

The µPD170×× series microcontrollers have the CPU commonly employed in the 17K series with registers

connecting and controlling the station selection circuit and synthesizer circuit.

Each model has a different station selection circuit. Since this manual describes common features for the

µPD170×× series, for details on the station selection circuit and features peculiar to each model, refer to the Data Sheet

for the model.

µPD17P0×× is a one-time PROM model of µPD170××, which is convenient for evaluation of a developed system

or small-scale production.

19

20

CHAPTER 1 GENERAL

1.1 Internal Configuration of µPD170×× Subseries

The following block diagram indicates which chapter describes each functional block. Note that this diagram does

not necessarily show the actual internal block for the µPD170×× series.

Station
selection

Chapter 11

Port

Chapter 14

Chapter 4

Chapter 12

Reset

Port

Port

Port

Port

Port

Register file (RF)

System register
(SYSREG)

 Data memory (RAM)
 General register (GR)

 Data buffer (DBF)

Chapter 9

ALU

Chapter 6

LCD driver

Instruction
decoder

Program counter
(PC)

Address stack
(ASK)

Program memory
(ROM)

Chapter 8

Chapter 5

Chapter 7

Chapter 10

Chapter 3

Chapter 2

Main clock
oscillation

Oscillation

Serial I/O

Serial I/O

Image
display

controller

A/D
converter

Interrupt
controller

CHAPTER 2 PROGRAM MEMORY (ROM)

The program memory stores the “program”, which is executed by the CPU (central processing unit), and

predetermined “constant data”.

As the program memory, µPD170×× is provided with a mask ROM (read-only memory), and µPD17P0××, with an

EPROM (electrically erasable ROM).

2.1 Program Memory Configuration

As shown in Figure 2-1, the program memory (ROM) consists of several steps, with each step made up of 16 bits.

Each step is assigned as “address”.

Each 2K steps in the program memory constitute a “page”.

Four pages form a “segment”. Therefore, one page has addresses 0000H through 1FFFH.

One of the segments, called the “system segment”, consists of several blocks, with each block consisting of 256

steps.

Figure 2-1. Configuration of Program Memory (ROM)

21

Page 0

Page 1

Page 2

Page 3

Page 0

S
eg

m
en

t 3
S

eg
m

en
t 2

S
eg

m
en

t 1
S

eg
m

en
t 0

8K steps

2K steps

256 stepsBlock 0
Block 1
Block 2
Block 3
Block 4
Block 5
Block 6
Block 7

2K steps

16 bits

System segment

0 0 0 0 H

1 F F F H
0 0 0 0 H

1 F F F H
0 0 0 0 H

1 F F F H
0 0 0 0 H

1 F F F H 0 7 F F H

0 0 0 0 H

22

CHAPTER 2 PROGRAM MEMORY (ROM)

2.2 Program Memory Functions

Broadly speaking, the program memory has the following three functions:

(1) To store programs

(2) To store constant data

(3) To store data for peripheral functions

A program is a collection of “instructions” according to which the CPU (Central Processing Unit: a functional block

that actually controls the microcontroller) operates. The CPU sequentially executes processing in accordance with

the “instructions” written in a program. Specifically, the CPU sequentially reads the “instructions” of the program stored

in the program memory and executes processing according to each “instruction”.

The “instructions” are all “one-word instruction” 16 bit long; therefore, one instruction is stored at one address in

the program memory.

The constant data is predetermined data. The program memory contents, including the constant data, can be read

to the data buffer (DBF) on the data memory (RAM) by executing special instruction MOVT. Reading constant data

from the program memory is called “table reference”.

Since the program memory is a read-only memory, its contents cannot be rewritten by an instruction. This is why

the program memory is also referred to as “ROM” (Read-Only Memory).

2.3 Program Flow

The program operation flow is controlled by a program counter (PC) that specifies an address in the program

memory.

The program stored in the program memory is usually executed on an address-by-address basis, starting from

address 0000H. However, if a different program is to be executed, when a certain condition is satisfied, the program

execution flow must be changed (branched). In such a case, a branch (BR) instruction is used.

When the same portion of the program is to be executed over and over again, the execution efficiency will be

degraded, unless the execution sequence is altered, because the program is usually executed from address 0000H.

To enhance the execution efficiency, that portion of the program to be executed repeatedly should be stored at one

place and this portion should be called by special instruction CALL. This portion of the program is called a “subroutine”.

As opposed to the subroutine, the portion of the program that is usually executed is called the “main routine”.

Some programs should be executed only when a certain condition is satisfied, regardless of the flow of the main

routine. In this case, the interrupt function is used, which cause the execution to branch to a predetermined address

(called a vector address), regardless of the program current flow, when a specified event occurs.

23

CHAPTER 2 PROGRAM MEMORY (ROM)

2.4 Branching Program

The program is branched by the branch (BR) instructions.

The branch (BR) instructions are classified into two categories: the direct branch instruction (BR addr), which

causes the execution to directly branch to a program memory address (addr) specified by the operand of the

instruction, and the indirect branch instruction (BR @AR), which causes the execution to branch to a program memory

address specified by the contents of an address register (AR) to be described shortly.

For details, also refer to CHAPTER 3 PROGRAM COUNTER (PC) .

2.4.1 Direct branch

With the direct branch instruction, the branch destination program memory address is specified by the low-order

2 bits in the op code for an instruction and 11 bits in the operand for the instruction, totaling 13 bits. Therefore, any

address in a segment, address 0000H to 1FFFH, can be specified as the branch destination address by the direct

branch instruction. Note that the execution cannot be branched from one segment to another.

2.4.2 Indirect branch

With the indirect branch instruction, the branch destination address is set by the program in the address register,

as shown in (2) in Figure 2-2. Consequently, the address range in which the branch destination can be specified differs,

depending on the number of bits in the address register.

The indirect branch instruction allows branching from one segment to another.

For details, refer to 6.3 Address Register (AR) .

2.4.3 Notes on debugging

As shown in (1) in Figure 2-2, the operation code for a direct branch instruction differs, depending on the page to

which the execution is to be branched.

For example, the operation code for the instruction that branches the execution in page 0 is “0CH”, while that for

the instruction that branches the execution in page 1 is “0DH”. The operation code for the instruction that branches

the execution to page 2 is “0EH”, and that for the instruction that branches the execution to page 3 is “0FH”.

This is because the low-order 2 bits in the operation code are used to specify the branch destination address, as

the operand for the direct branch instruction, “addr”, has only 11 bits.

When these operation codes are assembled by the 17K Series Assembler (RA17K), the jump destination specified

by a label is automatically referenced and converted by the Assembler.

However, when performing patching while debugging the program, the programmer must understand the page to

which the execution is to be branched, and convert the operation code.

For example, when patching address 0900H for BBB in (1) in Figure 2-2 into address 0910H, input “0D110” as the

machine code for the “BR BBB” instruction.

24

CHAPTER 2 PROGRAM MEMORY (ROM)

Figure 2-2. Operations of Branch Instructions and Machine Codes

(a) Direct branch (BR addr) (b) Indirect branch (BR @AR)

Program memory (segment 0)

Label : Instruction

 ↓ ↓

AAA :

BBB :

CCC :

DDD :

Address
↓

(Machine code)

 ↓

BR AAA

BR BBB

BR CCC

BR DDD

(0C500)

(0D100)

(0E200)

(0F300)

BR AAA (0C500)

BR BBB (0D100)

Operation code

Page 0

Page 1

Page 2

Page 3

 Program memory (segment 0)Address
↓

MOV AR0, #5H

MOV AR1, #8H

MOV AR2, #0H

MOV AR3, #0H

BR @AR

MOV AR0, #0H

MOV AR1, #1H

MOV AR2, #0H

MOV AR3, #0H

BR @AR

Page 0

Page 1

Page 2

Page 3

0 8 0 0 H

0 9 0 0 H

0 F F F H 0 F F F H

1 0 0 0 H

1 2 0 0 H

1 7 F F H

1 8 0 0 H

1 B 0 0 H

 1 F F F H

0 8 0 0 H

0 5 0 0 H 0 5 0 0 H

0 0 0 0 H 0 0 0 0 H

0 0 1 0 H

0 0 8 5 H

1 0 0 0 H

1 7 F F H

1 8 0 0 H

 1 F F F H

25

CHAPTER 2 PROGRAM MEMORY (ROM)

2.5 Subroutine

The subroutine is used with the subroutine call (CALL) and subroutine return (RET or RETSK) instructions.

The subroutine call instructions are classified into two categories: the direct subroutine call instruction (CALL addr),

which directly calls a program memory address (addr) specified by the operand of the instruction, and the indirect

subroutine call instruction (CALL @AR), which calls a program memory address specified by the contents of the

address register.

In addition, a system call instruction (SYSCAL entry), that branches the execution to the system segment, is also

available.

To return from a subroutine, the RET and RETSK instructions are used. By executing these instructions, the

execution is returned to a program memory address next to the one at which the subroutine call (CALL) instruction

was executed. At this time, the RETSK instruction executes the first instruction after the return as no operation (NOP)

instruction.

For details, refer to CHAPTER 3 PROGRAM COUNTER (PC) .

2.5.1 Direct subroutine call

The direct subroutine call instruction specifies the program memory address to be called by 11 bits in the operand

for an instruction. Therefore, when the direct subroutine call instruction is used, the called address, i.e., the first

address in the subroutine, must be in page 0 (address 0000H to 07FFH), as in (1) in Figure 2-3. The subroutine whose

call address is not in page 0 cannot be called.

However, the direct subroutine call instruction and the subroutine return (RET or RETSK) instruction can be in

pages other than page 0.

The direct subroutine call instruction cannot call a subroutine from one segment to another.

Examples 1. When return instruction is in page 1

As shown in Figure 2-4, the return address and return instruction can be in any page, as long as

the first address for the subroutine is in page 0.

As long as the first address for the subroutine is in page 0, the CALL instruction can be used without

being restricted by the concept of the page. However, if the first address for the subroutine cannot

be placed in page 0, follow the action described in Example 2 below.

2. When first address is in page 1

As shown in Figure 2-4, use a branch instruction (BR) in page 0, and call the actual subroutine

(SUB1) through this BR instruction.

2.5.2 Indirect subroutine call

The indirect subroutine call instruction (CALL @AR) specifies the address to which the execution is to be branched

by using the address register (AR), as shown in (2) in Figure 2-3. Therefore, the range for the program memory

address, in which the execution can be branched by this instruction, varies depending on the number of bits in the

address register.

For details, refer to 6.3 Address Register (AR) .

The indirect subroutine call instruction can call a subroutine from one segment to another.

26

CHAPTER 2 PROGRAM MEMORY (ROM)

Figure 2-3. Subroutine Call Instructions Operations

(a) Direct subroutine call (CALL addr) (b) Indirect subroutine call (CALL @AR)

Label :

Page 0

Page 1

Page 2

Page 3

Page 0

Page 1

Page 2

Page 3

Address
↓

Instruction
↓

Address
↓

CALL SUB1

CALL SUB1

SUB1 :

RET

Instruction
 ↓

SUB2 :
SUB3 :

RET

MOV AR0, #0H
MOV AR1, #1H
MOV AR2, #0H
MOV AR3, #0H
CALL @AR

MOV AR0, #5H
MOV AR1, #8H
MOV AR2, #0H
MOV AR3, #0H
CALL @AR

Program memory (segment 0) Program memory (segment 0)

Label :
 ↓

 1 F F F H

0 7 F F H

0 5 0 0 H

0 7 F F H

0 0 1 0 H
0 0 8 5 H

0 8 0 0 H 0 8 0 0 H

0 0 0 0 H 0 0 0 0 H

 1 F F F H

 1 7 F F H 1 7 F F H

 1 8 0 0 H 1 8 0 0 H

 1 0 0 0 H 1 0 0 0 H

 0 F F F H 0 F F F H

27

CHAPTER 2 PROGRAM MEMORY (ROM)

Figure 2-4. Using Subroutine Call Instructions

(1) When subroutine return (2) When first address for

instruction is in page 1 subroutine is in page 1

CALL SUB1

RET

SUB2 :

RET

CALL SUB1

CALL SUB1

SUB1 : BR SUB2

Label :

Page 0

Page 1

Page 2

Page 3

Page 0

Page 1

Page 2

Page 3

Address
↓

Instruction
↓

Address
↓

CALL SUB1

SUB1 :

Instruction
 ↓

Program memory (segment 0) Program memory (segment 0)

Label :
 ↓

 1 F F F H

0 7 F F H

0 5 0 0 H

0 7 F F H

0 8 0 0 H 0 8 0 0 H

0 8 9 0 H

0 0 0 0 H 0 0 0 0 H

 1 F F F H

 1 7 F F H 1 7 F F H

 1 8 0 0 H 1 8 0 0 H

 1 0 0 0 H 1 0 0 0 H

 0 F F F H 0 F F F H

28

CHAPTER 2 PROGRAM MEMORY (ROM)

2.6 System Call

The system call instruction (SYSCAL entry) allows the execution to branch from each segment to a subroutine with

single instruction in the system segment.

The operand “entry” for of this instruction can specify the program memory address to which the execution is to

be branched. The high-order 3 bits of the 7 bits for the operand specify a block, while the low-order 4 bits specify

an address. Therefore, only the first 16 steps for each block (block 0 to 7 in page 0 of the system segment) can be

specified. For details, refer to 3.2.7 System call .

The shaded portion in Figure 2-5 indicates the program memory range to which the execution can be branched

by the system call instruction. The SYSCAL instruction or subroutine return instruction (RET or RETSK) can be

anywhere.

Examples 1. When SYSCAL instruction is in segment 0

As shown in Figure 2-5, the execution branches to the system segment specified by the operand

“entry”, when the SYSCAL instruction in segment 0 is executed.

If the operand is 00H (entry = 00H) at this time, the execution branches to address 00H (0000H)

in block 0.

If the operand is 1EH (entry = 1EH), the execution branches to address 0EH (010EH) in block 1.

Figure 2-5. Using System Call Instruction

0 0 0 0 H

0 1 0 0 H

0 2 0 0 H

0 3 0 0 H

0 4 0 0 H

0 5 0 0 H

0 6 0 0 H

0 7 0 0 H

0 8 0 0 H

SYSCAL entry

Segment 0

P
ag

e
0

P
ag

e
1

B
lo

ck
 0

B
lo

ck
 1

Address Segment n (system segment)Address

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Address

When entry = 1EH

When entry = 00H

0 0 0 E H
0 0 0 F H

0 0 0 0 H
0 0 0 1 H

0 0 F F H
0 1 0 0 H
0 1 0 1 H

0 1 0 E H
0 1 0 F H

0 0 0 0 H

29

CHAPTER 2 PROGRAM MEMORY (ROM)

Examples 2. Program using system call instruction

;

; module 1 (segment 0)

:

EXTERN LAB ENTRY0

EXTERN LAB ENTRY1

EXTERN LAB ENTRY2

EXTERN LAB ENTRY3

SYSCAL.DL. (ENTRY0 SHR 4 AND 0070H) OR (ENTRY0 AND 000FH)

SYSCAL.DL. (ENTRY1 SHR 4 AND 0070H) OR (ENTRY1 AND 000FH)

SYSCAL.DL. (ENTRY2 SHR 4 AND 0070H) OR (ENTRY2 AND 000FH)

SYSCAL.DL. (ENTRY3 SHR 4 AND 0070H) OR (ENTRY3 AND 000FH)

;

; module 2 (segment 1)

:

CSEG1

PUBLIC ENTRY0, ENTRY1, ENTRY2, ENTRY3

ORG 2000H

ENTRY0:

BR SUB0

ENTRY1:

BR SUB1

ORG 2100H

ENTRY2:

BR SUB2

ENTRY3:

BR SUB3

30

CHAPTER 2 PROGRAM MEMORY (ROM)

2.7 Table Referencing

Table referencing is used to reference the constant data in the program memory. When the MOVT DBF, @AR

instruction is executed, the program memory address contents, specified by the address register, are stored in the

data buffer (DBF).

Since the program memory contents consist of 16 bits, the constant data stored in the data buffer by the MOVT

instruction is 16 bits (4 words) long. The program memory address that can be referenced by the MOVT instruction

is in the range the address register of each model can specify.

When table referencing is performed, one level of the stack is used.

For details, refer to 6.3 Address Register (AR) and 10.4 Data Buffer and Table Reference .

2.8 Notes on Using Operand for Branch and Subroutine Call Instructions

An error occurs, if a program memory address is directly (in numeral) specified as the operand for the branch (BR)

and subroutine call (CALL) instructions, as shown in Example 1 below, when the 17K Series Assembler (RA17K) is

used.

This feature to generate an error is incorporated in the assembler to reduce the causes of bugs that may occur,

when the program is edited.

Use label as the operand for the branch (BR) and subroutine call (CALL) instructions.

Examples 1. Error occurs

; <1>

BR 0005H ; Error occurs during assembly

; <2>

CALL 00F0H ;

2. Error does not occur

; <3>

LOOP1: ; BR or CALL instruction is

BR LOOP1 ; executed to label in program

; <4>

SUB1: ;

CALL SUB1 ;

; <5>

LOOP2 LAB 0005H ; 0005H is assigned to LOOP2

BR LOOP2 ; as label type

; <6>

BR. LD. 0005H ; Converts operand value into label type.

; This method, should not be used often, to reduce causes of bugs

For details, refer to RA17K Assembler User’s Manual (U10305E) .

CHAPTER 3 PROGRAM COUNTER (PC)

The program counter specifies an address in the program memory.

3.1 Program Counter Configuration

The program counter is a 13-bit binary counter and a segment register (SGR) of up to 3 bits, as shown in Figure

3-1.

Figure 3-1. Configuration of Program Counter

3.2 Program Counter Functions

The program counter selects an address containing an instruction to be actually executed or constant data to be

used from several instructions or constant data written in the program memory.

Usually, the program counter contents are incremented by one, each time an instruction has been fetched. When

the branch (BR), subroutine call (CALL), return (RET, RETSK, RETI), or table reference (MOVT) instruction has been

executed, and when an interrupt has been accepted, a specified address value is stored in the program counter and

the instruction at that address is executed.

3.2.1 through 3.2.7 describe the program counter operations, when each of the above instructions is executed.

3.2.1 When branch (BR) instruction is executed

Two kinds of branch instructions are available: the direct branch instruction (BR addr), which directly specifies

the branch destination, and the indirect branch instruction (BR @AR), which indirectly specifies the branch destination

by the contents of the address register (AR) to be described shortly.

When the direct branch instruction (BR addr) is executed, the value specified by the low-order 11 bits in the operand

for the instruction is stored in the program counter as is, as shown in Figure 3-2. Since the low-order 2 bits in the

operation code (the high-order 5 bits) for the instruction are added to bits 12 (b12) and 11 (b11) in the program counter,

the range in which the execution can be branched is the same segment (address 0000H through 1FFFH) of the

program memory that can be specified by a total of 13 bits.

The operation code for the instruction is determined by the Assembler (RA17K) that automatically searches for

the branch destination position.

When the indirect branch instruction (BR @AR) is executed, the contents of the address register (AR) in the system

register are written to the program counter to specify the branch destination, as shown in Figure 3-2. The low-order

13 bits in the address register are written to the program counter, and the high-order bits (3 bits max.) are written to

the segment register. Therefore, the branch range differs, depending on the number of bits in the address register

for the model used.

31

MSB LSB

SGR2 SGR1 SGR0 PC12 PC11 PC10 PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

32

CHAPTER 3 PROGRAM COUNTER (PC)

3.2.2 When subroutine call (CALL) or subroutine return (RET, RETSK) instruction is executed

Two kinds of subroutine call instructions are available: the direct subroutine call (CALL addr), which directly

specifies the call destination, and the indirect subroutine call (CALL @AR) instruction, which indirectly specifies the

call destination by the address register (AR) contents.

When the direct subroutine call instruction (CALL addr) is executed, the value specified by the instruction operand

is stored in the program counter as is, as shown in Figure 3-2. Since the operand is 11 bits long, the high-order 2

bits in the program counter (b11 and b12) are fixed to 0. Consequently, the range in which the execution can be

branched, by the direct subroutine call instruction, is address 0000H to 07FFH on page of the memory program.

When the indirect subroutine call instruction (CALL @AR) is executed, the address register contents in the system

register are written to the program counter, to specify the branch destination. Therefore, the range in which the

execution can be branched by the indirect subroutine call instruction differs, depending on the number of bits in the

address register.

When the subroutine return instruction (RET, RETSK) is executed, the address stack register (ASR) contents,

specified by the stack pointer (SP), i.e., the return address, are written to the program counter.

For the details on the address stack, refer to CHAPTER 4 ADDRESS STACK .

3.2.3 When table reference (MOVT) instruction is executed

When the table reference (MOVT DBF, @AR) instruction is executed, the address register (AR) contents are stored

in the program counter, as shown in Figure 3-2, and the specified program memory contents are read to the data buffer.

Therefore, the range in which table referencing can be executed differs, depending on the number of bits in the address

register.

After the program memory contents have been read to the data buffer, the address, next to the one at which the

table reference instruction is executed, is written to the program counter, and the subsequent program is executed.

Note that one stack level is used at this time. Exercise care not to exceed the permitted stack level, when using the

table referencing instruction in a subroutine or interrupt processing.

Also note that, to execute one table reference instruction, two instruction cycles are required.

3.2.4 When interrupt is accepted and when interrupt return (RETI) instruction is executed

When an interrupt has been accepted, an vector address (branch destination address), specified by the interrupt,

is stored in the program counter, as shown in Figure 3-2.

When the interrupt return (RETI) instruction has been executed, the return address, written to the address stack

specified by the stack pointer, is restored to the program counter.

For details, refer to CHAPTER 12 INTERRUPT FUNCTION.

3.2.5 When skip instruction is executed

When the skip instruction (SKT, SKF, SKE, etc.) has been executed, the address, next to the one containing the

skip instruction, is stored in the program counter, regardless of the skip condition contents. When the subroutine return

skip (RETSK) instruction is executed, the address stack register (ASR) contents, specified by the stack pointer, are

stored in the program counter.

If the instruction executed causes the execution to skip (such as RETSK), the subsequent instruction is executed

as a no-operation (NOP) instruction; therefore, the number of instructions to be executed is the same as when the

skip instruction has been executed, regardless of whether or not the instruction next to the skip instruction is skipped.

33

CHAPTER 3 PROGRAM COUNTER (PC)

3.2.6 On reset

When power-ON reset (VDD = low to high) or CE reset (CE = low to high) has been executed, the program counter

contents are reset to 0000H, and the segment register (SGR) contents in the program counter are reset to 0.

Consequently, the program is executed from address 0 in segment 0.

When the clock stop instruction (STOP s) is executed, the program is stopped at the address for this instruction.

When the clock stop instruction is released (CE = low to high), the program is executed from address 0 in segment

0.

Also refer to CHAPTER 14 RESET FUNCTION.

3.2.7 On system call instruction execution

When the system call (SYSCAL entry) instruction is executed, the operand “entry” for the instruction is stored in

the program counter. Since the operand is 7 bits long, the segment value for the system segment is written to the

segment register (SGR) in the program counter and 0 is written to the remaining 6 bits, to specify an address for the

system segment.

Figure 3-2. Program Counter Setting When Each Instruction Is Executed

b12

0

0

1

1

0

0

0

b11

0

1

0

1

0

0

0

b10

0

b9

0

b8

0

b7

0

0

b6

0

0

b5

0

0

b4

0

0

b3

0

b2

0

b1

0

b0

0

SGR2

0

0

SGR0

0

0

Page 0

Page 1

Page 2

Page 3

BR addr

CALL addr

BR @AR

CALL @AR

MOVT DBF, @AR

RET

RETSK

RETI

When interrupt is accepted

Power-ON reset, CE reset

SYSCAL entry

Program counter

Instruction

Contents of program counter (PC)

 Operand of instruction (addr)

Contents of address register (b13-b0 of AR)

Vector address of each interrupt

Contents of address stack register (ASR)
specified by stack
(Return address)

 Operand of instruction (addr)

Value of
system segment

Operand of
instruction

Operand of
instruction

Not changed

SGR1

0

0

34

CHAPTER 3 PROGRAM COUNTER (PC)

3.3 Segment Register (SGR)

The segment register specifies a segment of the program memory.

SGR0-SGR2 in Figure 3-2 show the segment register operations, when each instruction is executed.

The segment register is set when the SYSCAL instruction is executed, and when the indirect branch or direct

subroutine call instruction is executed.

The segment register is reset to 0 on power-ON reset or CE reset.

3.4 Notes on Using Program Counter

The program counter contents are incremented by one, each time an instruction is fetched.

If a branch (BR) or return (RET, RETSK, or RETI) instruction is at the end address (1FFFH) in the program memory,

the next address specified by the program counter is 0000H. Consequently, the microcontroller may malfunction.

Moreover, if the program memory capacity is small; for example, if the end address is 0FEFH and its contents are

an instruction other than the branch or return instruction, the next address specified by the program counter is 0FF0H,

which also causes the microcontroller to malfunction.

Therefore, write the branch instruction (BR) to the last address for each segment. However, if the return address

has been written to that address, it can remain untouched.

If an instruction causes the program counter value to exceed the permitted range, the Assembler (RA17K)

generates a warning with an error.

CHAPTER 4 ADDRESS STACK

The address stack is a register that saves the program return address, when a subroutine is called or when an

interrupt is accepted, or a table reference instruction is executed.

In addition to the address stack, an interrupt stack is also provided to which the system register contents are saved,

when an interrupt has been accepted. For details on the interrupt stack, refer to 12.2.8 Interrupt stack .

4.1 Address Stack Configuration

As shown in Figure 4-1, the address stack is made up of a stack pointer and address stack registers. The stack

pointer is a 4-bit binary counter.

Up to 16 address stack registers, ASR0-ASRn (n ≤ 15), are available, with each register consisting of up to 16 bits.

The low-order 13 bits in each address stack register form a program counter stack (PCSR) and the high-order 3

bits form a segment register stack (SGRSR), as shown in Figure 4-1.

35

36

CHAPTER 4 ADDRESS STACK

Figure 4-1. Configuration of Stack

Stack pointer

(SP)

Bit

SP3 SP2 SP1 SP0

b3 b2 b1 b0

Address stack register (ASR)

b12b13b14b15

Address

0H

1H

2H

3H

CH

DH

EH

FH

b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Bit

ASR0

ASR1

ASR2

ASR12

ASR13

ASR14

ASR15

SGRSR PCSR

37

CHAPTER 4 ADDRESS STACK

4.2 Address Stack Functions

The address stack saves the return address from a subroutine or interrupt routine or when a subroutine has been

called or when an interrupt has been accepted or a table reference instruction is executed.

When the subroutine call (CALL addr, CALL @AR) instruction has been executed, the program memory address

next to the one executing the subroutine call instruction, i.e., the return address, is saved to an address stack register

ASR0-ASRn (n ≤ 15). When the subroutine return instruction (RET, RETSK) is executed later, the return address,

saved to the address stack register, is restored to the program counter.

The address stack is also used when the table reference instruction (MOVT DEF, @AR) is executed.

The address stack can be manipulated by stack manipulation instructions (POP AR and PUSH AR).

4.3 and 4.4 describe the functions for the stack pointer and address stack registers.

4.3 Stack Pointer (SP)

The stack pointer is a register that selects one of up to 16 address stack registers ASR0-ASRn (n ≤ 15).

4.3.1 Stack pointer configuration

The stack pointer is a register consisting of up to 4 bits flags, as shown in Figure 4-2.

The stack pointer is in a control register in the register file. For details on the control register, refer to CHAPTER

9 REGISTER FILE (RF).

38

CHAPTER 4 ADDRESS STACK

Figure 4-2. Configuration of Stack Pointer

4.3.2 Stack pointer operation

The stack pointer contents are decremented by one, as shown in Table 4-1, during the first instruction cycle in the

subroutine call (CALL addr, CALL @AR), system call (SYSCAL), or table reference instruction (MOVT DBF, @AR),

or when an interrupt has been accepted, and incremented by one during the second instruction cycle of the subroutine

return instruction (RET, RETSK), table reference instruction (MOVT DBF, @AR), stack manipulation (POP AR), or

interrupt return (RETI) instruction.

Flag Symbol Address

Depends

on model

Read/Write

R/W

Name

b3 b2 b1 b0

SP3 SP2 SP1 SP0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

 Specifies address of address stack register (ASR)

Address 0 (ASR0)

Address 1 (ASR1)

Address 2 (ASR2)

Address 3 (ASR3)

Address 4 (ASR4)

Address 5 (ASR5)

Address 6 (ASR6)

Address 7 (ASR7)

Address 8 (ASR8)

Address 9 (ASR9)

Address 10 (ASR10)

Address 11 (ASR11)

Address 12 (ASR12)

Address 13 (ASR13)

Address 14 (ASR14)

Address 15 (ASR15)

Stack pointer

SP

39

CHAPTER 4 ADDRESS STACK

Table 4-1. Operations of Stack Pointer (SP)

Instruction Stack Pointer Value

CALL addr SP – 1

CALL @AR

SYSCAL, entry

MOVT DBF, @AR

PUSH AR

When interrupt is accepted

RET SP + 1

RETSK

MOVT DBF, @AR

POP AR

RETI

For the operation of each instruction, refer to 4.5 Stack Operations, When Subroutine, Table Reference, or

Interrupt Is Executed .

Since the stack pointer is a binary counter, that can be up to 4 bits long, its value ranges from 0H to nH (n ≤ F).

However, there are fewer stack registers for some models than the maximum value of the stack pointer. In this case,

if the stack pointer specifies a value corresponding to no stack register, the microcontrollers malfunction. For details,

refer to 4.6 Nesting Level for Address Stack and PUSH and POP Instructions .

Because the stack pointer is located on the register file, its value can be read or data can be written to it by

manipulating the stack with the PEEK or POKE instruction. Although the stack pointer value is changed at this time,

the address stack register contents are not affected.

40

CHAPTER 4 ADDRESS STACK

4.4 Address Stack Registers

The address stack register is used to save the return address when a subroutine call instruction or table reference

instruction is executed. When an interrupt is accepted, the return address of the program and the contents of the

program status word (PSWORD) are automatically saved to the stack.

The address stack registers save the value of the program counter (PC) plus 1, i.e., the return address when the

first instruction cycle of a subroutine call (CALL addr, CALL @AR), system call (SYSCAL entry), or table reference

(MOVT DBF, @AR) instruction is executed. When a stack manipulation instruction (PUSH AR) is executed, the

contents of the address register (AR) are saved to an address stack register. The address stack register that stores

data is specified by the value of the stack pointer (SP) minus 1 when any of the above instructions is executed.

When the second instruction cycle of a subroutine return (RET, RETSK), interrupt return (RETI), or table reference

(MOVT DBF, @AR) instruction is executed, the contents of the address stack register specified by the stack pointer

are restored to the program counter, and the value of the stack pointer is incremented by 1. When a stack manipulation

instruction (POP AR) is executed, the value of the address stack register specified by the stack pointer is transferred

to the address register, and the value of the stack pointer is incremented by 1.

For the operation of each instruction, refer to 4.5 Stack Operations, When Each Subroutine, Table reference,

or Interrupt Is Executed .

The address stack register number is up to 16 (ASR0-ASRn where n ≤ 15) and differs depending on the

microcontroller model. If a subroutine is called or an interrupt occurs exceeding the maximum stack level for a

microcontroller, the microcontroller malfunctions. For details, refer to 4.6 Nesting Level for Address Stack and

PUSH and POP Instructions , and 12.6 Nesting .

41

CHAPTER 4 ADDRESS STACK

4.5 Stack Operations, When Subroutine, Table Reference, or Interrupt Is Executed

4.5.1 through 4.5.4 describe the address stack operations.

4.5.1 When subroutine call (CALL) or return (RET, RETSK) instruction is executed

Table 4-2 below shows the operations for the stack pointer, address stack registers, and program counter, when

the subroutine call or return instruction has been executed.

Table 4-2. Operation When Subroutine Call or Return Instruction Is Executed

Instruction Operation

CALL addr <1> Increments value of program counter (PC) by 1

<2> Decrements value of stack pointer (SP) by 1

<3> Saves value of program counter (PC) to address stack register (ASR) specified by stack pointer

(SP)

<4> Transfers value specified by operand (addr) of instruction to program counter

RET <1> Restores value of address stack register (ASR) specified by stack pointer (SP) to program counter

RETSK (PC)

<2> Increments value of stack pointer (SP) by 1

When the RETSK instruction has been executed, the instruction to be executed first, after the program execution

has returned from the subroutine to the main routine, is treated as a no-operation (NOP) instruction.

Figure 4-3 shows an operation example. In this example, the CALL instruction at address 100H in the main routine

calls the subroutine at address 30H, and another CALL instruction at address 35H calls the subroutine at address

50H.

The subroutine, starting from address 30H, is called a subroutine for the “first level”, while the subroutine, starting

from address 50H, is called a subroutine for the “second level”. The arrows in the figure show the program flow.

In this example, assume that the stack pointer value is 7H, before the instruction at address 100H is executed.

Consequently, when the CALL instruction at address 100H is executed, the program counter contents become 101H,

and the stack pointer value is decremented by one to 6H.

Next, address 101H, which is the return address from the first-level subroutine, is saved to the address stack

register at address 6H, and the operand for the CALL instruction, 30H, is transferred to the program counter.

When the CALL instruction at address 35H is executed, the stack pointer value is decremented by one to 5H. The

return address from the second-level subroutine, 36H, is saved to the address stack register at address 5H (ASR5),

and the operand for the CALL instruction, 50H, is transferred to the program counter. When the RET instruction is

executed in the second-level subroutine, the address stack register contents (36H) at 5H (ASR5), which is specified

by the stack pointer, are restored to the program counter. The stack pointer value is, accordingly, incremented by

one to 6H. When the RET instruction for the first-level subroutine is subsequently executed, the return address for

the main routine, 101H, is restored to the program counter, and the stack pointer value is incremented by one to 7H.

42

CHAPTER 4 ADDRESS STACK

Figure 4-3. Stack Operation Examples When Subroutines Are Called

101H

Undefined

Main routine

Operation of <1>

(100H): CALL SUB1

(35H): CALL SUB2

RET

RET

SUB1 (30H): SUB2 (50H):

Subroutine (1st level) Subroutine (2nd level)

5H

6H

7H

ASR5

ASR6

ASR7

Address stack register (ASR)
Stack pointer (SP)

6H

Program counter (PC)

30H

36H

101H

Operation of <2>

5H

6H

7H

5H 50H

36H

101H

Operation of <3>

5H

6H

7H

6H 36H

36H

101H

Operation of <4>

5H

6H

7H

7H 101H

<1>
<2>

<3>

<4>

43

CHAPTER 4 ADDRESS STACK

4.5.2 Table reference instruction (MOVT DBF, @AR)

Table 4-3 shows the operations to be performed, when the table reference instruction has been executed

Table 4-3. Operation When Table Reference Instruction Is Executed

Instruction Cycle Operation

MOVT DBF, @AR First <1> Increments value of program counter (PC) by 1

<2> Decrements value of stack pointer (SP) by 1

<3> Saves value of program counter (PC) to address stack register (ASR) specified

by stack pointer (SP)

<4> Transfers value of address register (AR) to program counter (PC)

Second <5> Transfers contents of program memory (ROM) specified by program counter

(PC) to data buffer (DBF)

<6> Restores value of address stack register (ASR) specified by stack pointer (SP)

to program counter (PC)

<7> Increments value of stack pointer (SP) by 1

Figure 4-4 shows an operation example. Assume that, in this example, the table reference instruction is at address

200H, that the program memory address, in which the constant data to be referenced is stored, is 20H, and that the

stack pointer value, immediately before the “MOVT DBF, @AR” instruction at address 200H is executed, is 7H.

When the “MOVT DBF, @AR” instruction at address 200H is executed, the stack pointer value is decremented

by one to 6H during the first instruction cycle and address 201H, which is next to the address storing the “MOVT DBF,

@AR” instruction, is saved to the address stack register at address 6H. The program memory address 20H, in which

the constant data is stored, is transferred to the program counter.

This address, 20H, is specified by the address register.

During the second cycle in the instruction, the constant data at address 20H, which is the program counter contents,

is transferred to the data buffer, and the contents for the address stack register, 201H, are restored to the program

counter. The stack pointer value is incremented by one to 7H.

Figure 4-4. Stack Operation Example When Table Reference Instruction Is Executed

201H

Undefined

1st instruction cycle

5H

6H

7H

Address stack register (ASR)
Stack pointer (SP)

2nd instruction cycle

6H

Program example

Constant data

Program counter (PC)

20H

201H

5H

6H

7H

7H 201H

0020H:

0200H: MOVT DBF, @AR: 20H is stored in address register (AR)

44

CHAPTER 4 ADDRESS STACK

4.5.3 System call instruction (SYSCAL) and return instruction (RETI, RETSK)

Table 4-4 indicates the operations of the stack pointer (SP), address stack register (ASR), and program counter

(PC), when the system call or return instruction has been executed.

Table 4-4. Operations When System Call Instruction Is Executed

Instruction Operation

SYSCAL entry <1> Increments value of program counter (PC) by 1.

<2> Decrements value of stack pointer (SP) by 1

<3> Saves values of program counter (PC) and segment register (SGR) to address stack register

(ASR) specified by stack pointer (SP)

<4> Sets segment register (SGR) to 1

<5> Transfers value specified by operand (entry) for instruction to bits b10-b8 and b3-b0 for program

counter (PC)

RET, RETSK <1> Restores value of address stack register (ASR), specified by stack pointer (SP), to program

counter (PC) and segment register (SGR)

<2> Increments value of stack pointer (SP) by 1

<3> Only when RETSK is executed, processes first instruction after restoration as no-operation

(NOP) instruction and proceeds to next instruction (skip operation)

The stack operations, when the system call instruction has been executed, are the same as those when the

subroutine call instruction is executed, except that the segment register is set to 1, when the system call instruction

has been executed.

Note, however, that the subroutine call instruction specifies a different program memory address to be called.

45

CHAPTER 4 ADDRESS STACK

4.5.4 When interrupt is accepted or when return (RETI) instruction is executed

Table 4-5 shows the stack operations, when an interrupt has been accepted or when the return instruction has been

executed.

Table 4-5. Operation of Stack When Interrupt Is Accepted and Return Instruction Is Executed

Instruction Operation

When interrupt is <1> Increments value of program counter (PC) by 1

accepted However, if branch (BR) or subroutine call (CALL) instruction is executed when interrupt is

accepted, address of program memory (ROM) to which execution branches or from which

subroutine is called is loaded to PC

<2> Decrements value of stack pointer (SP) by 1

<3> Saves value of program counter (PC) and segement register (SGR) to address stack register

specified by stack pointer (SP)

<4> Saves BCD, CMP, CY, Z, and IXE flags of PSWORD and BANK to interrupt stack register

<5> Transfers vector address to program counter (PC), and resets segment register (SGR)

RETI <1> Restores value of interrupt stack register to BCD, CMP, CY, Z, and IXE flags of PSWORD and

BANK

<2> Restores value of address stack register specified by stack pointer (SP) to program counter (PC)

and segment register (SGR)

<3> Increments stack pointer (SP) by 1

Figure 4-5 shows an operation example. Assume that the stack pointer value is 7H and that an interrupt is accepted,

while the instruction at address 300H is executed.

After the instruction at address 300H has been executed, the stack pointer value is decremented by one to 6H.

The address stack register at address 6H (ASR6), address 301H, which would have been executed next, is stored,

and the low-order 2 bits in the bank register and 1 bit in the index enable flag are saved to the interrupt stack register.

The interrupt vector address for the INT0 pin, 0005H, is transferred to the program counter, and the instruction at

address 0005H is executed.

When the return (RETI) instruction is executed in the interrupt processing routine, the interrupt stack register

contents are restored to the bank register and index enable flag. The address stack register contents, 301H, are

restored to the program counter, and the stack pointer is incremented by 1 to 7H.

For details on interrupt operations, refer to CHAPTER 12 INTERRUPT FUNCTIONS.

Interrupt sources and the vector address differ depending on the model. Refer to the Data Sheet of each mode.

46

CHAPTER 4 ADDRESS STACK

Figure 4-5. Stack Operation Example When Interrupt Occurs

301H

Undefined

Main routine

Operation of <1>

0300H: Interrupt
is
accepted

RETI

0005H:

Interrupt routine

5H

6H

7H

 Address stack register (ASR)
Stack pointer (SP)

6H

Program counter (PC)

5H

301H

Operation of <2>

5H

6H

7H

7H 301H

<1>

<2>

47

CHAPTER 4 ADDRESS STACK

4.6 ASR7 Nesting Level for Stack and PUSH AR and POP AR Instructions

The stack pointer operates as a 3-bit binary counter, whose contents are simply incremented or decremented by

one, when the subroutine call or return instruction has been executed.

Therefore, while the stack pointer value is 0H, if the CALL, SYSCAL, or MOVT instruction is executed or if an

interrupt is accepted the stack pointer value is decremented by one to 7H, and the return address and address register

value from the subroutine or the interrupt processing routine are written to ASR7, which is the address 7H in the

address stack registers. Since ASR7 does not exist in fact, the return address and the address register value cannot

be written.

If the return instruction is executed, when the stack pointer value is 7H, therefore, the ASR7 contents at address

stack register address 7H are transferred to the program counter and segment register.

To prevent this, the contents, read from ASR7 at address 7H, are “undefined” and the program flow cannot be

restored normally.

In this case, save the address stack register value by using the PUSH or POP instruction.

Table 4-6 shows the operations for PUSH and POP instructions.

Table 4-6. Operations of PUSH and POP Instructions

Instruction Operation

POP
<1> Transfers value of address stack register specified by stack pointer (SP) to address register (AR)

<2> Increments value of stack pointer (SP) by 1

PUSH
<1> Decrements value of stack pointer (SP) by 1

<2> Transfers value of address register (AR) to address stack register specified by stack pointer (SP)

Figure 4-6 shows an operation example. In this example, a CALL instruction, that calls the seventh-level subroutine,

which starts from address 30H, exists at address 10H of the sixth-level subroutine, and another CALL instruction that

calls the eighth-level subroutine, which starts from address 50H, exists at address 35H.

The arrows in the figure indicate the program execution flow.

In this example, the value for the stack pointer, immediately before address 10H is executed, is 1H. When the CALL

instruction at address 10H has been executed, the stack pointer value is decremented by one to 0H, and the return

address from the seventh-level subroutine, 11H, is saved to the address stack register at address 0H. The operand

for the CALL instruction, 30H, is transferred to the program counter.

When the POP instruction in the subroutine for the seventh-level is executed, the stack pointer value is incremented

by one to 1H. Consequently, the address stack register contents at address 0H, 11H, are transferred to the address

register.

When the CALL instruction at address 35H is executed, the stack pointer value is decremented by one to 0H, and

the return address from the eighth-level subroutine, 41H, is saved to the address stack register at 0H. The operand

for the CALL instruction, 50H, is transferred to the program counter.

When the RET instruction in the eighth-level subroutine is executed, the address stack register contents 0H, 41H,

are restored to the program counter, and the stack pointer is incremented by one to 1H.

48

CHAPTER 4 ADDRESS STACK

When the PUSH instruction in the seventh-level subroutine is executed, the stack pointer is decremented by one

to 0H. The contents of the address register, which are address 11, i.e., the return address to the sixth-level subroutine,

are transferred to the address stack register at address 0H.

When the RET instruction in the seventh-level subroutine is executed, the address stack register contents at 0H,

11H, are restored to the program counter. The stack pointer is, accordingly, incremented by one to 1H.

In this way, the nesting levels for the stack can be set to 8 levels.

Figure 4-6. Stack Operation Example When PUSH and POP Instructions Are Executed

Subroutine (6th level)

(10H): CALL SUB7

SUB7 (30H):

(35H) <2> POP AR

(40H): CALL SUB8

(45H) <5> PUSH AR

RET

RET

Subroutine (7th level)
SUB8 (50H):
Subroutine (8th level)

Operation of <1>
Stack pointer (SP) Program counter (PC)

0H 30H

Address register (AR)

–

Address stack register (ASR)

0H

1H

11H

Operation of <2>

1H 35H 11H0H

1H

11H

Operation of <3>

0H 50H 11H0H

1H

41H

Operation of <4>

1H 41H 11H0H

1H

41H

Operation of <5>

0H 45H 11H0H

1H

11H

Operation of <6>

1H 11H 11H0H

1H

11H

<1>
<3>

<4><6>

CHAPTER 5 DATA MEMORY (RAM)

The data memory is to store data for arithmetic and control operations. The data in the data memory can always

be read or the data can be written to the memory by instructions.

5.1 Data Memory Configuration

As shown in Figure 5-1, the data memory is divided into up to 16 divisions in units of “banks”. Each bank is assigned

a number. Therefore, there are bank 0 to bank n (n ≤ 15).

Each bank is assigned an address, which stores 4-bit data. The high-order 3 bits in an address are called a “row

address”, while the low-order 4 bits are called a “column address”. For example, the data memory address, whose

row address is 1H and whose column address is 0AH, is 1AH. One address consists of 4 bits, or one “nibble”.

The data memory is also divided into the following five blocks, in terms of functions:

(1) System register (SYSREG)

The system register consists of 12 nibbles assigned to addresses 74H through 7FH in the data memory. The

system register is assigned, regardless of the bank. That is, any bank has the same system register at

addresses 74H through 7FH.

(2) Data buffer (DBF)

The data buffer consists of 4 nibbles at addresses 0CH through 0FH in bank 0 for the data memory.

(3) Port data register (port register)

This register is configured of a part of each bank in the data memory.

(4) General-purpose data memory

This is a portion of the data memory, other than the system register and port register, and consists of 112

nibbles.

(5) Unassigned data memory

The data memory area in the port register, to which no actual port is assigned, is fixed to 0.

49

50

CHAPTER 5 DATA MEMORY (RAM)

Figure 5-1. Configuration of Data Memory

System register

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7 8 9 A B C D E F

Column address

Column address

BANK15

BANK1

Data memory

R
ow

 a
dd

re
ss

R
ow

 a
dd

re
ss

R
ow

 a
dd

re
ss

R
ow

 a
dd

re
ss

R
ow

 a
dd

re
ss

BANK0

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7 Port register
System register (SYSREG)

BANK0

Data buffer(DBF)

Example

b3 b2 b1 b0

Address 1AH
of BANK0

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7 Port register
System register (SYSREG)

BANK1

0 1 2 3 4 5 6 7 8 9 A B C D E F

Port register
System register (SYSREG)

BANK14

BANK2

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7 Port register
System register (SYSREG)

Same system
register
exists

0

1

2

3

4

5

6

7

BANK15

51

CHAPTER 5 DATA MEMORY (RAM)

5.2 Notes on Specifying Data Memory Address

When using the 17K Series Assembler (RA17K), an error occurs if a data memory address is directly described

as a numeral in the operand for a data memory manipulation instruction, as shown in Example 1 below.

This feature of the assembler is to reduce the causes of bugs, when the program is edited.

Examples 1. Error occurs

; <1>

MOV 2FH, #0001B ; Directly specifies address 2FH

; <2>

MOV 0.2FH, #0001B ; Directly specifies address 2FH of BANK0

Error does not occur

; <3>

M02F MEM 0.2FH ; Defines symbol in M02F with address 2FH of BANK0 as memory type

MOV M02F, #0001B ;

; <4>

MOV .MD.2FH, #0001B ; Converts address 2FH into memory type by .MD.

; This method, however, must be avoided to reduce causes of bugs.

It is therefore necessary to define data memory addresses as symbols in advance, using the

assembler directive MEM (symbol definition directive).

To define a data memory address as a symbol, it is also necessary to define a bank, as shown

in Example 2.

This is used by the data memory map creation function of the Assembler.

At this time, however, if the data in the following example 2 memory address, which is defined as

a symbol in the BANK2 as shown, is used in the BANK1 range for the program, the BANK1 data

memory address is manipulated.

2.

 M1 MEM 0.15H ;

 M2 MEM 1.15H ; Symbol definition directive

 M3 MEM 2.15H ;

Bank Row address Column address

 BANK1 ; Assembler macroinstruction BANK ← 1

 MOV M1, #0000B ; M1, M2, and M3 are defined as symbols by another bank in <1>,

 MOV M2, #0000B ; but are treated as BANK1 on program. These three instructions

 MOV M3, #0000B ; write 0 to data memory at address 15H in BANK1

[MEMO]

52

CHAPTER 6 SYSTEM REGISTER (SYSREG)

The system register directly controls the CPU and is located on the data memory.

6.1 System Register Configuration

Figure 6-1 shows the system register location on the data memory. As shown in this figure, the system register

is located at addresses 74H through 7FH in the data memory, independent from the bank. Therefore, the same system

register exists at addresses 74H through 7FH for any memory bank.

Since the system register is on the data memory, it can be manipulated by any data memory manipulation

instruction.

It is also possible to specify the system register as a general register.

Figure 6-2 shows the system register configuration.

As shown in this figure, the system register consists of the following seven kinds of registers:

Address register (AR)

Window register (WR)

Bank register (BANK)

Index register (IX)

Data memory row address pointer (MP)

General register pointer (RP)

Program status word (PSWORD)

Figure 6-1. System Register Location on Data Memory Location

53

BANK0

BANK1

BANK15

Data memory

R
ow

 a
dd

re
ss

0 1 2 3

0 1 2 3

4 5 6 7 8 9 A B C D E F

4 5 6 7 8 9 A B C D E F

Column address

0

1

2

3

4

5

6

7

7

7
System register

54

CHAPTER 6 SYSTEM REGISTER (SYSREG)

Figure 6-2. Configuration of System Register

Address

Name

Symbol

Bit

Data

74H

AR3

b3 b2 b1 b0

75H

AR2

b3 b2 b1 b0

76H

AR1

b3 b2 b1 b0

77H

AR0

b3 b2 b1 b0

78H

WR

b3 b2 b1 b0

Window

register

(WR)

Genral register

pointer

 (RP)

Progrem

status

word

(PSWORD)

79H

BANK

b3 b2 b1 b0

Bank

register

(BANK)

7CH

IXL

b3 b2 b1 b0

7DH

RPH

b3 b2 b1 b0

7EH

RPL

b3 b2 b1 b0

7FH

PSW

b3 b2 b1 b0

7AH

IXH

MPH

b3 b2 b1 b0

7BH

IXM

MPL

b3 b2 b1 b0

Index register (IX)Address register

(AR)

System register

Z I

X

E

C

Y

C

M

P

B

C

D

M

P

E

Data memory

row address

pointer

(MP)

(MP)

(IX)

55

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.2 System Register Functions

6.2.1 Each register functions

The functions for each constituent register in the system register are as follows. The functions for each register

are described in more detail in 6.4 through 6.9.

(1) Address register (AR)

Indirectly specifies an address in the program memory.

(2) Window register (WR)

Transfers data with the register file.

(3) Bank register (BANK)

Specifies a bank in the data memory.

(4) Index register (IX)

Qualifies an address in the data memory.

(5) Data memory row address pointer (MP)

Specifies a row address during general register indirect transfer.

(6) General register pointer (RP)

Specifies a bank and row address in the general register.

(7) Program status word (PSWORD)

Sets the conditions of arithmetic operation and transfer instructions.

6.2.2 System register manipulation instruction

Since the system register is located on the data memory, it can be controlled by all data memory manipulation

instructions. In addition, the address register and index register can be manipulated by the following dedicated

instructions:

INC AR: Increments the address register (AR) contents by one. The address register has 14 valid bits. When

the address register contents are incremented, when the current contents are 1FFFH, the register

contents become 0000H. The address register contents cannot be incremented to a total exceeding 8K

steps.

INC IX : Increments the index register by (IX) contents by one. The index register has 11 valid bits. When the

index register contents are incremented, when the current contents are incremented, when the current

contents are 7FFH, the register contents become 000H.

56

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.3 Address Register (AR)

6.3.1 Address register configuration

Figure 6-3 shows the address register configuration.

As shown in this figure, the address register consists of 16 bits in the system register: 74H through 77H (AR3

through AR0).

Figure 6-3. Configuration of Address Register

6.3.2 Address register functions

The address register specifies a program memory address, when the indirect branch instruction (BR @AR), indirect

subroutine call instruction (CALL @AR), table reference instruction (MOVT DBF, @AR), or stack manipulation

instruction (PUSH AR, POP AR) has been executed.

6.3.3 through 6.3.4 describe the address register operations, when each of these instructions has been executed.

A sole use instruction (INC AR), that can increment the contents of the address register by one, is available. When

this instruction is used, the address register data can be incremented in 13-bit units. When the “INC AR” instruction

is executed, while the address register contents are 1FFFH, the address register is incremented to 0000H.

Note that an address exceeding the program memory range must not be set.

6.3.3 Table reference instruction (MOVT DBF, @AR)

When the “MOVT DBF, @AR” instruction is executed, the constant data (16 bits) in a program memory address,

specified by the address register contents, are read to the data buffer (DBF: addresses 0CH through 0FH in BANK0)

on the data memory.

The program memory addresses, from which constant data can be read to the data buffer, can be specified in the

address register range for each model.

For details, also refer to 10.4 Data Buffer and Table Reference .

Address

Name

Symbol

Bit

Data

74H

AR3

b3 b2 b1 b0

M

S

B

75H

AR2

b3 b2 b1 b0

76H

AR1

b3 b2 b1 b0

77H

AR0

b3 b2 b1 b0

L

S

B

Address register (AR)

57

CHAPTER 6 SYSTEM REGISTER (SYSREG)

Example

Address Label

0000H DATA1 : 16-bit constant data

MOV AR0, #0FH ; Writes 0FH to AR0

MOV AR1, #0H ; Writes 0H to AR1

MOV AR2, #0H ; Writes 0H to AR2

MOV AR3, #0H ; Writes 0H to AR3

MOVT DBF, @AR ; Roads constant data at program memory address

; 000FH to data buffer

6.3.4 Stack manipulation instruction (PUSH AR, POP AR)

By executing the “PUSH AR” instruction, the stack pointer is decremented by one and the address register (AR)

contents are stored to the address stack register specified by the stack pointer.

When the “POP AR” instruction is executed, the address stack register contents, specified by the stack pointer,

are transferred to the stack register, and the address stack register is incremented by one.

For details, refer to CHAPTER 4 ADDRESS STACK .

6.3.5 Indirect branch instruction (BR @AR)

When the “BR @AR” instruction is executed, the program execution branches to a program memory address

specified by the address register contents.

Example

MOV AR0, #0FH ; Writes 0FH to AR0

MOV AR1, #0H ; Writes 0H to AR1

MOV AR2, #0H ; Writes 0H to AR2

MOV AR3, #0H ; Writes 0H to AR3

BR @AR ; Program branches to 000FH

6.3.6 Indirect subroutine call instruction (CALL @AR)

When the “CALL @AR” instruction is executed, the subroutine at the program memory, specified by the address

register contents, can be called.

58

CHAPTER 6 SYSTEM REGISTER (SYSREG)

Examples 1.

Address Label

000FH SUB:

Subroutine processing

RET

MOV AR0, #0FH ; Writes 0FH to AR0

MOV AR1, #0H ; Writes 0H to AR1

MOV AR2, #0H ; Writes 0H to AR2

MOV AR3, #0H ; Writes 0H to AR3

CALL @AR ; Calls subroutine at address 000FH

In this example, the address from which a subroutine is indirectly called is specified by the “MOV”

instruction.

By this method, however, the program memory efficiency is degraded, if the subroutine is

frequently called.

Therefore, it is recommended to use the “POP”, “PUSH”, and table reference instructions, as

shown in Example 2 below.

2.

SUBENTRY:

DI

POP AR

MOVT DBF, @AR

INC AR

PUSH AR

EI

PUT AR, DBF

BR @AR

SUB1 :

SUB2 :

MAIN :

CALL SUBENTRY

DW .DL.SUB1

CALL SUBENTRY

DW .DL.SUB2

59

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.3.7 Address register and data buffer

The address register can be directly manipulated by the data memory manipulation instruction. It can also transfer

data through the data buffer as a part of the hardware peripherals.

Data can be read from or written to the address register through the data buffer by using the “PUT” and “GET”

instructions, in addition to the data memory manipulation instruction.

Figure 6-4 shows the relations between the address register and data buffer.

For details on the data buffer, refer to CHAPTER 10 DATA BUFFER (DBF) .

Figure 6-4. Data Transfer between Address Register and Data Buffer

Name

Symbol

Address

Bit

Data

b15 b14 b13 b12

DBF3

0CH

b11 b10 b9 b8

DBF2

0DH

b7 b6 b5 b4

DBF1

0EH

b3 b2 b1 b0

DBF0

0FH

Transfer data

Data buffer

Name

Symbol

Bit

Data

Symbol

Address

Peripheral
address

b15 b14 b13 b12

AR3

74H

b11 b10 b9 b8

AR2

75H

b7 b6 b5 b4

AR1

76H

b3 b2 b1 b0

AR0

77H

Valid data

Address register

AR

Depends on model

GET

PUT

Data memory manipulation
instruction

When data is directly read from or written to address register

60

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.4 Window Register (WR)

6.4.1 Window register configuration

Figure 6-5 shows the window register configuration. As shown in this figure, the window register consists of 4 bits

in 78H in the system register.

Figure 6-5. Configuration of Window Register

6.4.2 Window register functions

The window register is used to transfer data with the register file (RF).

To transfer data between the window register and register file, sole use instructions, “PEEK WR, rf” and “POKE

rf, WR”, are used.

6.4.3 and 6.4.4 describe the window register operation, when each of these instruction is executed.

For details, refer to CHAPTER 9 REGISTER FILE (RF) .

6.4.3 PEEK WR, rf instruction

As shown in Figure 6-6, the register file contents, addressed by rf, are transferred to the window register, when

the PEEK WR, rf instruction (rf: address of register file) is executed.

6.4.4 POKE rf, WR instruction

As shown in Figure 6-6, the window register contents are transferred to the register file addressed by rf, when the

POKE rf, WR instruction (rf: register file address) is executed.

Address

Name

Symbol

Bit

Data

b3 b2 b1 b0

78H

Window register

(WR)

WR

M

S

B

L

S

B

61

CHAPTER 6 SYSTEM REGISTER (SYSREG)

Figure 6-6. Operations for PEEK and POKE Instructions

Register file

0 1 2 3 4 5 6 7 8 9 A B C D E F

Column address

0

1

2

3

4

5

6

7
System register

POKE 0FH, WR

PEEK WR, 41H

WR

R
ow

 a
dd

re
ss

62

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.5 Bank Register (BANK)

6.5.1 Bank register configuration

Figure 6-7 shows the bank register configuration.

As shown in this figure, the bank register consists of 4 bits in 79H (BANK) for the system register.

Figure 6-7. Configuration of Bank Register

6.5.2 Bank register function

The bank register selects a bank in the data memory.

As shown in Figure 6-8, the data memory is divided into up to 16 banks, and the data memory area in the bank,

specified by the bank register, is manipulated by a data memory manipulation instruction.

Therefore, to manipulate the data memory area in BANK1, when BANK0 is currently selected, it is necessary to

write 0001H to the bank register, in order to select BANK1.

At this time, the bank concept does not apply to the system register located at addresses 74H through 7FH in the

data memory, and the system register in any bank serves as is. Consequently, 0 is written to the bank register (BANK:

address 78H), regardless of whether the “MOV BANK, #0” instruction is executed in BANK1 or BANK2. To manipulate

the bank register, therefore, the bank specified at that time is independent.

Address

Name

Symbol

Bit

Data

b3 b2 b1 b0

79H

Bank register

(BANK)

BANK

M

S

B

L

S

B

63

CHAPTER 6 SYSTEM REGISTER (SYSREG)

Figure 6-8. Specifying Data Memory Bank

Bank register
(BANK) Bank of data

memory

BANK0

BANK1

BANK2

BANK3

BANK4

BANK5

BANK6

BANK7

BANK8

BANK9

BANK10

BANK11

BANK12

BANK13

BANK14

BANK15

b3

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

b2

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

b1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

b0

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0 1 2 3 4 5 6 7 8 9 A B C D E F

Column address

System register Same system
register exists
in any bank

BANK0

R
ow

 a
dd

re
ss 0

1
2
3
4
5
6
7

System register

BANK1

0
1
2
3
4
5
6
7

System register

BANK2

0
1
2
3
4
5
6
7

System register

BANK14

0
1
2
3
4
5
6
7

System register

BANK15

0
1
2
3
4
5
6
7

64

CHAPTER 6 SYSTEM REGISTER (SYSREG)

As an instruction that specifies a bank, the 17K Series Assembler (RA17K) offers a macroinstruction “BANKn” (0

≤ n ≤ 4).

Here is an example showing how to manipulate the bank and data memory:

Example

M000 MEM 0.00H ; Defines symbol

M100 MEM 1.00H ;

BANK0 ; Same as MOV BANK, #0000B

MOV M000, #0101B ; Writes 0101B to address 00H in BANK0

BANK1 ; Same as MOV BANK, #0001B

MOV M100, #0101B ; Writes 0101B to address 00H in BANK1

MOV M000, #0101B ; Writes 0101B to address 00H in BANK1

; This means that data memory M000 is defined in BANK0 by

; means in symbol definition, but the bank selected at that time is

; assumed when program is executed.

65

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.6 Index Register (IX) and Data Memory Row Address Pointer (MP: Memory Pointer)

6.6.1 Configurations for index register and data memory row address pointer

Figure 6-9 shows the configurations for the index register and data memory row address pointer. As shown in this

figure, the index register consists of a total of 12 bits, of which the low-order 3 bits (IXH) are for 7AH in the system

register, and the others are for 7BH and 7CH (IXM, IXL), and an index enable (IXE) flag, which is at the least significant

bit for 7FH (PSW).

The data memory row address pointer (memory pointer) consists of a total of 7 bits, of which the low-order 3 bits

are for 7AH (MPH) and the others are for 7BH (MPL), plus a data memory row address pointer enable flag (MPE)

at the most significant bit for 7AH (MPH).

This means that the high-order 7 bits in the index register are shared by the data memory row address pointer.

Figure 6-9. Configurations for Index Register and Data Memory Row Address Pointer

Address

Name

Symbol

Bit

Data

b3 b2 b1 b0

7AH

IXH

MPH

b3 b2 b1 b0

7BH

IXM

MPL

b3 b2 b1 b0

7CH

IXL

7EH

b3 b2 b1 b0 b3 b2 b1 b0

7FH

PSW

Memory pointer (MP)

Index register (IX)

MP

IX

Program status word

(PSWORD)

M

P

E

M

S

B

L

S

B

I

X

E

L

S

B

M

S

B

66

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.6.2 Index register and data memory row address pointer functions

The following paragraphs (1) and (2) describe the functions of the index register and data memory row address

pointer:

(1) Index register

When a data memory manipulation instruction is executed, the index register modifies with its contents the

bank and address of the data memory specified by the instruction.

However, the address modification by the index register is valid only when the index enable flag (IXE) is set.

To modify an address, the bank and address of the data memory are ORed with the contents of the index

register, and the instruction is executed to the data memory at the address (called real address) specified by

the result of the OR operation.

The index register modifies an address with all the data memory manipulation instructions.

The instructions that cannot be used for address modification are as follows:

MOVT DBF, @AR BR addr INC AR EI

PEEK WR, rf BR @AR INC IX DI

POKE rf, WR CALL addr RORC r

GET DBF, p CALL @AR STOP s

PUT p, DBF RET HALT h

PUSH AR RETSK NOP

POP AR RETI

(2) Data memory row address pointer

The data memory row address pointer modifies with its contents the address at the indirect transfer destination

when a general register indirect transfer instruction (MOV @r, m or MOV m, @r) is executed.

However, address modification by the data memory row address pointer is valid only when the data memory

row address pointer enable flag (memory pointer enable flag: MPE) is set to 1.

In addition, the address specified by an instruction other than the general register indirect transfer instruction

is not modified.

To modify an address, the bank and row address at the indirect transfer destination are replaced with the

contents of the data memory row address pointer.

Figure 6-1 illustrates data memory address modification and indirect transfer address modification by the index

register and data memory row address pointer.

6.6.3 through 6.6.6 describe the operations to modify a data memory address by the index register and data memory

row address pointer.

67

CHAPTER 6 SYSTEM REGISTER (SYSREG)

Table 6-1. Data Memory Address Modification by Index Register and Data Memory Row Address Pointer

BANK : Bank register MP : Data memory row address pointer

IX : Index register MPE : Memory pointer enable flag

IXE : Index enable flag r : General register column address

IXH : Bits 10-8 of index register RP : General register pointer

IXM : Bits 7-4 of index register (×) : Contents addressed by ×
IXL : Bits 3-0 of index register × : Direct address such as m, r

m : Data memory address specified by mR, mC : Register such as BANK

mR : Data memory row address (high)

Remark The settings of IXE and MPE differ depending on the model. Refer to the Data Sheet for each model.

b3 b2 b1 b0 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0 b2 b1 b0 b3 b2 b1 b0

General Register Address
Specified by r

Data Memory Address
Specified by m

Indirect Transfer Address
Specified by @r

IXE MPE Bank
Row

Address
Column
Address Bank

Row
Address

Column
Address Bank

Row
Address

Column
Address

0 0 RP r BANK m BANK mR (r)

0 1 ditto ditto MP (r)

1 0 ditto

BANK m BANK mR

(r)Logical ORLogical OR

IXMIXHIX

1 1

Instructions modified

A
dd

/S
ub

Lo
gi

ca
l

C
om

pa
re

T
ra

ns
fe

r

ADD
ADDC
SUB

SUBC

AND
OR

XOR

SKE
SKGE
SKLT
SKNE

SKT
SKF

LD
ST

MOV

r m

m, #n4

m

m, #n4

m, #n4

m, #n

m

m, #n4

m

r

r

@r Indirect transfer address

Ju
dg

e-
m

en
t

(r)MPditto ditto

68

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.6.3 When MPE = 0, IXE = 0 (no data memory modification)

As indicated in Table 6-1, the data memory address is not affected by the index register and data memory row

address pointer.

(1) Data memory manipulation instruction

Examples 1. If general register is at row address 0

R003 MEM 0.03H

M061 MEM 0.61H

ADD R003, M061

When the above instructions are executed, the contents of general register R003 and those

of data memory M061 are added, and the result is stored to general register R003, as shown

in Figure 6-10.

(2) General register indirect transfer

Examples 2. If general register is at row address 0

R005 MEM 0.05H

M034 MEM 0.34H

MOV R005, #8 ; R005 ← 8

MOV @R005, M034 ; Register indirect transfer

When the above instructions are executed, the contents of data memory M034 are transferred

to address 38H of the data memory, as shown in Figure 6-10.

Therefore, the “MOV @r, m” instruction transfers the contents of the data memory specified

by m to the data memory at an indirect address specified by @r of the same row address

as m.

The indirect transfer address is the contents of the general register with a row address same

as m (row address 3 in the above example) and a column address specified by r (8 in the above

example). Therefore, it is 38H in the above example.

69

CHAPTER 6 SYSTEM REGISTER (SYSREG)

Examples 3. If general register is at row address 0

R00B MEM 0.0BH

M034 MEM 0.34H

MOV R00B, #0EH ; R00B ← 0EH

MOV M034, @R00B ; Register indirect transfer

When the above instructions are executed, the contents of the data memory at address 3EH

are transferred to data memory M034 as shown in Figure 6-10.

Therefore, the “MOV m, @r” instruction transfers the contents of the data memory at an

indirect address specified by @r of a row address same as m to the data memory addressed

by m.

The indirect transfer address is the contents of the general register with a row address same

as m (row address 3 in the above example) and a column address specified by r (0EH in the

above example). Therefore, it is 3EH in the above example.

Comparing this with Example 2, the source address of the data memory whose contents are

to be transferred and the destination address are exchanged.

Figure 6-10. Example of Operation When MPE = 0, IXE = 0

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

8

R
ow

 a
dd

re
ss

Column address

Example 2. MOV @R005, M034

Example 1. ADD R003, M061

Specifies column address
at transfer destination

Example 3. MOV M034, @R00B

Specifies column address
at transfer source

System register

Bank
Row

Address
Column
Address

0000 110 0001Data memory address M

0000 000 0011General register address R

Generation of address in Example 1

ADD R003, M061

Bank
Row

Address
Column
Address

0000 011 0100Data memory address M

0000 000 0101General register address R

0000 011 1000Indirect transfer address @R

Content
of RSame as M

Generation of address in Example 2

MOV @R005, M034

E

70

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.6.4 When MPE = 1, IXE = 0 (diagonal indirect transfer)

As shown in Table 6-1, the bank and row address of the indirect transfer address specified by @r are the value

of the data memory row address pointer only when a general register indirect transfer instruction (MOV @r, m or MOV

m, @r) is executed.

Examples 1. If general register is at row address 0

R005 MEM 0.05H

M034 MEM 0.34H

MOV MPL, #0110B ; MP ← 6

MOV MPH, #1000B ; MPE ← 1

MOV R005, #8 ; R005 ← 8

MOV @R005, M034 ; Register indirect transfer

When the above instructions are executed, the contents of data memory M034 are transferred to

data memory address 68H as shown in Figure 6-11.

When the “MOV @r,m” instruction is executed when MPE = 1, the contents of the data memory

specified by m are transferred to the column address specified by @r having a row address

specified by the memory pointer.

At this time, the indirect address specified by @r is the contents of the general register with a bank

and row address being the value of the data memory row address pointer (row address 6 in the

above example) and a column address specified by r.

It is, therefore, 68H in the above example.

When this is compared with Example 2 in 6.6.3, the bank and row address of the indirect address

specified by @r are specified by the data memory row address pointer in the above example, while

the bank and row address of the indirect address in Example 2 in 6.6.3 are the same as m.

Therefore, general register indirect transfer can be diagonally carried out by setting MPE to 1.

71

CHAPTER 6 SYSTEM REGISTER (SYSREG)

Examples 2. If general register is at row address 0

R00B MEM 0.0BH

M034 MEM 0.34H

MOV MPL, #0110B ; MP ← 6

MOV MPH, #1000B ; MPE ← 1

MOV R00B, #0EH ; R00B ← 0EH

MOV M034, @R00B ; Register indirect transfer

When the above instructions are executed, the contents of the data memory at address 6EH are

transferred to data memory M034, as shown in Figure 6-11.

Figure 6-11. Example of Operation When MPE = 1, IXE = 0

0

0

1

2

3

4

5

6

7

R
ow

 a
dd

re
ss

1 2 3 4 5 6 7 8 9 A B C D E F

System register

Column address

Example 1. MOV @R005, M034

Specifies column address
at transfer destination

Specifies column
address at transfer
source

Example 2. MOV M034, @R00B

Memory pointer = 00110B

General register8 E

Bank
Row

Address
Column
Address

0000 011 0100Data memory address M

0000 000 0101General register address R

0000 110 1000Indirect transfer address @R

Content
of RContent of MP

Generation of address in Example 1

MOV @R005, M034

Bank
Row

Address
Column
Address

0000 011 0100Data memory address M

0000 000 0111General register address R

0000 110 1110Indirect transfer address @R

Content
of RContent of MP

Generation of address in Example 2

MOV M034, @R00B

72

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.6.5 When MPE = 0, IXE = 1 (data memory address index modification)

When a data memory manipulation instruction is executed as indicated in Table 6-1, all the banks and addresses

of the data memory directly specified by the operand “m” of the instruction are modified by the index register.

When a general register indirect transfer instruction (MOV @r, m or MOV m, @r) is executed, the bank and row

address of the indirect transfer address specified by @r are also modified by the index register.

To modify an address, the contents of the data memory address and those of the index register are ORed, and

the instruction is executed to the data memory address (called an real address) specified by the result of the OR

operation.

Examples 1. If general register is at row address 0

R003 MEM 0.03H

M061 MEM 0.61H

MOV IXL, #0010B ; IX ← 00000010010B

MOV IXM, #0001B ;

MOV IXH, #0000B ; MPE ← 0

OR PSW, #.DF.IXE AND 0FH ; IXE ← 1

ADD R003, M061

When the instructions in this example are executed, the contents of the data memory at address

73H (real address) and the contents of general register R003 (address 03H) are added, and the

result is stored to general register R003 as shown in Figure 6-12.

Therefore, when the “ADD r, m” instruction is executed, the data memory address specified by “m”

(address 61H in the above example) is modified by the index register.

To modify the address, address 61H, which is the address of data memory M061 (00001100001B

in binary), is ORed with the value of the index register (00000010010B in the above example), and

the result 00001110011B is treated as the real address (address 73H), and the instruction is

executed to this real address.

Comparing this with Example in 6.6.3 (when IXE = 0), the address of the data memory directly

specified by the operand “m” of the instruction is modified (ORed) by the index register.

73

CHAPTER 6 SYSTEM REGISTER (SYSREG)

Figure 6-12. Example of Operation When MPE = 0, IXE = 1

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

R003

R
ow

 a
dd

re
ss

Column address

Example 1. ADD R003, M061

M061
IX

System register

Index modification

Real address 00001110011B

: 00001100001B
: 00000010010BOR)

M061

General register

Bank
Row

Address
Column
Address

0000 110 0001Data memory address M

0000 000 0011General register address R

0000 110 0001Index modification

Generation of address in Example 1

ADD R003, M061

0000 001 0010

0000 111 0011

IXL

BANK m

M061

IX

Real addr.
(ORed) Instruction is executed to this address.

IXH IXM

74

CHAPTER 6 SYSTEM REGISTER (SYSREG)

Examples 2. General register indirect transfer

If general register is in BANK0 at row address 0

R005 MEM 0.05H

M034 MEM 0.34H

MOV IXL, #0001B ; IX ← 00000000001B

MOV IXM, #0000B ;

MOV IXH, #0000B ; MPE ← 0

OR PSW, #.DF.IXE AND 0FH ; IXE ← 1

MOV R005, #8 ; R005 ← 8

MOV @R005, M034 ; Register indirect transfer

When the above instructions are executed, the contents of the data memory at address 35H are

transferred to the address 38H of the data memory as shown in Figure 6-13.

Therefore, if the “MOV @r, m” instruction is executed when IXE = 1, the data memory address

(direct address) specified by “m” is modified with the contents of the index register, and the bank

and row address of the indirect address specified by “@r” are also modified by the index register.

All the bank, row, and column address of the address specified by “m” are modified, and the bank

and row address of the indirect address specified by “@r” are modified.

In the above example, therefore, the direct address is 35H and the indirect address is 38H.

When this is compared with Example 3 in 6.6.3 when IXE = 0, the bank, row, and column address

of the direct address specified by “m” are modified by the index register and general register indirect

transfer is executed to the row address same as the modified data memory address in the above

example, while the direct address is not modified in Example 3 in 6.6.3.

75

CHAPTER 6 SYSTEM REGISTER (SYSREG)

Figure 6-13. Example of General Register Indirect Transfer Operation When MPE = 0, IXE = 1

Examples 3. To clear contents of all data memory to 0

M000 MEM 0.00H

MOV IXL, #0 ; IX ← 0

MOV IXM, #0 ;

MOV IXH, #0 ; MPE ← 0

LOOP:

OR PSW, #.DF.IXE AND 0FH ; IXE ← 1

MOV M000, #0 ; Clears data memory specified by IX to 0

INC IX ; IX ← IX + 1

AND PSW, #1110B ; IXE ← 0: Since IXE is

; at address 7FH, it is not modified by IX

SKE IXM, #0111B ; Row address 7?

BR LOOP ; LOOP if not 7 (row address is not cleared)

0

0

1

2

3

4

5

6

7

R
ow

 a
dd

re
ss

1 2 3 4 5 6 7 8 9 A B C D E F

System register

Column address

Index
modification

Specifies column address
at transfer destination

Example 2. MOV @R005, M034

General register8

M034
IX

Real address 00000110101B

: 00000110100B
: 00000000001BOR)

M034

Direct
address Indirect address

R005

76

CHAPTER 6 SYSTEM REGISTER (SYSREG)

Examples 4. Processing of array

Suppose 8-bit data A is defined one-dimensionally as shown in Figure 6-14. To execute the

following operation, the instructions below should be executed:

A (N) = A (N) + 4 (0 ≤ N ≤ 15)

Where general register is at row address 7

M000 MEM 0.00H

M001 MEM 0.01H

MOV IXH, #0 ; IX ← 2N

MOV IXM, #N SHR 3 ; Since array element is 8 bits, data memory address to

MOV IXL, #N SHL 1 AND 0FH ; be modified is shifted

OR PSW, #.DF.IXE AND 0FH ; IXE ← 1

ADD M000, #4 ; Adds 4 to data memory M000

ADDC M001, #0 ; and M001 that are modified by IX, i.e., adds 4 to 8-bit

; array specified by A(N)

To specify N of array A(N) as indicated in the above example, specify a value 2 times that of N

to the index register.

Figure 6-14. Example of Operation When MPE = 0, IXE = 1 (array processing)

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

A (0)

R
ow

 a
dd

re
ss

Column address

System register

A (8)

A (1)

A (9)

A (2)

A (10)

A (3)

A (11)

A (4)

A (12)

A (5)

A (13)

A (6)

A (14)

A (7)

A (15)

A (0)

00H 01H

b3 b2 b1 b0 b7 b6 b5 b4

77

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.6.6 When MPE = 1, IXE = 1

All the addresses for the data memory, directly specified by operand “m” when a data memory manipulation

instruction is executed, are qualified by the index register, as shown in Table 6-1.

When a general register indirect transfer instruction (MOV @r, m or MOV m, @r) has been executed, the direct

address specified by “m” is qualified by the index register, and the indirect address, specified by “@r”, is specified

by the data memory row address pointer.

Example When the row address for general register in BANK0 is 0

R005 MEM 0.05H

R034 MEM 0.34H

MOV IXL, #0001B ; (IX) ← 00010000001B

MOV IXM, #1000B ; (MP) ← 0001000B

MOV IXH, #0000B ;

MOV R005, #8 ; R005 ← 8

OR IXH, #1000B ; MPE ← 1

OR PSW, #.DF.IXE AND 0FH ; IXE ← 1

MOV @R005, M034 ; Register indirect transfer

When the above instructions are executed, the data memory address 35H contents in BANK1 are

transferred to address 08H in BANK1, as shown in Figure 6-15.

When the “MOV @r, m” instruction is executed with MPE = 1 and IXE = 1, therefore, the data memory

address (direct address) specified by “m” is qualified with the index register contents, and the indirect

address, specified by “@r”, is specified by the data memory row address pointer contents.

To qualify the direct address, all the bank in the data memory address specified by “m”, row address,

and column address are ORed with the index register contents, and the indirect address, specified by

@r, is the bank and row addresses, which are contained in the data memory row address pointer.

Therefore, in the above example, the direct address is 35H in BANK1, and the indirect address is 08H

in BANK1. The difference between this example and Example 2 in 6.6.5, where MPE = 0, IXE = 1,

is that the bank and row addresses, for the indirect address specified by “@r”, are specified by the data

memory row address pointer contents (in Example 2 in (5), the indirect address is qualified by the index

register).

78

CHAPTER 6 SYSTEM REGISTER (SYSREG)

Figure 6-15. General Register Indirect Transfer Example When MPE = 1, IXE = 1

M034

R005

System register

Specifies column address of
transfer destination

BANK0

System register

BANK1

0 1 2 3 4 5 6 7 8 9 A B C D E F

General register80

1

2

3

4

5

6

7

MP = 0001000B0

1

2

3

4

5

6

7

Column address

Indirect address

Direct address

Index qualification

OR IX
Real address

M034 : 00000110100B
: 00010000001B
: 00010110101B Example 2: MOV @R005 M034

Specifies bank and row
address of indirect
address

Same system
register exists

R
ow

 a
dd

re
ss

79

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.7 General Register Pointer (RP)

6.7.1 General register pointer configuration

Figure 6-16 shows the general register pointer configuration. As shown in this figure, the general register pointer

consists of a total of 7 bits: 4 bits in address 7DH (RPH) for the system register and the high-order 3 bits in address

7EH (RPL).

Figure 6-16. Configuration of General Register Pointer

6.7.2 General register pointer functions

The general register pointer specifies a general register (GR) on the data memory.

The general register can specify 16 nibbles, which are at the same row address on the data memory. Therefore,

as shown in Figure 6-17, the general register pointer specifies which row address is to be used.

The row address in the data memory, that can be specified as the general register, differs depending on the general

register pointer (RP) for each model.

When the data memory is specified as a general register, an arithmetic operation or data transfer can be executed

between the general register and data memory.

For example, when an instruction, such as ADD r, m or LD r, m, is executed, addition or transfer is executed between

a general register, addressed by operand “r” of the instruction, and the data memory, addresses by “m”.

For details, refer to CHAPTER 7 GENERAL REGISTER (GR) .

6.7.3 Notes on using general register pointer

The lowest-order bit of address 7EH (RPL) to which the general register pointer is assigned is allocated to the BCD

flag of the program status word.

Therefore, the value of the BCD flag is changed when RPL is rewritten.

Address

Name

Symbol

Bit

Data

7DH

RPH

b3 b2 b1 b0

7EH

RPL

b3 b2 b1 b0

M

S

B

L

S

B

B

C

D

General register

pointer (RP)

80

CHAPTER 6 SYSTEM REGISTER (SYSREG)

Figure 6-17. Configuration of General Register

RPH RPL

General register pointer
(RP)

b3

0

0

0

0

0

0

0

0

b2

0

0

0

0

0

0

0

0

b1

0

0

0

0

0

0

0

0

b0

0

0

0

0

0

0

0

0

b3

0

0

0

0

1

1

1

1

b2

0

0

1

1

0

0

1

1

b1

0

1

0

1

0

1

0

1

b0

Specifies BANK Specifies
row address

B
C

D
 fl

ag

               

Remark

BCD flag: BCD decimal
operation flag

System register RP

BANK0

0 1 2 3 4 5 6 7 8 9 A B C D E F

General register (16 nibbles)

Column address

→ 0

→ 1

→ 2

→ 3

→ 4

→ 5

→ 6

→ 7

System register

BANK1

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

System register

BANK14

BANK2

System register

BANK15

Example:

General register
when RP = 0000010B

General register
setting range

Same system
register exists

R
o

w
 A

d
d

re
s

s
R

o
w

 A
d

d
re

s
s

81

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.8 Program Status Word (PSWORD)

6.8.1 Program status word configuration

Figure 6-18 shows the program status word configuration.

As shown in this figure, the program status word consists of a total of 5 bits: the least significant bit in address

7EH (RPL) for the system register and 4 bits in 7FH (PSW). Each of the 5 bits in the program status word has its

own function as a binary-coded decimal flag (BCD), compare flag (CMP), carry flag (CY), zero flag (Z), and index

enable flag (IXE), respectively.

Figure 6-18. Configuration of Program Status Word

Address

Name

Symbol

Bit

Data

7EH

RPL

b3 b2 b1 b0

7FH

PSW

b3 b2 b1 b0

Program status word

(PSWORD)

(RP)

B

C

D

C

M

P

C

Y

Z l

X

E

82

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.8.2 Program status word function

Each flag of the program status word sets the condition for an arithmetic operation or transfer instruction in the

ALU (Arithmetic Logic Unit), or to indicate an operation result. Figure 6-19 shows the program status word functions.

Figure 6-19. Functions of Program Status Word

BCD CMP CY Z IXE

b0 b3 b2 b1 b0

7EH 7FH

Index enable flag Index modification is enabled when this flag is set.

Zero flag Reset if result of arithmetic operation is other than
"0". Set condition differs depending on contents of
CMP flag.
(1) When CMP = 0
 Set if operation result is "0"
(2) When CMP = 1
 Set if Z = 1 and operation result is "0"

Carry flag Set (1) if carry occurs as result of executing addition
instruction, or if borrow occurs as result of executing
subtraction instruction.
Remains reset (0) if neither carry nor borrow occurs.
Also set (1) if least significant bit of general register is
"1" when RORC instruction is executed, and reset (0)
if LSB is "0".

Compare flag Result of arithmetic operation is not stored in data
memory while this flag is set (1). CMP flag is reset (0)
automatically when SKT or SKF instruction is
executed.

BCD flag All arithmetic operations are performed in decimal
(BCD) when this flag is set (1), and in binary when
this flag is reset (0).

83

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.8.3 Index enable flag (IXE)

The IXE flag is used to modify an address of the data memory when a data memory manipulation instruction is

executed.

When this flag is set to 1, the contents of the data memory address specified by the instruction are ORed with the

contents of the index register (IX), and the instruction is executed to the data memory addressed by the result of the

OR operation (real address).

For details, refer to 6.6 Index Register (IX) and Data Memory Row Address Pointer (MP: Memory Pointer) .

6.8.4 Zero (Z) and compare (CMP) flags

The Z flag indicates that the result of an arithmetic operation executed is 0, and the CMP flag made setting so that

the result of an arithmetic operation is not stored in the data memory or general register.

The conditions under which the Z flag is set or reset differ depending on the status of the CMP flag, as shown in

Table 6-2.

Table 6-2. Status of Compare Flag (CMP) and Set and Reset Conditions of Zero Flag (Z)

Condition
Status of Z Flag

When CMP Is 0 When CMP Is 1

On reset Reset Reset with CMP

When “0” is directly written to Z flag by data memory Reset Reset

manipulation instruction

When “1” is directly written to Z flag by data memory Set Set

manipulation instruction

If result of arithmetic operation is other than“0” Reset Reset

If result of arithmetic operation is “0” Set Retains previous status of Z flag

The Z and CMP flags are used to compare the contents of a general register with those of the data memory. The

status of the Z flag is not changed by an operation other than an arithmetic operation, and the status of the CMP flag

is not changed by an operation other than bit testing.

84

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.8.5 Carry flag (CY)

The CY flag indicates occurrence of a carry or borrow after an addition or subtraction instruction is executed.

The CY flag is set to 1 if a carry or borrow occurs as a result of the arithmetic operation; it is reset to 0 if neither

a carry nor a borrow occurs.

When the “RORC r” instruction, which shifts the contents of a general register specified by r 1 bit to the right, is

executed, the value of the CY flag immediately before the instruction is executed is shifted to the most significant bit

position of the general register, and the least significant bit is shifted to the CY flag.

The CY flag is convenient for skipping the next instruction if a carry or borrow occurs.

The status of this flag is not changed by an operation other than arithmetic operation or rotation processing.

6.8.6 Binary coded decimal flag (BCD)

The BCD flag is used to execute a BCD operation.

When this flag is set to 1, all arithmetic operations are executed in BCD format. When it is reset to 0, the operations

are executed in binary and 4-bit units.

This flag does not affect the logical operation, bit judgment, comparison, and rotation processing.

6.8.7 Notes on executing arithmetic operation

When executing an arithmetic operation (addition or subtraction) to the program status word (PSWORD), note that

the “result” of the arithmetic operation is stored in the PSWORD, as indicated by the following example:

Example MOV PSW, #0001B

ADD PSW, #1111B

When the above instructions are executed, a carry occurs. Consequently, the CY flag, which is bit 2

of the PSW, would be set to 1. Actually, however, 0000B is stored to the PSW because the result of

the operation is 0000B.

85

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.9 Notes on Using System Registers

6.9.1 Reserved words of system registers

Because the system registers are located on the data memory, all the data memory manipulation instructions can

be used to manipulate the system registers. When using the 17K series assembler (RA17K), however, a data memory

address must be defined as a symbol in advance because a data memory address cannot be directly written as the

operand of an instruction.

Although the system registers are part of the data memory, they are defined as symbols as “reserved words” by

the assembler (RA17K) because they have dedicated functions, unlike the ordinary data memory areas.

The reserved words of the system registers are assigned to addresses 74H through 7FH, and are defined by

symbols (such as AR3, AR2, and PSW) shown in Figure 6-2 Configuration of System Registers .

When these reserved words are used, it is not necessary to define a symbol, as shown in the following Example 2 .

For the reserved words, refer to the Data Sheet of each model.

Examples 1. MOV 34H, #0101B ; If data memory address 34H or 76H is

MOV 76H, #1010B ; written as operand, error occurs.

M037 MEM 0.37H ; Data memory address of general-purpose

MOV M037, #0101B ; data memory must be defined as symbol by MEM directive

2. MOV AR1, #1010B ; Symbol needs not to be defined if reserved word AR1 (address 6H)

; is used.

; Reserved word AR1 is defined in device file as “AR1 MEM 0.76H”

When the assembler (RA17K) is used, the following macro instructions are embedded in the assembler as flag

type symbol manipulation instructions:

SETn : Sets flag to “1”

CLRn : Resets flag to “0”

SKTn : Skips if all flags are “1”

SKFn : Skips if all flags are “0”

NOTn : Inverts flag

INITFLG : Initializes flag

86

CHAPTER 6 SYSTEM REGISTER (SYSREG)

Therefore, by using these macro instructions, the data memory can be manipulated as flags as shown in Example

3 below.

Since each bit (flag) of the program status word and memory pointer enable flag has its own function, a reserved

word (MPE, BCD, CMP, CY, Z, or IXE) is defined for each bit.

By using this flag type reserved word, therefore, an embedded macro instruction can be used as is as shown in

Example 4 .

Examples 3. F0003 FLG 0.00.3 ; Flag type symbol definition

SET1 F0003 ; Embedded macro

Macro expansion

OR .MF.F0003 SHR 4, #.DF.F0003 AND 0FH

; Sets bit 3 at address 00H in BANK0

4. SET1 BCD ; Embedded macro

Macro expansion

OR .MF.BCD SHR 4, #.DF.BCD AND 0FH

; Sets BCD flag

; BCD is defined by “BCD FLG 0.7EH.0”

CLR2 Z, CY ; Flag of same address

Macro expansion

AND .MF.Z SHR 4, #.DF. (NOT (Z OR CY) AND 0FH)

CLR2 Z, BCD ; Flag of different addresses

Macro expansion

AND .MF.Z SHR 4, #.DF. (NOT Z AND 0FH)

AND .MF.BCD SHR 4, #.DF. (NOT BCD AND 0FH)

87

CHAPTER 6 SYSTEM REGISTER (SYSREG)

6.9.2 Handling system register fixed to “0”

Data of the system registers fixed to “0” (refer to Figure 6-2. Configuration of System Registers calls for your

attention when the device, emulator, or assembler operates, as described in (1), (2), and (3) below.

(1) When device operates

The data fixed to “0” is not affected even when a write instruction is executed to it. When this data is read,

“0” is always read.

(2) When using 17K series in-circuit emulator (IE-17K or IE-17K-ET)

An error occurs if an instruction that writes “1” is executed to the data fixed to “0”.

Therefore, if the following instructions are executed, an error occurs on the in-circuit emulator:

Examples 1. MOV BANK, #0100B ; Writes 1 to bit 3 fixed to 0

2. MOV IXL, #1111B ;

MOV IXM, #1111B ;

MOV IXH, #0001B ;

ADD IXL, #1 ;

ADDC IXM, #0 ;

ADDC IXH, #0 ;

However, an error does not occur even if the “INC AR” or “INC IX” instruction is executed when all the valid

bits are “1” as shown in Example 2. This is because the “INC” instruction, which is executed when all the valid

bits of the address register and index register are “1”, clears all the valid bits to “0”.

Even if “1” is written to the data fixed to “0” of the address register as shown in Examples 1 and 2 above, an

error does not occur.

(3) When using 17K series assembler (RA17K)

An error is not output even if there is an instruction that writes “1” to data fixed to “0”. Therefore, when “MOV

BANK, #0100B” instruction shown in Example 1 is used, the assembler does not cause an error, but an

emulator error occurs when the instruction is executed on the in-circuit emulator.

The assembler (RA17K) does not causes an error because it cannot detect the data memory address subject

to manipulation by an instruction while register indirect transfer is executed.

The assembler causes an error only on the following occasion:

When value greater than 1 is used as “n” of embedded macro instruction “BANKn”

This is because it is judged that the bank register of the system registers is to be explicitly manipulated when

the BANKn instruction is used.

[MEMO]

88

CHAPTER 7 GENERAL REGISTER (GR)

The general registers are located on the data memory. They perform direct arithmetic operations and transfer

operations with the data memory.

7.1 General Register Configuration

The general register configuration is shown in Figure 7-1. As shown in this figure, sixteen nibbles in the row

addresses for the data memory (16 words × 4 bits) can be used as a general register area.

Which row, among row addresses to be used, is specified by the general register pointer. Specified row address

is set to the general register pointer in the system register.

For details, refer to 6.7 General Register Pointer (RP) .

89

90

CHAPTER 7 GENERAL REGISTER (GR)

Figure 7-1. Configuration of General Register

General register pointer
(RP)

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 A B C D E F

Column address

Row addresses 0H-7H of BANKn
(n ≤ 15) can be set by general
register pointer (RP)

BANK0

R
ow

 a
dd

re
ss

General register
when RP = 0000010B

System register

0

1

2

3

4

5

6

7

BANK1

BANK2

System register

0

1

2

3

4

5

6

7

BANK14

System register

0

1

2

3

4

5

6

7

BANK15

System register

Same system
register exists

Address

Name

Symbol

Bit

Data

7DH

RPH

b3 b2 b1 b0

7EH

RPL

b3 b2 b1 b0

General register (16 nibbles)

RP

B

C

D

M

S

B

L

S

B

91

CHAPTER 7 GENERAL REGISTER (GR)

7.2 General Register Functions

By using the general register, arithmetic operations and transfer operations can be executed between the data

memory and general memory with a single instruction.

To put this in another way, since the general register is on the data memory, arithmetic operations and data transfer

between two data memory addresses can be executed with a single instruction.

Moreover, the general register can be controlled by the data memory manipulation instruction in the same manner

as the data memory, since the general register is on the data memory.

For details on data memory manipulation instructions, refer to 7.4 Address Generation and Operation for

General Register and Data Memory by Each Instruction .

7.3 Notes on General Register Use

7.3.1 through 7.3.3 describes the points to be noted in using the general register.

7.3.1 Address specification for general register

When using the 17K Series Assembler (RA17K), an error occurs, if a general register address is directly described

as the operand for an instruction, as shown below.

This assembler feature reduces the bugs causes, when the program is edited.

Therefore, a general register address should be defined as a symbol in advance.

Example Error occurs

LD 04H, 32H ; General register address or data memory address is directly specified

; as a numeral

Error does not occur

R004 MEM 0.04H ; Defines address 04H as a symbol, in R004 as memory type

M032 MEM 0.32H ;

LD R004, M032 ;

7.3.2 Row address in general

Since the row address in the general register is determined by the general register pointer, the bank for the address

and row address, specified by operand “r” for an instruction, are ignored.

If the following example program is executed, both <1> and <2> transfer the data memory M032 contents (address

32H in BANK0) to address 64H in BANK0, as shown in Figure 7-2.

That is, instructions <1> and <2> ignore the bank and row addresses for R004 and R154, which specify a general

register address, and only address 4H in the column address is valid.

92

CHAPTER 7 GENERAL REGISTER (GR)

Example Specifying row address for general register, where BANK0 is specified

R004 MEM 0.04H ;

R154 MEM 1.54H ;

M032 MEM 0.32H ;

MOV RPH, #0000B ;

MOV RPL, #0110B ; RP ← 0000110B

; <1>

 LD R004, M032

; <2>

 LD R154, M032

Figure 7-2. Example of Specifying General Register Row Address

R004

0 1 2 3 4 5 6 7 8 9 A B C D E F

Column address

0

1

2

3

4

5

6

7
System register RP

LD R004, M032

LD R154, M032

BANK0 General register

0

1

2

3

4

5

6

7
System register RP

R154

BANK1

RP = 0000110B

Same system
register exists

R
ow

 a
dd

re
ss

93

CHAPTER 7 GENERAL REGISTER (GR)

7.3.3 Operation between general register and immediate data

There is no instruction that executes an arithmetic operation between a general register and immediate data. To

execute an operation between a data memory area, specified as a general register, and immediate data, the data

memory area must be treated as a data memory area, instead of as a general register. For example,

Example Example showing operation between general register and immediate data, where BANK0 is

specified

R065 MEM 0.65H ;

M105 MEM 1.05H ;

; <1>

MOV RPH, #0001B ; Sets general register at row address 6H in BANK0

MOV RPL, #0100B ;

BANK1 ; Assembler (RA7K) macroinstruction

; <2>

ADD R065, #3 ;

; <3>

ADD M105, #3 ;

In the above Example <2>, immediate data 3 is added to a data memory area at address 65H in BANK1.

In <3>, 3 is added to a data memory area at address 0.5H.

Although the general register is set at row address 6H for BANK0 in <1>, the instruction <2> operand,

R065, is treated as data memory, rather than as a general register.

Therefore, to add data to the general register at address 6H in BANK0 with instruction <2>, the following

program must be used:

BANK0 ; Assembler (RA17K) macroinstruction

ADD R065, #3

94

CHAPTER 7 GENERAL REGISTER (GR)

7.4 Address Generation and Operation for General Register and Data Memory by Each Instruction

Table 7-1 lists the instructions that execute arithmetic operation or data transfer between a general register and

a data memory area.

To specify an address with these instructions, taking instruction ADD r, m for example, general register R is

specified by the register pointer contents and the operand r value for the instruction, as shown in Figure 7-3.

Data memory address “M” is specified by the bank register contents and operand m for the instruction.

Therefore, this instruction adds the general register “(R)” contents to the data memory contents “(M)”, and stores

the result in general register R.

This general register address generation is executed by the other instructions listed in Table 7-1. Examples 1

through 3 show instructions operation examples.

Table 7-1. Instructions Manipulating General Register and Data Memory

Group Instruction Operation

Addition ADD r, m (R) ← (R) + (M)

ADDC r, m (R) ← (R) + (M) + (CY)

Subtraction SUB r, m (R) ← (R) – (M)

SUBC r, m (R) ← (R) – (M) – (CY)

Logical AND r, m (R) ← (R) AND (M)

operation OR r, m (R) ← (R) OR (M)

XOR r, m (R) ← (R) XOR (M)

Transfer LD r, m (R) ← (M)

ST m, r (M) ← (R)

MOV @r, m [MP, (R)] ← (M) or,

[m, (R)] ← (M)

MOV m, @r M ← [MP, (R)] or,

M ← [H, (R)]

Shift RORC r Right shift with (CY)

Figure 7-3. Address Specification for General Register and Data Memory

Instruction

ADD r, m

Address Contents

Row address

b2 b1 b0

Column address

b3 b2 b1 b0

BankSymbol

R

M

b3 b2 b1 b0

Generated Address

Address of general register

specified by r

Address of data memory

specified by m
m(BANK)

r(RP)

95

CHAPTER 7 GENERAL REGISTER (GR)

Examples 1. Operation between data memory and general register

(1) When the bank for the data memory is equal to that for the general register

Assuming that a general register is at row address 0H in BANK0

R004 MEM 0.04H ; Symbol definition

M056 MEM 0.56H ;

ADD R004, M056 ; Addition of contents of data memory and general register

When the above instructions are executed, the general register R004 contents (address 04H

of BANK0) are added to those for data memory M056 (address 56H), and the result is stored

in general register R004 (04H), as shown in Figure 7-4.

Figure 7-4. Example Showing Operation between Data Memory and General Register (1)

0 1 2 3 4 5 6 7 8 9 A B C D E F

Column address

0

1

2

3

4

5

6

7

BANK0

=

000000B

ADD R004, M056

R

M

General register

System register RP

R
ow

 a
dd

re
ss

96

CHAPTER 7 GENERAL REGISTER (GR)

(2) When the data memory bank is different from that for the general register

Assuming the general register is at row address 0H in BANK0

R004 MEM 0.04H ; Symbol definition

M156 MEM 1.56H ;

BANK1 ; Assembler (RA17K) macroinstruction

ADD R004, M156 ; Addition of contents of data memory and general register

When the above instructions are executed, the general register R004 contents (at address

04H in BANK0) are added to those for the data memory M156 (address 56H in BANK1), and

the result is stored in general register R004 (04H), as shown in Figure 7-5.

Although the selected bank is BANK1, the data memories in BANK1 and BANK0 are added

with a single instruction, because the general register is in BANK0.

Figure 7-5. Example Showing Operation between Data Memory and General Register (2)

Column address

R
ow

 a
dd

re
ss

System register

0

1

2

3

4

5

6

7
System register

Same system
register exists

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7
RP

BANK0

RP

ADD R004, M156

R General register

BANK1

M

97

CHAPTER 7 GENERAL REGISTER (GR)

Examples 2. Transfer to general register

Assuming that a general register is at row address 0H in BANK0

R001 MEM 0.01H ; Symbol definition

R002 MEM 0.02H ;

R003 MEM 0.03H ;

R004 MEM 0.04H ;

M045 MEM 0.45H ;

M046 MEM 0.46H ;

M047 MEM 0.47H ;

M048 MEM 0.48H ;

LD R001, M045

LD R002, M046

LD R003, M047

LD R004, M048

This program transfers the contents for data memory areas M045, M046, M047, and M048

(addresses 45H, 46H, 47H, and 48H) to general registers R001, R002, R003, and R004

(addresses 01H, 02H, 03H, and 04H), respectively.

Figure 7-6. Example Showing Data Transfer to General Register

0 1 2 3 4 5 6 7 8 9 A B C D E F

Column address

R
ow

 a
dd

re
ss

0

1

2

3

4

5

6

7
System register RP

BANK0

General register RP = 0000000B

98

CHAPTER 7 GENERAL REGISTER (GR)

Examples 3. Indirect transfer to general register

Assuming that the row address for a general register is 0H in BANK0

R004 MEM 0.04H ;

M052 MEM 0.52H ;

MOV R004, #8 ; (R004) ← 8

MOV @R004, M052 ; General register indirect transfer

When the above instructions are executed, the data memory area M052 contents (address 52H)

are transferred to another data memory area (in this example, address 58H), as shown in Figure

7-7.

The “MOV @r, m” instruction is called a general register indirect transfer instruction. It transfers

the contents in a data memory area, addressed by m, to another data memory area, specified by

@r (called an indirect address).

At this time, the data memory address (indirect address) for indirect transfer specified by @r is

as follows:

Row address : The same row address as data memory specified by m

Column address : Contents of the general register specified by r

In Example 3 above, the row address is 5H (row address of address 52H), and the column address

is 8H (contents of address 08 is 8), therefore, data memory address is address 58H.

For details on the general register indirect transfer, refer to 6.6 Index Register (IX) and Data

Memory Row Address Pointer (MP: Memory Pointer) .

Figure 7-7. General Register Indirect Transfer Example





0 1 2 3 4 5 6 7 8 9 A B C D E F

Column address

R
ow

 a
dd

re
ss

0

1

2

3

4

5

6

7
System register RP

Indirect
transfer

MOV @R004, M052

8 General register

Specifies column address
with contents of R004 (8)

Same row address as M052

99

CHAPTER 7 GENERAL REGISTER (GR)

Examples 4. To change a row address in general register

Assuming that general register is at row address 0H in BANK0

R001 MEM 0.01H ; Symbol definition

R002 MEM 0.02H ;

R003 MEM 0.03H ;

R004 MEM 0.04H ;

R005 MEM 0.05H ;

R006 MEM 0.06H ;

R007 MEM 0.07H ;

R008 MEM 0.08H ;

M045 MEM 0.45H ;

M046 MEM 0.46H ;

M047 MEM 0.47H ;

M048 MEM 0.48H ;

M049 MEM 0.49H ;

M04A MEM 0.4AH ;

M04B MEM 0.4BH ;

M04C MEM 0.4CH ;

LD R001, M045

LD R002, M046

LD R003, M047

LD R004, M048

; <1>

MOV RPH, #0000B ; Transfers 0000110B to general register pointer, i.e., sets row

MOV RPL, #0110B ; address 6H in BANK0

LD R005, M049

LD R006, M04A

LD R007, M04B

LD R008, M04C

The above program is to transfer the contents in 8-nibble data memory M045-M04C on BANK0

to a different row address in BANK0, 4 nibbles at a time. At this time, if the general register is fixed,

for example, when it exists only at row address 0 in BANK0, an instruction is necessary to enable

the above program <1> to transfer all 8 nibbles to the general register and then store the nibbles

in the data memory again, as shown in the following program.

However, as shown in the above program, the operation can be performed with only the LD

instruction, if the row address for the general register is changed by the general register pointer.

100

CHAPTER 7 GENERAL REGISTER (GR)

M065 MEM 0.65H ; Symbol definition

M066 MEM 0.66H ;

M067 MEM 0.67H ;

M068 MEM 0.68H ;

LD R005, M049

LD R006, M04A

LD R007, M04B

LD R008, M04C

BANK1 ; Assembler (RA17K) macroinstruction

; BANK ← 1

ST M065, R005

ST M066, R006

ST M067, R007

ST M068, R008

Figure 7-8. Example Showing Changing Row Address in General Register

0 1 2 3 4 5 6 7 8 9 A B C D E F

Column register

0

1

2

3

4

5

6

7

BANK0

RP = 0000000B

R
ow

 a
dd

re
ss

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

The ALU performs arithmetic operations, logical operations, bit testings, compare, and rotations of 4-bit data.

8.1 ALU Block Configuration

Figure 8-1 shows the configuration of the ALU block.

As shown, the ALU block consists of an ALU, which processes 4-bit data, temporary registers A and B, which are

peripheral circuits of the ALU, status flip-flops controlling the status of the ALU, and a decimal correction circuit that

is used when a BCD operation is performed.

The status flip-flops include a zero flag FF, carry flag FF, compare flag FF, and BCD flag FF, as shown in Figure

8-1.

The status flip-flops correspond to the zero (Z), carry (CY), compare (CMP), and BCD (BCD) flags of the program

status word (PSWORD: addresses 7EH and 7FH) of the system registers on a one-to-one basis.

8.2 ALU Block Function

The ALU performs arithmetic operation, logical operation, bit testing, compare, or rotation processing, depending

on the instructions written to the program. Table 8-1 lists the operation, testing, and rotation instructions.

By executing each of the instructions listed in this table, operation in 4-bit units, testing, rotation processing, or 1-

digit decimal operation can be executed with a single instruction.

8.2.1 ALU function

Arithmetic operations include addition and subtraction. An arithmetic operation can be executed between the

contents of a general register and those of the data memory, or between the contents of the data memory and

immediate data. In addition, an arithmetic operation can be executed in binary number in 4-bit units, or in decimal

number in 1-digit units (BCD operation).

Logical operations include logical product (AND), logical sum (OR), and exclusive logical sum (XOR). A logical

operation can be executed between the contents of a general register and those of the data memory, or between the

contents of the data memory and immediate data.

Bit testing is to test whether one of the bits of the 4-bit data in the data memory is “0” or “1”.

Comparison is to compare the contents of the data memory with immediate data to judge whether one data is “equal

to”, “not equal to”, “greater than”, or “less than” the other.

Rotation processing is to shift the 4-bit data of a general register 1 bit toward the least significant bit direction

(rotation to the right).

101

102

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

Figure 8-1. Configuration of ALU Block

Temporary
register A

ALU
· Arithmetic operation
· Logical operation
· Bit testing
· Compare
· Rotation processing

Temporary
register B

Status
flip-flops

Decimal correction
circuit

Data bus

Address 7EH 7FH

Name

Bit

Flag

b0

BCD

b3

CMP

b2

CY

b1

Z

b0

IXE

Program status word
(PSWORD)

Status Flip-flop

BCD
fIag
FF

CMP
fIag
FF

CY
fIag
FF

Z
fIag
FF

Indicates result of arithmetic operation is 0

Stores carry or borrow resulting from
arithmetic operation

Specifies whether result of arithmetic
operation is stored

Specifies whether decimal correction is
performed for arithmetic operation

Functional Outline

103

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

[MEMO]

104

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

Table 8-1. ALU Processing Instructions (1/2)

ALU Function Instruction Operation

ADD r, m (r) ← (r) + (m)

ADD m, #n4 (m) ← (m) + n4

ADDC r, m (r) ← (r) + (m) + CY

ADDC m, #n4 (m) ← (m) + n4 + CY

SUB r, m (r) ← (r) – (m)

SUB m, #n4 (m) ← (m) – n4

SUBC r, m (r) ← (r) – (m) – CY

SUBC m, #n4 (m) ← (m) – n4 – CY

OR r, m (r) ← (r) ∨ (m)

OR m, #n4 (m) ← (m) ∨ n4

AND r, m (r) ← (r) ∧ (m)

AND m, #n4 (m) ← (m) ∧ n4

XOR r, m (r) ← (r) ∨ (m)

XOR m, #n4 (m) ← (m) ∨ n4

True SKT m, #n
CMP ← 0, if (m) ∧ n = n,

then skip

False SKF m, #n
CMP ← 0, if (m) ∧ n = 0,

then skip

Equal to SKE m, #n4 (m) – n4, skip if zero

SKNE m, #n4 (m) – n4, skip if not zero

SKGE m, #n4 (m) – n4, skip if not borrow

SKLT m, #n4 (m) – n4, skip if borrow

RORC r
→ CY → (r) b3 → (r) b1 → (r) b2 → (r) b0

Remarks

Adds general register and data memory contents, and

stores result to general register

Adds data memory and immediate data contents, and

stores result to data memory

Adds general register and data memory contents with

CY flag, and stores result to general register

Adds data memory and immediate data contents with

CY flag, and stores result to data memory

Subtracts data memory contents from general register

contents, and stores result to general register

Subtracts immediate data from data memory contents,

and stores result to data memory

Subtracts data memory contents from general register

contents with CY flag, and stores result to general register

Subtracts immediate data and CY flag from data memory

contents, and stores result to data memory

ORs general register and data memory contents, and

stores result to general register

ORs data memory contents and immediate data, and

stores result to data memory

ANDs general register and data memory contents, and

stores result to general register

ANDs data memory contents and immediate data, and

stores result to data memory

XORs general register and data memory contents, and

stores result to general register

XORs data memory contents and immediate data, and

stores result to data memory

Skips if all bits of data memory contents specified by

n are True (1). Result is not stored

Skips if all bits of data memory contents specified by

n are False (0). Result is not stored

Skips if data memory contents are equal to immediate

data. Result is not stored

Skips if data memory contents are not equal to imme-

diate data. Result is not stored

Skips if data memory contents are greater than imme-

diate data. Result is not stored

Skips if data memory contents are less than immediate

data. Result is not stored

Rotates general register contents to right with CY flag,

and stores result to general register

Not
equal
to

Greater
than

Less
than

Right
rotation

Rotation

Compare

Bit
testing

Addi-
tion

Sub-
traction

Arith-
metic

OR

AND

XOR

Logical

105

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

Value of Value of Operation CY Flag Z Flag Modification

BCD Flag CMP Flag when IXE = 1

0 0 Binary operation. Set if operation result is Executed

Result is stored. 0000B; otherwise, reset

0 1 Binary operation. Retains status if operation

Result is not stored. result is 0000B; otherwise, reset

1 0 BCD operation. Set if operation result is

Result is stored. 0000B; otherwise, reset

1 1 BCD operation. Retains status if operation

Result is not stored. result is 0000B; otherwise, reset

Don’t care Don’t care Not affected Don’t care Don’t care Executed

(retained) (retained) (retained) (retained)

Don’t care Reset Not affected Don’t care Don’t care Executed

(retained) (retained) (retained)

Don’t care Don’t care Not affected Don’t care Don’t care Executed

(retained) (retained) (retained) (retained)

Don’t care Don’t care Not affected Don’t care Executed

(retained) (retained) (retained)

Table 8-1. ALU Processing Instructions (2/2)

ALU Function Difference in Operation Because of Program Status Word (PSWORD)

Comparison

Bit testing

Logical

operation

Rotation

Arithmetic

operation

Set when

carry or

borrow

occurs;

otherwise,

reset

Value of b0

of general
register

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–

–
–

–
–

–
–

–

–
–

–
–

–
–

–

–
–

–
–

–
–

–

–
–

–
–

–
–

–

–
–

–
–

–
–

–

–
–

–
–

–
–

–

106

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

8.2.2 Functions of temporary registers A and B

The temporary registers A and B are necessary for processing 4-bit data at one time, and temporarily store data

to be processed and data processing.

8.2.3 Status flip-flop functions

The status flip-flops control the operations of the ALU and store the status of the processed data. Since these flip-

flops correspond to the flags of the program status word (PSWORD) on a one-to-one basis, they can be manipulated

by manipulating the system register. Each flag of the program status word has the following functions:

(1) Z flag

This flag is set to 1 if the result of an arithmetic operation is 0000B; otherwise, it is reset to 0.

However, the condition under which this flag is set to 1 differs depending on the status of the CMP flag, as

follows:

(i) When CMP flag = 0

The Z flag is set to 1 if the result of an operation is 0000B; otherwise, it is reset to 0.

(ii) When CMP flag = 1

The Z flag retains the previous status if the result of an operation is 0000B; otherwise, it is reset to 0.

The flag is not affected by an operation other than arithmetic operations.

(2) CY flag

This flag is set to 1 if a carry or borrow occurs as a result of an arithmetic operation; otherwise, it is reset to

0.

If an arithmetic operation executed involves a carry or borrow, the content of the CY flag is reflected on the

least significant bit of the execution result.

When rotation processing (RORC instruction) is executed, the content of the CY flag at that time is loaded to

the most significant bit (b3) position of a general register, and the content of the least significant bit of the general

register is loaded to the CY flag.

The CY flag is not affected by any operation other than arithmetic operation and rotation processing.

(3) CMP flag

The result of an arithmetic operation executed when the CMP flag is set to 1 is not stored in a general register

or data memory.

If a bit test instruction is executed, the CMP flag is reset to 0.

This flag does not affect the compare and logical operations, and rotation processing.

(4) BCD flag

When the BCD flag is set to 1, the results of all the arithmetic operations executed are corrected to decimal.

When this flag is reset to 0, operation is performed in binary 4-bit.

The BCD flag does not affect the logical operation, bit test, compare, and rotation processing.

The values of these flags can be changed by directly manipulating the program status word. At this time, the value

of the corresponding status flip-flop is changed accordingly.

107

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

8.2.4 Binary 4-bit operation

An arithmetic operation is executed in binary and in 4-bit units when the BCD flag is 0.

8.2.5 BCD operation

When the BCD flag is 1, the arithmetic operation is performed in decimal format. The differences between the binary

4-bit operation and BCD operation are shown in Table 8-2. If the result of a decimal correction operation is more than

20, of if the result of a decimal subtraction is other than –10 to +9, data for more than 1010B (0AH) is stored in the

data memory (shaded part in Table 8-2).

108

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

Table 8-2. Results for Binary 4-bit and BCD Operations

Result
Binary 4-bit Addition BCD Addition

CY Result CY Result

0 0 0000 0 0000

1 0 0001 0 0001

2 0 0010 0 0010

3 0 0011 0 0011

4 0 0100 0 0100

5 0 0101 0 0101

6 0 0110 0 0110

7 0 0111 0 0111

8 0 1000 0 1000

9 0 1001 0 1001

10 0 1010 1 0000

11 0 1011 1 0001

12 0 1100 1 0010

13 0 1101 1 0011

14 0 1110 1 0100

15 0 1111 1 0101

16 1 0000 1 0110

17 1 0001 1 0111

18 1 0010 1 1000

19 1 0011 1 1001

20 1 0100 1 1110

21 1 0101 1 1111

22 1 0110 1 1100

23 1 0111 1 1101

24 1 1000 1 1110

25 1 1001 1 1111

26 1 1010 1 1100

27 1 1011 1 1101

28 1 1100 1 1010

29 1 1101 1 1011

30 1 1110 1 1100

31 1 1111 1 1101

Result
Binary 4-bit Addition BCD Addition

CY Result CY Result

0 0 0000 0 0000

1 0 0001 0 0001

2 0 0010 0 0010

3 0 0011 0 0011

4 0 0100 0 0100

5 0 0101 0 0101

6 0 0110 0 0110

7 0 0111 0 0111

8 0 1000 0 1000

9 0 1001 0 1001

10 0 1010 1 1100

11 0 1011 1 1101

12 0 1100 1 1110

13 0 1101 1 1111

14 0 1110 1 1100

15 0 1111 1 1101

–16 1 0000 1 1110

–15 1 0001 1 1111

–14 1 0010 1 1100

–13 1 0011 1 1101

–12 1 0100 1 1110

–11 1 0101 1 1111

–10 1 0110 1 0000

–9 1 0111 1 0001

–8 1 1000 1 0010

–7 1 1001 1 0011

–6 1 1010 1 0100

–5 1 1011 1 0101

–4 1 1100 1 0110

–3 1 1101 1 0111

–2 1 1110 1 1000

–1 1 1111 1 1001

109

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

8.2.6 ALU block processing sequence

When an arithmetic operation, logical operation, bit testing, compare, or rotation processing instruction is executed

on the program, the data to be operated, tested, or processed and processing data are temporarily stored in temporary

registers A and B.

The data to be processed is the contents of a general register or data memory addressed by the first operand of

the instruction, and is 4-bit data. The processing data is the contents of the data memory addressed by the second

or immediate data directly specified by the second operand, and is 4-bit data.

Take the following instruction for example:

ADD r, m

Second operand

First operand

The data to be processed is the contents of a general register addressed by r, and the processing data is the

contents of the data memory addressed by m.

ADD m, #n4

The data to be processed by this instruction is the contents of the data memory addressed by m, and the processing

data is immediate data specified by #n4.

RORC r

With the following rotation processing instruction, only the data to be processed is necessary because the

processing method is determined, and the data to be processed is the contents of a general register addressed by

r:

The data stored in temporary registers A and B are operated arithmetically or logically, tested, compared, or rotated

according to the instruction executed. If an arithmetic operation, logical operation, or rotation processing instruction

has been executed, the data processed by the ALU is stored in a general register or the data memory addressed by

the first operand of the instruction, and the operation is finished. If a bit testing or compare instruction is executed,

the next instruction on the program is skipped (i.e., executed as an NOP instruction) depending on the result of the

processing performed by the ALU, and the operation is finished.

Bear in mind the following points when using the ALU block:

(1) Arithmetic operations are affected by the CMP and BCD flags of the program status word.

(2) Logical operations are not affected by the CMP and BCD flags of the program status word, and do not affect

the Z and CY flags.

(3) The bit test instruction resets the CMP flag of the program status word.

(4) Arithmetic and logical operations, bit test, compare, and rotation processing are modified by the index register

if the IXE flag of the program status word is set to 1.

110

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

8.3 Arithmetic Operation (Binary 4-bit addition/subtraction and BCD addition/subtraction)

As shown in Table 8-3, the arithmetic operations are broadly classified into four types: addition, subtraction, addition

with carry, and subtraction with borrow. These operations are performed by “ADD”, “ADDC”, “SUB”, and “SUBC”

instructions, respectively.

These instructions are also classified into addition or subtraction between a general register and data memory,

and that between the data memory and immediate data. Whether the operation is executed between a general register

and data memory, or between the data memory and immediate data is determined by the value written as the operand

of the instruction. If the operand is “r, m”, addition or subtraction is executed between a general register and the data

memory; if the operand is “m, #n4”, the operation is between the data memory and immediate data.

The arithmetic operation instruction is affected by the status flip-flops, that is, the program status word (PSWORD)

of the system registers. The BCD flag of the program status word specifies whether the operation is executed in binary

and 4-bit units or in BCD, and the CMP flag specifies that the result of the operation is not stored anywhere.

8.3.1 through 8.3.4 describe the relations between each arithmetic operation instruction and the program status

word.

Table 8-3. Arithmetic Operation Instructions

Without carry General register and data memory ADD r, m

Add
ADD Data memory and immediate data ADD m, #n4

Add w/carry General register and data memory ADDC r, m

Arithmetic operation
ADDC Data memory and immediate data ADDC m, #n4

Without borrow General register and data memory SUB r, m

Subtract
SUB Data memory and immediate data SUB m, #n4

Subtract w/borrow General register and data memory SUBC r, m

SUBC Data memory and immediate data SUBC m, #n4

111

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

8.3.1 Addition/subtraction when CMP = 0, BCD = 0

Addition or subtraction is executed in binary and 4-bit units, and the result is stored in a specified general register

or data memory address.

The CY flag is set to 1 if the result of the operation exceeds 1111B (if a carry occurs) or is less than 0000B (a borrow

occurs); otherwise, it is reset to 0.

If the result of the operation is 0000B, the Z flag is set to 1, regardless of whether a carry or borrow occurs; if the

result is other than 0000B, the Z flag is reset to 0.

Examples 1.

MOV R1, #1111B ; Transfers 1111B to general register R1

MOV M1, #0001B ; Transfers 0001B to data memory M1

ADD R1, M1 ; Adds R1 to M1

At this time, R1 + M1 is calculated as follows:

1111B Contents of R1

+ 0001B Contents of M1

1 0000B

Carry

Therefore, the addition result, 0000B, is written to R1, and the CY flag is set to 1. The M1 contents

do not change.

In addition, the Z flag is set to 1, because the result is 0000B.

If the carry is not output, when the R1 and M1 contents are added, the CY flag is reset to 0.

2.

MOV M1, #1010B ; Transfers 1010B to data memory M1

ADD M1, #0101B ; Adds immediate data 0101B to M1

At this time, M + 0101B is calculated as follows:

1010B M1 contents

+ 0101B Immediate data

0 1111B

Carry

Therefore, 1111B is written to M1, and the CY and Z flags are reset.

112

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

3.

MOV R1, #1000B ; Writes 1000B to general register R1

MOV M1, #1111B ; Writes 1111B to data memory M1

; <1>

ADD M1, #0001B ; Adds immediate data 0001B to M1

; <2>

ADDC R1, M1 ; Adds R1 to M1 with carry

In <1> above, the calculation is executed as follows:

1111B M1 contents

+ 0001B Immediate data

1 0000B

Carry

Therefore, 0000B is written to R1 and the CY and Z flags are set to 1. In <2> above, the calculation

is executed as follows:

1000B R1 contents

0000B M1 contents

+ 1 CY flag contents

0 1001B

Carry

When the ADDC instruction is executed, therefore, the addition is executed, including the CY flag

content at that time, and the CY flag is rewritten by the resultant carry output.

4.

MOV R1, #0000B ; Writes 0000B to general register R1

MOV M1, #1000B ; Writes 1000B to data memory M1

SUB R1, M1 ; Subtracts M1 from R1

At this time, R1 – M1 is calculated as follows:

0000B R1 contents

– 1000B M1 contents

1 1000B

Borrow

Therefore, the result, 1000B, is written to R1. At this time, the CY flag is set to 1, because a borrow

has occurred.

The carry, that occurs as a result of executing an addition instruction, and the borrow, that occurs

as a result of executing a subtraction instruction, are governed by the same CY flag.

113

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

5.

MOV R1, #0000B ;

MOV M1, #0000B ;

; <1>

SUB M1, #0001B ;

; <2>

SUBC R1, M1 ;

At this time, <1> and <2> are calculated as follows:

<1>

0000B M1 contents

– 0001B Immediate data

1 1111B

Borrow

<2>

0000B R1 contents

1111B M1 contents

– 1 CY flag contents

1 0000B

Borrow

Therefore, the results are R1 = 0000B, M1 = 1111B, CY flag = 1, and Z flag = 1.

8.3.2 Addition/subtraction when CMP = 1, BCD = 0

Addition or subtraction is executed in binary and 4-bit units.

However, the result of the operation is not stored in a general register or data memory address because the CMP

flag is set to 1.

If a carry or borrow occurs as a result of the operation, the CY flag is set to 1; otherwise, the flag is reset to 0.

The Z flag retains the previous status if the result of the operation is 0000B; otherwise, it is reset to 0.

Examples 1.

MOV PSW, #1000B ; Sets CMP flag (writes to program status word)

MOV R1, #1111B ;

MOV M1, #1111B ;

; <1>

ADD R1, M1 ;

; <2>

SUB R1, M1 ;

MOV PSW, #1010B ; Sets CMP and Z flags

; <3>

SUB R1, M1 ;

114

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

At this time, <1> is calculated as follows:

1111B R1 contents

+ 1111B M1 contents

1 1110B

Carry

The operation result is not stored in R1, because the CMP flag is set to 1.

The CY flag is set to 1, because a carry occurs.

The Z flag is reset, because the result is not 0000B.

In <2>, the CY flag is reset to 0, because the R1 and M1 contents are the same as <1>. The Z

flag retains the current status, 0, though the result is 0000B.

In <3>, the calculation is executed in the same manner as in <2>, but the Z flag retains 1, because

it has been set to 1 in advance.

If the CMP flag is set to 1, the operation result is not stored, and only the statuses for CY and Z

flags change. This is convenient for comparing data, which is 5 bits or longer.

2.

MOV PSW, #1010B ; Sets CMP and Z flags to 1

; <1>

SUB M1, #0001B (1H) ;

; <2>

SUBC M2, #0010B (2H) ;

; <3>

SUBC M3, #0011B (3H) ;

At this time, the operation result is not stored because the CMP flag is set to 1. Therefore, the

M1, M2, and M3 contents remain unchanged, even if <1>, <2>, and <3> have been executed.

In addition, because the Z flag is set to 1 at first, the Z flag remains set to 1, if all the <1>, <2>,

and <3> results are 0000B. The Z flag is reset to 0, if even one of the results is not 0000B.

The CY flag is set if the 12-bit contents for M3, M2, and M1 are less than 001100100001B (321H).

Consequently, by testing the Z and CY flags after <1>, <2> and <3> have been executed, the 12-

bit data for M3, M2, and M1 can be compared with the 12-bit data for 321H, as follows:

If Z = 1, CY = 0; M3, M2, M1 = 321H

↑
Always 0

If Z = 0, CY = 0; M3, M2, M1 > 321H

If Z = 0, CY = 1; M3, M2, M1 < 321H

It is also possible to compare the general register contents with those for data memory area, by

using the SUB r, m and SUBC r, m instructions in Example 2.

115

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

8.3.3 Addition/subtraction when CMP = 0, BCD = 1

A BCD operation is executed.

The result of the operation is stored in a specified general register or data memory address. The CY flag is set

to 1 if the result exceeds 1001B (9D) or is less than 0000B (0D), and is reset to 0 if the result is in the range of 0000B

(0D) to 1001B (9D).

The Z flag is set to 1 if the result is 0000B (0D); otherwise, it is reset to 0.

The BCD operation is executed by converting the result of an operation executed in binary into decimal number

by using the decimal correction circuit. For details on this binary-to-decimal conversion, refer to Table 8-2 Results

for Binary 4-bit and BCD Operations .

To execute a BCD operation correctly, therefore, keep in mind the following points:

(1) The result of addition must be 0D to 19D.

(2) The result of subtraction must be 0D to 9D or –10 to –1D.

The value range of 0D to 19D is determined by giving consideration to the CY flag, and is in binary:

0,0000B to 1,0011B

CY CY

Likewise, the range of –10D to –1D is:

1,0110B to 1,1111B

CY CY

If a BCD operation is executed without the above conditions (1) and (2) satisfied, the CY flag is set to 1, and data

greater than 1010B (0AH) is output as a result.

Examples 1.

MOV M1, #0111B (7) ;

MOV RPL, #0001B ; Sets BCD flag (BCD flag is assigned to b0 in RPL for

; system register)

MOV PSW, #0000B ; Resets CMP, CY, and Z flags

; <1>

ADD M1, #1001B (9) ; 7 + 9

; <2>

SUB M1, #0111B (7) ; 6 – 7

116

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

At this time, <1> is calculated as follows:

0111B M1 contents

+ 1001B Immediate data

1 0000B Binary addition result

Carry

 ↓ Converted by binary-to-decimal adjustment in Table 7-2

1 0110B Data stored in M1

Carry

Therefore, the CY flag is set and 0110B (6) is stored in M1. Assuming that the CY flag significance

is 10, this means that a decimal operation of 7 + 9 = 16 has been executed.

In <2>, the calculation is executed as follows:

0110B M1 contents

– 0111B Immediate data

1 1111B Binary subtraction result

Borrow

 ↓ Binary-to-decimal adjustment

1 1001B Data stored in M1

Since 6 is stored in M1 in <1>, 6-7 has been performed with the result of 9. Therefore, the CY

flag is set.

2.

MOV M1, #0101B (5) ;

MOV M2, #0110B (6) ;

MOV M3, #0111B (7) ;

MOV RPL, #0001B ; Sets BCD flag to 1

MOV PSW, #0000B ; Resets CMP, CY, and Z flags to 0

; <1>

SUB M1, #0111B (7) ;

; <2>

SUBC M2, #0110B (6) ;

; <3>

SUBC M3, #0101B (5) ;

117

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

At this time, the calculation is carried out as follows in <1>, <2>, and <3>.

<1>

0101B M1 contents

– 0111B Immediate data

1 1110B

Borrow

 ↓ Binary-to-decimal adjustment

1 1000B (8) Data stored in M1

Borrow

<2>

0110B M2 contents

– 0110B Immediate data

1 1111B CY flag

Borrow

 ↓ Binary-to-decimal adjustment

1 1001B (9) Data stored in M2

Borrow

<3>

0111B M3 contents

– 0101B Immediate data

0 0001B CY flag

Borrow

 ↓ Binary-to-decimal adjustment

0 0001B (1) Data stored in M3

Therefore, immediate data 567 is subtracted from 765 stored in M3, M2, and M1, and the result

is 198.

3.

MOV M1, #1001B ;

MOV RPL, #0001B ; Sets BCD flag to 1

MOV PSW, #0000B ; Resets CMP, CY, and Z flags to 0

; <1>

ADD M1, #1010B ;

; <2>

ADDC M1, #1010B ;

118

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

At this time, <1> is calculated as follows:

1001B (9) M1 contents

+ 1010B (10) Immediate data

1 0011B CY flag

Carry

 ↓ Binary-to-decimal adjustment

1 1001B Result

Carry

Therefore, 9 + 10 = 9 is executed. If the CY flag is taken into consideration, a decimal operation

of 9 + 10 = 19 has been performed.

However, in <2>, the calculation is carried out as follows:

1001B (9) M1 contents

+ 1010B (10) Immediate data

1 0100B CY flag

Carry

 ↓ Binary-to-decimal adjustment

1 1110B Result

Carry

The operation result exceeds 19, because the CY flag is set to 1, and accurate decimal operation

cannot be performed.

119

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

8.3.4 Addition/subtraction when CMP = 1, BCD = 1

A BCD operation is performed.

The result of the operation is not stored in a general register or data memory address.

Therefore, the operation to be performed when the CMP flag is 1 and that performed when the BCD flag is 1 are

performed at the same time.

Examples 1.

MOV RPL, #0001B ; Sets BCD flag to (1)

MOV PSW, #1010B ; Sets CMP and Z flags to 1 and resets CY flag to (0)

SUB M1, #0001B ; <1>

SUBC M2, #0010B ; <2>

SUBC M3, #0011B ; <3>

At this time, the contents of the 12 bits of M3, M2, and M1 can be compared with immediate data

321 in decimal number.

2.

MOV RPL, #0001B ; Sets BCD flag to 1

MOV PSW, #1010B ; Sets CMP and Z flags to 1, and resets CY flag to 0

; <1>

SUB M1, #0001B ;

; <2>

SUBC M2, #0010B ;

; <3>

SUBC M3, #0011B ;

At this time, 12-bit contents in M3, M2, and M1 can be compared with immediate data 321 in

decimal number by <1>, <2>, and <3>.

8.3.5 Notes on using arithmetic operation instruction

When an arithmetic operation is executed to the program status word (PSWORD), note that the result of the

operation is stored in the program status word.

The CY and Z flags of the program status word are usually set or reset as a result of an arithmetic operation. If

an arithmetic operation is executed to the program status word, however, the result is stored to the program status

word, making it impossible to test occurrence of a carry or borrow, or whether the result is zero.

When the CMP flag is set to 1, however, the result is not stored in the program status word, and the CY and Z flags

are set or reset as usual.

120

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

Examples 1.

MOV PSW, #0110B

MOV PSW, #1010B

At this time, the calculation is carried out as follows:

0110B PSW contents

+ 1010B Immediate data

1 0000B

Carry

Although the CY and Z flags must be set, the result 0000B is stored in the PSW, because the CMP

flag is 0.

2.

MOV PSW, #1010B

ADD PSW, #1000B

At this time, the calculation is carried out as follows:

1010B PSW contents

+ 1000B Immediate data

1 0010B

Carry

Because the CMP flag is set to 1, the result 0010B is not stored in the PSW. Consequently, the

CY flag is set to 1 and the Z flag is reset to 0, and 1100B is stored in the PSW.

8.4 Logical Operation

As logical operations, logical sum (OR), logical product (AND), and exclusive logical OR (XOR) can be executed

as shown in Table 8-4.

The logical operations are classified into these three types and are implemented by the “OR”, “AND”, and “XOR”

instructions.

These instructions are also classified into an operation executed between a general register and data memory,

and that between the data memory and immediate data. Whether the operation is executed between a general register

and data memory, or between the data memory and immediate data is determined depending on the value written

as the operand of the instruction, i.e., whether “r, m” or “m, #n4” is described as the operand, like the arithmetic

operation instruction.

The logical operation is not affected by the BCD and CMP flags of the program status word (PSWORD). It does

not affect the CY and Z flags. However, the operation is subject to modification by the index register if the index enable

flag (IXE) is set to 1.

121

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

Table 8-4. Logical Operation Instructions

Logical sum General register and data memory OR r, m

OR Data memory and immediate data OR m, #n4

Logical operation
Logical product General register and data memory AND r, m

AND Data memory and immediate data AND m, #n4

Exclusive Logical product General register and data memory XOR r, m

XOR Data memory and immediate data XOR m, #n4

Table 8-5. Logical Operation Truth Table

Logical product Logical sum Exclusive logical sum

C = A AND B C = A OR B C = A XOR B

A B C A B C A B C

0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 1

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0

8.4.1 Logical sum (Logical OR)

The logical sum instruction ORs 4-bit data, according to the truth table shown in Table 8-5.

Example

MOV R1, #1010B ;

MOV M1, #1001B ;

; <1>

OR R1, M1 ;

; <2>

OR M1, #1100B ;

122

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

At this time, <1> is calculated as follows:

1010B R1 contents

OR 1001B M1 contents

1011B Result

Therefore, 1011B is stored in R1.

In <2>, the calculation is executed as follows:

1001B M1 contents

OR 1100B Immediate data

1101B

Therefore, 1101B is stored in M1.

The logical sum instruction is convenient for setting the contents of a data memory area to 1 in 1, 2, 3, or 4 bit units.

8.4.2 Logical product (Logical AND)

The logical product instruction ANDs 4-bit data, according to the truth table shown in Table 8-5.

Example

MOV R1, #1010B ;

MOV M1, #1001B ;

; <1>

AND R1, M1 ;

; <2>

AND M1, #1100B ;

At this time, <1> is calculated as follows:

1010B..... R1 contents

AND 1001B..... M1 contents

1000B.....

Therefore, 1000B is stored in R1.

In <2>, the calculation is executed as follows:

123

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

1001B..... M1 contents

AND 1100B..... Immediate data

1000B

Therefore, 1000B is stored in M1.

The logical product instruction is convenient for resetting the data memory area contents to 0 in 1, 2, 3, or 4 bit

units.

8.4.3 Logical exclusive sum (Logical exclusive OR)

The logical exclusive sum instruction exclusive-ORs 4-bit data, according to the truth table shown in Table 8-5.

Example

MOV R1, #1010B ;

MOV M1, #1001B ;

; <1>

XOR R1, M1 ;

; <2>

XOR M1, #1100B ;

At this time, <1> is calculated as follows:

1010B..... R1 contents

XOR 1001B..... M1 contents

0011B

Therefore, 0011B is stored in R1.

In <2>, the calculation is executed as follows:

1001B..... M1 contents

XOR 1100B..... Immediate data

0101B

Therefore, 0101B is stored in M1.

The exclusive logical sum instruction is convenient for inverting data memory area contents in 1, 2, 3, or 4 units

124

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

8.5 Bit Testing

As shown in Table 8-6, bit testing can be classified into True bit (1) testing and False bit (0) testing.

These testings are made respectively by the “SKT” and “SKF” instructions.

These instructions can be executed to only the data memory.

Bit testing is not affected by the BCD flag of the program status word (PSWORD). It does not affect the CY and

Z flags. However, the CMP flag is reset to 0 when the “SKT” or “SKF” instruction is executed. Modification is made

by the index register if the instruction is executed while the index enable flag (IXE) is set to 1. For details on modification

by the index register, refer to CHAPTER 6 SYSTEM REGISTER (SYSREG).

8.5.1 and 8.5.2 describe True bit (1) testing and False bit (0) testing, respectively.

Table 8-6. Bit Test Instructions

True bit (1) testing

Bit testing
SKT m, #n

False bit (0) testing

SKF m, #n

125

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

8.5.1 True bit (1) testing

The True bit (1) test instruction, “SKT m, #n”, tests whether bit(s) specified by n of the 4 bits of a data memory

address is “True (1)”. If all the bits specified by n is “True (1)”, the next instruction is skipped.

Example MOV M1, #1011B

SKT M1, #1011B ; <1>

BR A

BR B

SKT M1, #1101B ; <2>

BR C

BR D

In <1>, execution branches to B because all the bits 3, 1, and 0 of M1 are True (1).

In <2>, the bits 3, 2, and 0 of M1 are tested, and execution branches to C because bit 2 is False (0).

8.5.2 False bit (0) testing

The False bit (0) test instruction, “SKF m, #n”, tests whether bit(s) specified by n of the 4 bits of a data memory

address is “False (0)”. If all the bits specified by n is “False (0)”, the next instruction is skipped.

Example MOV M1, #1001B

SKF M1, #0110B ; <1>

BR A ;

BR B ;

SKF M1, #1110B ; <2>

BR C ;

BR D ;

In <1>, execution branches to B because both the bits 2 and 1 of M1 are False (0).

In <2>, the bits 3, 2, and 0 of M1 are tested, and execution branches to C because bit 3 of M1 is True

(1).

126

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

8.6 Compare

As shown in Table 8-7, the compare operations are divided into four types: “equal to”, “not equal to”, “greater than”,

and “less than”.

To make these comparisons, the “SKE”, “SKNE”, “SKGE”, and “SKLT” instructions are used.

These instructions can be used only to compare the contents of a data memory address with immediate data. To

compare the contents of a general register and those of a data memory address, use a subtraction instruction with

the CMP and Z flags of the program status word (PSWORD) (refer to 8.3 Arithmetic Operation (Binary 4-bit

addition/subtraction and BCD addition/subtraction)).

Comparison is not affected by the BCD and CMP flags of the program status word. It does not affect the CY and

Z flags.

When the index enable flag (IXE flag) is set to 1, modification is performed by the index register. For modification

by the index register, refer to CHAPTER 6 SYSTEM REGISTER (SYSREG).

8.6.1 through 8.6.4 describe comparison of “equal to”, “not equal to”, “greater than”, and “less than”, respectively.

Table 8-7. Compare Instructions

Equal to

SKE m, #n4

Not equal to

Compare
SKNE m, #n4

Greater than

SKGE m, #n4

Less than

SKLT m, #n4

127

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

8.6.1 Comparison of “Equal to”

The “SKE m, #n4” instruction tests whether the contents of a specified data memory address are “equal to” specified

immediate data.

If the data memory contents are “equal to” the immediate data, the instruction next to this instruction is skipped.

Example MOV M1, #1010B

SKE M1, #1010B ; <1>

BR A

BR B

;

SKE M1, #1000B ; <2>

BR C

BR D

In <1>, execution branches to B because the contents of M1 are equal to immediate data 1010B.

In <2>, however, execution branches to C because the contents of M1 are not equal to immediate

data 1000B.

8.6.2 Comparison of “Not equal to”

The “SKNE m, #n4” instruction tests whether the contents of a specified data memory address are “not equal to”

specified immediate data.

If the data memory contents are “not equal to” the immediate data, the instruction next to this instruction is skipped.

Example MOV M1, #1010B

SKNE M1, #1000B ; <1>

BR A

BR B

;

SKNE M1, #1010B ; <2>

BR C

BR D

In <1>, execution branches to B because the contents of M1 are not equal to immediate data 1000B.

In <2>, however, execution branches to C because the contents of M1 are equal to immediate data

1010B.

128

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

8.6.3 Comparison of “Greater than”

The “SKGE m, #n4” instruction tests whether the contents of a specified data memory address are “greater than”

specified immediate data.

If the data memory contents are “greater than” or “equal to” the immediate data, the instruction next to this instruction

is skipped.

Example MOV M1, #1000B

SKGE M1, #0111B ; <1>

BR A

BR B

;

SKGE M1, #1000B ; <2>

BR C

BR D

;

SKGE M1, #1001B ; <3>

BR E

BR F

Because the contents of M1 are 1000B, <1> is judged to be “Greater than”, <2>, “Equal to”, and <3>,

“Less than”, and execution branches to B, D, and E, respectively.

8.6.4 Comparison of “Less than”

The “SKLT m, #n4” instruction tests whether the contents of a specified data memory are “less than” specified

immediate data.

If the data memory contents are “less than” the immediate data, the instruction next to this instruction is skipped.

Example MOV M1, #1000B

SKLT M1, #1001B ; <1>

BR A

BR B

;

SKLT M1, #1000B ; <2>

BR C

BR D

;

SKLT M1, #0111B ; <3>

BR E

BR F

Because the contents of M1 are 1000B, <1> is judged to be “Less than”, <2>, “Equal to”, and <3>,

“Greater than”, and execution branches to B, C, and E, respectively.

129

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

8.7 Rotation Processing

Rotation processing can be classified into right rotation and left rotation.

To execute the right rotation processing, the “RORC” instruction is used.

This instruction can be executed only to a general register.

The rotation processing by the “RORC” instruction is not affected by the BCD and CMP flags of the program status

word (PSWORD). It does not affect the Z flag.

The “RORC” instruction does not modify (increment/decrement) addresses by using the index register (IX) even

if the index enable flag (IXE flag) is set to 1.

8.7.1 and 8.7.2 below describe the respective rotation processing.

8.7.1 Right rotation processing

The right rotation processing instruction “RORC r” rotates the contents of a specified general register 1 bit toward

the least significant bit direction.

At this time, the content of the CY flag is written to the most significant bit (bit 3) position of the general register,

and the content of the least significant bit (bit 0) is written to the CY flag.

Examples 1. MOV PSW, #0100B ; Sets CY flag to 1

MOV R1, #1001B

RORC R1

At this time, the processing is performed as follows:

Therefore, right rotation is executed from the CY flag as shown above.

Examples 2. MOV PSW, #0000B ; Resets CY flag to 0

MOV R1, #1000B ; MSB

MOV R2, #0100B

MOV R3, #0010B ; LSB

RORC R1

RORC R2

RORC R3

The above program rotates the 13-bit data of R1, R2, and R3 to the right.

1 1 1 0 0

b3 b2 b1 b0CY flag

130

CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)

8.7.2 Left rotation processing

The left rotation processing can be performed by using the addition instruction “ADDC r, m” as follows:

Example MOV PSW, #0000B ; Resets CY flag to 0

MOV R1, #1000B ; MSB

MOV R2, #0100B

MOV R3, #0010B ; LSB

ADDC R3, R3

ADDC R2, R2

ADDC R1, R1

SKF CY

OR R3, #0001B

The above program rotates the 13-bit data of R1, R2, and R3 to the left.

131

CHAPTER 9 REGISTER FILE (RF)

The register file is a register area that can be manipulated by the “PEEK” and “POKE” instructions.

The register file mainly sets the hardware conditions peripheral.

9.1 Register File Configuration

The register file consists of a control register and a data memory area, as shown in Figure 9-1. Addresses 40H

through 7FH overlap with a data memory area. Therefore, these register file addresses are addresses 40H through

7FH in the bank currently selected for the data memory.

Therefore, if BANK0 is currently selected, register file addresses 40H through 7FH are for BANK0. These

addresses can be manipulated as both data memory addresses and register file addresses.

Addresses 00H through 3FH in the register file form a control register area that sets various conditions for the

hardware peripherals.

These areas constitute a 128-nibble (128 words × 4 bits) register file, as shown in Figure 9-2.

132

CHAPTER 9 REGISTER FILE (RF)

Figure 9-1. Relations between Register File and Data Memory

Figure 9-2. Configuration of Register File

BANK0

BANK1

BANK15

System register

0

1

2

3

4

5

6

7

0

1

2

3

Column address

0 1 2 3 4 5 6 7 8 9 A B C D E F

Control register

Register file

D
at

a
m

em
or

y

R
ow

 a
dd

re
ss

0

1

2

3

4

5

6

7

Column address

0 1 2 3 4 5 6 7 8 9 A B C D E F

Control register

R
ow

 a
dd

re
ss

Data memory
(of each bank)

Register file

133

CHAPTER 9 REGISTER FILE (RF)

9.2 Register File Functions

9.2.1 Register file functions

The register file control registers mainly set the peripheral hardware conditions.

The rest of the register file (addresses 40H through 7FH) is overlapped with the data memory. Therefore, it can

be operated in the same manner as the data memory, except that they can be manipulated by the “PEEK” and “POKE”

instructions.

9.2.2 Register file manipulation instruction

Data is written to or read from the register file via the window register of the system registers (WR: address 78H).

To write or read data, the following dedicated instructions are used:

PEEK WR, rf: Reads data of register file addressed by rf to WR

POKE rf, WR: Writes data of WR to register file addressed by rf

Example M030 MEM 0.30H ; Uses address 30H of data memory as WR saving area

M032 MEM 0.32H ; Uses address 32H of data memory as WR manipulation area

RF11 MEM 0.91H ; Symbol definition

RF33 MEM 0.B3H ; Symbols at addresses 00H-3FH of register file must be defined as

RF70 MEM 0.70H ; 80H-BFH of BANK0. For details, refer to 9.4 Notes on Using Register

RF73 MEM 0.73H ; File

BANK0

<1> PEEK WR, RF11 ;

CLR1 MPE ; Indicates example for saving contents of WR to general-purpose data

CLR1 IXE ; memory (addresses 00H-3FH). As example, saving data to data memory

OR RPL, #0110B ; address 30H without address modification is indicated.

<2> LD M030, WR ;

<3> POKE RF73, WR ; Data can be directly transferred between data memory at addresses

<4> PEEK WR, RF70 ; 40H-7FH and control register by WR, PEEK, and POKE instructions

<5> POKE RF33, WR ;

<6> ST WR, M032 ;

134

CHAPTER 9 REGISTER FILE (RF)

Figure 9-3 shows an example of operation.

As shown in this figure, the control register (addresses 00H-3FH) reads or writes the contents of the register file

addressed by “rf” from or to the window register when the “PEEK WR, rf” or “POKE rf, WR” instruction is executed.

Since addresses 40H through 7FH of the register file overlap the data memory, the “PEEK WR, rf” or “POKE rf,

WR” instruction is executed to data memory address “rf” in the bank selected at that time.

Addresses 40H through 7FH of the register file can also be manipulated by a memory manipulation instruction.

The control register can be manipulated in 1-bit units by using a macro instruction (refer to 9.4.2 Symbol definition

of register file and reserved word).

Figure 9-3. Accessing Example of Register File with PEEK or POKE Instruction

0

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 A B C D E F

System register

Column address

<2> LD M030, WR

<3> POKE
<4> PEEK

RF73, WR
WR, RF70

<6> ST WR, M032

Data buffer (DBF)
Data memory

0

1

2

3

WR

<5> POKE RF33, WR

<1> PEEK WR, RF11

Control register

Register file

R
ow

 a
dd

re
ss

BANK0

135

CHAPTER 9 REGISTER FILE (RF)

9.3 Control Register

9.3.1 Control register configuration

The control register sets the conditions for hardware peripherals.

The control register consists of 64 words × 4 bits at addresses 00H through 3FH in the register file.

Of these control register words, those actually used differ, depending on the microcontroller model.

Each control register has 1 nibble of attribute and may be read/write (R/W), read-only (R), write-only (W), or reset,

when read (R & Reset). Note, however that some of the read/write (R/W) flags are always “0” when they are read.

Nothing is changed when data is written to the read-only register (R or R & Reset).

An “undefined value” is read when the write-only register (W) is read.

Of the 4-bit data for 1 nibble, the bit fixed to “0” is always “0” when read, and retains “0”, even when it is written.

An undefined value is read when the unused register is read, and nothing is changed when data is written to this

register.

To manipulate the unused register, write-only register (W), and read-only register (R), care must be exercised in

using the Assembler (RA17K). For details, refer to 9.4 Notes on Using Register File .

9.3.2 Hardware peripheral control functions for control register

The control functions, register to control the hardware peripherals, are described in the Data Sheet for each model.

136

CHAPTER 9 REGISTER FILE (RF)

9.4 Notes on Using Register File

9.4.1 Notes on manipulating control registers (read-only and unused registers)

When you manipulate the read-only (R) and unused registers of the control registers (addresses 00H through 3FH

of the register file), you must pay attention when the device operates, as described in (1), (2), and (3) below when

you use the 17K Series assembler (RA17K) and the in-circuit emulators (IE-17K, IE-17K-ET).

(1) When device operates

Nothing is changed even when data is written to a read-only register.

If an unused register is read, an “undefined value” is read. Nothing is changed even when data is written to

this register.

(2) When using assembler (RA17K)

An “error” occurs when an instruction that writes data is executed to access a read-only register.

An “error” also occurs when an instruction that reads or writes data is executed to an unused register.

(3) When using an 17K series in-circuit emulator (IE-17K or IE-17K-ET) (patch processing, etc.)

An “error” does not occur even when data is written to a read-only register.

When an unused register is read, an “undefined value” is read, and nothing is changed even when data is

written to this register, but an “error” does not occur.

137

CHAPTER 9 REGISTER FILE (RF)

9.4.2 Symbol definition of register file and reserved words

If a register file address is directly written in numeric value as operand “rf” of the “PEEK WR, rf” or “POKE rf, WR”

instruction when the 17K series assembler (RA17K) is used, an “error” occurs.

It is therefore necessary to define the address of the register file as a symbol as shown in Example 1 below.

Examples 1. Error occurs

PEEK WR, 02H ;

POKE 21H, WR ;

Error does not occur

RF71 MEM0.71H ; Symbol definition

PEEK WR, RF71 ;

At this time, pay attention to the following point:

• To define a control register as a symbol of data memory address type, it must be defined as the addresses 80H

through BFH of BANK0.

This is because the control register is manipulated via the window register, and an error must occur when the control

register is manipulated by an instruction other than “PEEK” and “POKE”.

However, the register file (addresses 40H through 7FH) that overlap the data memory can be defined as a symbol

without changing the address.

Here is an example:

Examples 2. RF71 MEM1.71H ; Register file overlapping data memory

RF02 MEM0.82H ; Control register

PEEK WR, RF71 ; RF71 is data memory at address “71H”

PEEK WR, RF02 ; RF02 is control register at address 02H

138

CHAPTER 9 REGISTER FILE (RF)

When the assembler (RA17K) is used, the following macro instructions are included in the assembler as flag type

symbol manipulation instructions:

SETn : Sets flag to “1”

CLRn : Clears flag to “0”

SKTn : Skips if all flags are “1”

SKFn : Skips if all flags are “0”

NOTn : Inverts flag

INITFLG : Initializes flag

INITFLGX : Initializes flag

Therefore, by using these macro instructions, the contents of the register file can be manipulated in 1-bit units, as

shown in the following Example 3.

Because many flags of the control registers are manipulated in 1-bit units, “reserved words” are defined on the

assembler (RA17K) as flag type symbols.

However, no flag type reserved word is available for the stack pointer. The reserved word for the stack pointer

is defined as data memory type, “SP”. Therefore, the flag manipulation instruction cannot be used with a reserved

word.

Examples 3. INITFLG WDTRES ; Initialize

(SET1 WDTRES ; Sets flag)

Macro expansion

PEEK WR, .MF.WDTRES SHR4

OR WR, #.DF.WDTRES AND 0FH

POKE .MF.WDTRES SHR4, WR

9.4.3 Notes on using assembler (RA17K) macroinstructions

The following points (1) and (2) call for specific attention, when using the Assembler macroinstructions to access

the control registers:

(1) Flag manipulation macroinstructions cannot be used to manipulate the stack pointer

As described in 9.4.2, no flag type reserved word is defined for the stack pointer. Therefore, a flag manipulation

instruction cannot be used with a reserved word.

(2) Flag manipulation macroinstructions cannot be used to manipulate write-only register

The flag manipulation macroinstruction cannot be used to manipulate the write-only register.

If the “SETn” macroinstruction is used to manipulate a write-only register, the register file contents are once

read to the window register.

At this time, the value read to the window register becomes undefined (an undefined value is read from the

write-only register), and an undefined value is written to a bit not specified by the “SETn” instruction.

At this time, the Assembler (RA17K) generates an error.

139

CHAPTER 10 DATA BUFFER (DBF)

The data buffer is used to transfer data with the hardware peripherals and to read data for table reference.

10.1 Data Buffer Configuration

As shown in Figure 10-1, the data buffer (DBF) is assigned to addresses 0CH through 0FH in BANK0 for the data

memory, and consists of 4 bits × 4 words, or a total of 16 bits.

Since the data buffer is on the data memory, it can be manipulated by all the data memory manipulation instructions.

Figure 10-1. Data Buffer Location

BANK0

BANK1

BANK15

Data memory

0 1 2 3 4 5 6 7 8 9 A B C D E F

Column address

R
ow

 a
dd

re
ss

0

1

2

3

4

5

6

7

7

7
System register

Data buffer (DBF)

140

CHAPTER 10 DATA BUFFER (DBF)

Figure 10-2 shows the data buffer configuration. As shown, the LSB for the data buffer is bit b0 for address 0FH

in the data memory, and the MSB is bit b3 for address 0CH.

Figure 10-2. Configuration of Data Buffer

Address

Bit

Bit

Symbol

Data

Data Memory

Data buffer

0CH

DBF3

M

S

B

b3

b15

b2

b14

b1

b13

b0

b12

0DH

DBF2

b3

b11

b2

b10

b1

b9

b0

b8

0EH

DBF1

b3

b7

b2

b6

b1

b5

b0

b4

0FH

DBF0

b3

b3

b2

b2

b1

b1

b0

b0

Data

L

S

B

141

CHAPTER 10 DATA BUFFER (DBF)

10.2 Data Buffer Functions

The data buffer has the following two functions:

(1) Reads constant data on the program memory (table reference)

(2) Transfers data with hardware peripherals

Figure 10-3 shows the relations between the data buffer, hardware peripherals, and table reference.

For details on table reference, refer to 10.4 Data Buffer and Table Reference , and for relations with hardware

peripherals, refer to 10.5 Data Buffer and Hardware Peripherals .

Figure 10-3. Relations between Data Buffer, Hardware Peripherals and Table Reference (Example)

Program memory
(ROM)

Data buffer
(DBF)

Internal bus

Constant data

Table
reference

Peripheral
address

 Peripheral hardware
(example)

01H IDC

02H A/D converter

03H Serial interface 0

0AH Watch timer (seconds)

0BH Watch timer (minutes)

0CH Watch timer (hours)

0DH Watch timer (days)

0EH Watch timer (weeks)

0FH Serial interface 1

10H Modulo timer

40H Address register

42H Key source
controller/decoder

142

CHAPTER 10 DATA BUFFER (DBF)

10.3 Notes on Using Data Buffer

10.3.1 When manipulating addresses for write-only and read-only registers and an unused address

When transferring data through the data buffer to the hardware peripherals, pay attention to the following points

concerning the unused peripheral address, write-only peripheral register (PUT only), and read-only peripheral register

(GET only):

(1) Device operation

An “undefined value” is read from the write-only register when it is read.

The read-only register contents are not changed, even when an attempt has been made to write data to this

register.

When the unused register is read, an “undefined value” is read. The unused register contents are not changed,

even when an attempt has been made to write data to this register.

(2) When using Assembler (RA17K)

An “error” occurs, when an instruction is executed to read the write-only register, to write the read-only register,

or to read/write the unused register.

(3) When using Emulator (IE-17K, IE-17K-ET) (manipulation for batch processing)

When the write-only register is read, an “undefined value” is read, but no “error” occurs.

When the read-only register is written, the register contents are not changed and no “error” occurs.

When the unused register is read, an “undefined value” is read. When this register is written, its contents are

not changed and no “error” occurs.

10.3.2 Specification of peripheral register address

When using the 17K series Assembler (RA7K), an “error” does not occur, if a peripheral address “p” is directly

specified (in numeral) by the “PUT p, DBF” or “GET DBF, p” instruction, as shown in Example 1 below.

Using this method, however, is not desirable, in order to reduce the number of bugs in the program.

It is therefore recommended to define a symbol for the peripheral device, as shown in Example 2 , by using the

symbol definition directive in the Assembler.

To simplify symbol definition, peripheral addresses are defined in advance in the Assembler (RA17K) as “reserved

words”.

By using the reserved words, therefore, the program can be created without defining symbols, as shown in Example

3.

For the reserved words, refer to the Data Sheet for each model.

Examples 1. PUT 02H, DBF ; Error does not occur, even when peripheral address 02H or 03H is

GET DBF, 03H ; specified. Using this is not desirable, in order to reduce bugs

2. SIO0DATA DAT 03H ; Assigns 03H to SIO0DATA by symbol definition directive

PUT SIO0DATA, DBF ;

3. PUT SIO0SFR, DBF ; Symbol need not be defined, if reserved word “SIO0SFR” is used

143

CHAPTER 10 DATA BUFFER (DBF)

10.4 Data Buffer and Table Reference

10.4.1 Table reference operation

By using the “MOVT DBF, @AR” instruction, constant data on the program memory can be read to the data buffer.

Therefore, by writing, for example, display data and constant data to the program memory in advance and

performing table reference as necessary, the need for creating a complicated data conversion program is eliminated.

The MOVT instruction function is as illustrated below.

Example

MOVT DBF, @AR ; Reads the program memory contents specified by the address

register contents to the data buffer, as shown in Figure 10-4

Figure 10-4. Example of Table Reference

DBF3

b15 b14 b13 b12

DBF2

b11 b10 b9 b8

DBF1

b7 b6 b5 b4

DBF0

b3 b2 b1 b0

Data buffer

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Program memory

(ROM)

Constant data

MOVT DBF, @AR

Specifies program memory
address

16 bits

144

CHAPTER 10 DATA BUFFER (DBF)

When the table reference instruction is executed, one stack level is used.

The program memory address, to which table reference can be executed, differs depending on the number of bits

in the address register.

For details, refer to CHAPTER 4 ADDRESS STACK and 6.3 Address Register (AR) .

10.4.2 Table reference program example

The following examples show table reference programs:

Examples 1. M000 MEM 0.00H ;

P0A MEM 0.70H ;

P0B MEM 0.71H ;

P0C MEM 0.72H ;

START: ; Program address 0000H

BR MAIN

DATA:

DW 0001H ; Constant data

DW 0002H ;

DW 0004H ;

DW 0008H ;

DW 0010H ;

DW 0020H ;

DW 0040H ;

DW 0080H ;

DW 0100H ;

DW 0200H ;

DW 0400H ;

DW 0800H ;

MAIN:

BANK0 ; Macroinstruction

SET4 P0ABIO3, P0ABIO2, P0ABIO1, P0ABIO0

SET4 P0BBIO3, P0BBIO2, P0BBIO1, P0BBIO0

SET1 P0CGIO

MOV RPH, #0000B ; Sets general register to row address 7H in BANK0

MOV RPL, #0100B ;

MOV AR3, # (.DL.DATA SHR 12 AND 0FH)

MOV AR2, # (.DL.DATA SHR 8 AND 0FH)

MOV AR1, # (.DL.DATA SHR 4 AND 0FH)

MOV AR0, # (.DL.DATA SHR 0 AND 0FH)

; Sets 0001H in address register (AR)

145

CHAPTER 10 DATA BUFFER (DBF)

LOOP:

; <1>

MOVT DBF, @AR ; Transfers ROM value, specified by AR contents, to data buffer

; <2>

LD P0A, DBF2 ; Transfers data buffer value to data register in Port0A (70H),

LD P0B, DBF1 ; Port0B (71H), and Port0C (72H)

LD P0C, DBF0 ;

ADD M000, #1 ; Increments address register contents by 1

ADD AR0, M000

ADDC AR1, #0

ADDC AR2, #0

ADDC AR3, #0

SKNE AR0, #0CH ; Writes 0 to AR0, when AR0 value becomes 0CH

MOV AR0, #0 ;

BR LOOP

When this program is executed, the constant data stored in addresses 0001H through 000CH in the program

memory are sequentially read to the data buffer by <1> and output to ports 0A, 0B, and 0C by <2>.

Since the constant data is shifted to the left on a bit-by-bit basis at this time, the high-level signal is sequentially

output to ports 0A, 0B, and 0C as a result.

In this example, the start address for the program memory, that stores the constant data, is set in the address

register by the “MOV” instruction.

If the “MOV” instruction is used in this way, the start address for each constant set of data must be set in the address

register, when there are many kinds of constant data to be stored.

Therefore, if the number of steps increases, because the “MOV” instruction is used many times, or in order to use

a common routine for control, the program shown in Example 2 is convenient.

146

CHAPTER 10 DATA BUFFER (DBF)

Examples 2. M000 MEM 0.00H ;

START:

BR MAIN ;

DATAFETCH:

DI ;

POP AR ; Reads address stack register contents to address register.

; At this time, stack pointer is shifted by constant data address,

ADD AR0, M000 ; specified by contents M000, specifying return address for

ADDC AR1, #0 ; main routine

ADDC AR2, #0 ;

ADDC AR3, #0 ;

MOVT DBF, @AR ; Reads constant data

EI

RET ; Returns to main routine

DATA1:

CALL DATAFETCH ; Calls common processing routine

DW 0123H ; At this time, DATA + 1 address is saved to address stack

DW 4567H ; register

:

DW 89ABH ;

DATA2:

CALL DATAFETCH ; Calls common processing routine

DW 1357H ; At this time, DATA2 + 1 address is saved to address stack

DW 2468H ; register

:

DW 9BDFH ;

MAIN:

BANK0 ; Macroinstruction

SET4 P0ABIO3, P0ABIO2, P0ABO1, P0ABIO0

SET4 P0BBIO3, P0BBIO2, P0BBO1, P0BBIO0

SET1 P0CGIO

MOV RPH, #0000B ; Sets general register to row address 7H in BANK0

MOV RPL, #0100B ;

LOOP:

CALL DATA1 ; Reads value for constant data DATA1, specified by M000 contents

LD P0A, DBF2 ;

LD P0B, DBF1 ; Transfers data buffer value to each port register in Port0A

LD P0C, DBF0 ; (70H), Port0B (71H) and Port0C (72H)

CALL DATA2 ; Reads value for constant data DATA2, specified by M000

LD P0A, DBF2 ; contents

LD P0B, DBF1 ; Transfers data buffer value to each port register in Port0A (70H),

LD P0C, DBF0 ; Port0B (71H), and Port0C (72H)

ADD M000, #1 ;

SKNE M000, #0CH ; Writes 0 to AR0, when M000 contents become 0CH

MOV M000, #0 ;

BR LOOP

147

CHAPTER 10 DATA BUFFER (DBF)

In this example, two stack levels are necessary, because the “CALL” instruction is executed two times, and the

“POP” and “MOVT” instructions are executed.

The “CALL” instruction can be executed only once, as shown in Example 3 below. In this case, two stack levels

are also necessary for the “MOVT” instruction.

Examples 3. DATAFETCH:

DI ;

POP AR ; Reads address stack register contents to address register

MOVT DBF, @AR ; Transfers constant data storage address to data buffer

INC AR ; Stores return address for main routine

PUSH AR ;

PUT AR, DBF ; Transfers constant data storage address to address register

ADD AR0, M000 ; Shifts by constant data address specified by M000 contents

ADDC AR1, #0 ;

ADDC AR2, #0 ;

ADDC AR3, #0 ;

MOVT DBF, @AR ; Reads constant data

EI

RET ; Returns to main routine

DATA1:

DW 0123H ; Constant data

;

DATA2:

DW 1357H ; Constant data

;

MAIN:

LOOP:

CALL DATAFETCH ;

DW .DL.DATA1 ;

LD P0A, DBF2 ;

CALL DATA2 ;

DW .DL.DATA2 ;

LD P0A, DBF2 ;

BR LOOP

148

CHAPTER 10 DATA BUFFER (DBF)

10.5 Data Buffer and Hardware Peripherals

10.5.1 Controlling hardware peripherals

The central processing unit (CPU) controls hardware peripherals by setting data in or reading data from the

hardware peripherals through the data buffer.

Each of the hardware peripherals has a register for data transfer (called a peripheral register), to which an address

(peripheral address) is assigned.

By executing the sole use instructions “GET” and “PUT” to these peripheral registers, data can be transferred

between the data buffer and hardware peripherals.

The “GET” and “PUT” instruction functions are as follows:

GET DBF, p ; Reads data for peripheral register addressed by p, to data buffer

PUT p, DBF ; Sets data for the data buffer in peripheral register addressed by p

The peripheral registers are classified into read-write (PUT/GET), write-only (PUT), and read-only (GET) registers.

If the “GET” instruction is executed to the write-only (PUT only) register, and undefined value is read.

However, if the “PUT” instruction is executed to the read-only (GET) register, the register contents are not affected.

Care must be exercised in using the 17K series Assembler (RA17K) or Emulator (IE-17K, IE-17K-ET). For details,

refer to 10.3 Notes on Using Data Buffer .

For the peripheral registers, refer to the Data Sheet for each model.

149

CHAPTER 10 DATA BUFFER (DBF)

10.5.2 Data length when transferring data with peripheral register

Data is transferred between the data buffer and a hardware peripheral in 8- or 16-bit units. The PUT and GET

instructions can be executed in one instruction execution time, regardless of whether or not the data is 16 bits long.

If the actual data bit length for a hardware peripheral is less than 8 bits, say, 7 bits, and if data transfer is carried

out in 8 bit units, 1 excess bit results. This excess bit is treated as a “don’t care (can be any value)” bit, when data

is written, and as an undefined value, when data is read.

Figure10-5 shows an operation example, when the “PUT” instruction is executed (there are 6 valid bits in the

peripheral register, bits b1 through b6).

Figure 10-5. Example Showing Data Transfer between Data Buffer and Hardware Peripheral

When 8-bit data is written to the peripheral register, the high-order 8 bits in the data buffer (contents of DBF3 and

DBF2) are don’t care bits.

Of the 8-bit data, the data buffer bits that correspond to the excess bits for the hardware peripheral are treated

as don’t care bits.

DBF3

Don’t care

b15 b14 b13 b12

DBF2

Don’t care

b11 b10 b9 b8

DBF1

b7 b6 b5 b4

DBF0

b3 b2 b1 b0

Data buffer

b6b7 b5 b4 b3 b2 b1 b0

Peripheral register

Don’t care
Can be any value

“ 0 ” or “ undefined value ”

8 bits

Valid bits

PUT

150

CHAPTER 10 DATA BUFFER (DBF)

Figure 10-6 shows an operation example, when the GET instruction is executed.

Figure 10-6. Example Showing Data Transfer between Data Buffer and Hardware Peripheral

When 8-bit data is read, the values for the high-order 8 bits in the data buffer (contents of DBF3 and DBF2) do

not change.

Of the 8-bit data for the data buffer, the bits that correspond to the excess bits in the peripheral register are “0”

or “undefined”. Whether the bits are “0” or “undefined” is determined in advance by the peripheral register.

DBF3

Don’t care

b15 b14 b13 b12

DBF2

Don’t care

b11 b10 b9 b8

DBF1

b7 b6 b5 b4

DBF0

b3 b2 b1 b0

Data buffer

b6b7 b5 b4 b3 b2 b1 b0

Peripheral register

“0” or “undefined value”
Value of peripheral
register is read as is.

“0” or “undefined value”

8 bits

Valid bits

GET

CHAPTER 11 GENERAL-PURPOSE PORTS

The general-purpose ports output signals to external circuits and read signals from external circuits.

11.1 General-Purpose Port Configuration

As shown in Figure 11-1, the general-purpose port writes data it inputs or outputs to addresses 70H through 73H

(port register) for each bank in the data memory.

Each port has several pins (for example, Port0A consists of P0A3 through P0A0 pins).

The general-purpose ports are classified into I/O ports, input ports, and output ports.

The I/O ports are classified into bit I/O ports, which can be specified for input for output in 1-bit units (1-pin units),

and group I/O ports, which can be specified for input or output in 4-bit units (4-pin units).

151

152

CHAPTER 11 GENERAL-PURPOSE PORTS

Figure 11-1. Block Diagram of General-Purpose Port

BANK0

Data memory

R
ow

 a
dd

re
ss

DBF

Port register

Bit
I/O

Bit
I/O Out

BANK1

BANK2

BANK15

Control register

I/O setting

P
0A

3
pi

n

P
0A

2
pi

n

P
0A

1
pi

n

P
0A

0
pi

n

Example of pin
configration of P0A

System register

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6

Column address

7 8 9 A B C D E F

Out OutOut
Group
I/O

Bit
I/O

P

0

A

P

0

B

P

0

C

P

0

D

P

1

A

P

1

B

P

1

C

P

1

D

P

2

A

– – –

Bit
I/O

153

CHAPTER 11 GENERAL-PURPOSE PORTS

11.2 Function of General-Purpose Ports

The general-purpose output ports and the general-purpose I/O ports set in the output mode output a high or low

level from the corresponding pins when data are set to the corresponding port register.

The general-purpose input ports and the general-purpose I/O ports set in the input mode detect the level of the

signals input to the corresponding pins by reading the contents of the corresponding port register.

The general-purpose I/O ports are set in the input or output mode by the corresponding control register.

In other words, these ports can be set in the input or output mode by software.

Since general-purpose I/O ports are set to the general-purpose input port after a power-on reset, the pins that are

also used for other hardware peripheral are specified independently by the corresponding control register.

11.2.1 General-purpose port data register (port register)

A port register sets output data of and reads the input data of the corresponding general-purpose port.

Because the port registers are mapped on the data memory, they can be manipulated by any data memory

manipulation instruction.

Figure 11-2 shows the relation between a port register and the corresponding port pins.

By setting data to the port register corresponding to the port pins set in the general-purpose output port mode, the

output of each pin is set.

By reading the contents of the port register corresponding to the port pins set in the general-purpose input port

mode, the input status of each pin is detected.

Figure 11-2. Relation between Port Register and Pins

Reserved words are defined for the port registers by the assembler.

Because these reserved words are defined in flag (bit) units, the assembler embedded macro instructions can be

used.

Note that data memory type reserved words are not defined for the port registers.

Port register

n

m

b3 b2 b1 b0

Bit significance of port register
Address of port register (e.g., 70H = A, 71H = B, 72H = C, 73H = D)
Bank of port register
“ P ” of Port

3

2

1

0

Bank

Address

Bit
P
P
P
P

[MEMO]

154

CHAPTER 12 INTERRUPT FUNCTIONS

The interrupt function stops any on-going processing and executes a program which is to be executed when

generating specific data, if a specified hardware peripheral outputs predetermined data.

Therefore, when a request is issued from a hardware peripheral, the program execution is stopped and branched

to a program starting with an address (vector address) specified in advance.

12.1 Interrupt Block Configuration

As shown in Figure 12-1, the interrupt block consists of interrupt request blocks that control interrupt requests,

interrupt enable flip-flop (INTE) that enables the interrupt, stack pointer that is controlled when an interrupt has been

accepted, address stack register, program counter, and interrupt stack.

An interrupt request is issued from a hardware peripheral.

The interrupt request processing block for each hardware peripheral consists of interrupt request flag (IRQ×××)

that detects an interrupt request, interrupt permission flag (IP×××) that enables each interrupt, and vector address

generator (VAG) that specifies a vector address (branch destination address), when an interrupt has been accepted.

The interrupt request flag (IRQ×××) and interrupt permission flag (IP×××) are shown in the interrupt processing block

in Figure 12-1.

Actually, however, they are in the interrupt request register and interrupt permission register in the control register.

155

156

CHAPTER 12 INTERRUPT FUNCTIONS

Figure 12-1. Configuration Example of Interrupt Block

Name

Address

Bit

Flag

symbol

Control register

Interrupt

request 1

(INTREQ1)

3BH

b3

0

b2

0

b1

0

b0

I
R
Q
4

Interrupt

request 2

(INTREQ2)

3CH

b3

0

b2

0

b1

0

b0

I
R
Q
3

Interrupt

request 3

(INTREQ3)

3DH

b3

0

b2

0

b1

0

b0

I
R
Q
2

Interrupt

request 4

(INTREQ4)

3EH

b3

0

b2

0

b1

0

b0

I
R
Q
1

Interrupt

request 5

(INTREQ5)

3FH

b3

0

b2

0

b1

0

b0

I
R
Q
0

Interrupt

permission 1

(INTPM1)

2EH

b3

0

b2

0

b1

0

b0

I
P
4

Interrupt

permission 2

(INTPM2)

2FH

b3

I
P
3

b2

I
P
2

b1

I
P
1

b0

I
P
0

Stack

pointer

SP

01H

b1

S
P
1

b0

S
P
0

b2

S
P
2

b3

S
P
3

Stack pointer

Interrupt stack

Interrupt enable FF INTE

Address stack register

Program counter

System register

INT (0) IRQ0

IP0

INT (1) IRQ1

IP1

Interrupt request blockInterrupt
source

hardware
peripheral

IRQ4

IP4

INT (3)

INT (4)

IRQ3

IP3

INT (2) IRQ2

IP2

DI and EI instructions

VAG 02H

VAG 05H

VAG 04H

VAG 03H

VAG 01H

157

CHAPTER 12 INTERRUPT FUNCTIONS

12.2 Interrupt Functions

An interrupt function stops the on-going program and executes a sole use processing program when a hardware

peripheral enters a certain status.

At this time, the interrupt signal from the hardware peripheral is called an “interrupt request”, and generation of

the interrupt signal is called “interrupt request issuance”. The sole use interrupt processing routine is called an

“interrupt processing routine”.

When an interrupt has been accepted, the program memory address contents, determined for each interrupt source

(vector address), are read and the program execution is branched. Therefore, each interrupt processing routine is

started from this vector address.

The interrupt functions are classified into processing before an interrupt is accepted and processing after the

interrupt has been accepted. Therefore, the functions are divided into accepting an interrupt in response to an interrupt

request from a hardware peripheral and, when the interrupt has been accepted, branching the execution to a vector

address and returning the execution to the program executed before the interrupt has been accepted.

12.2.1 through 12.2.5 describe the functions of each block.

12.2.1 Hardware peripheral

A condition, under which an interrupt request is to be issued, can be set to each hardware peripheral.

For example, an external interrupt pin can be set so that an interrupt request is issued, when the rising or falling

edge of the signal is applied to the pin.

For details on the interrupt request issuance conditions for each hardware peripheral, refer to the Data Sheet for

each model.

12.2.2 Interrupt request processing block

An interrupt request processing block is available for each hardware peripheral. It detects the presence or absence

of each interrupt request, enables the interrupt, and generates a vector address when the interrupt has been accepted.

12.2.3 and 12.2.4 describe each flag for the interrupt request processing block.

158

CHAPTER 12 INTERRUPT FUNCTIONS

12.2.3 Configuration and function of interrupt request flag (IRQ ×××)

Each interrupt request flag (IRQ×××) is set to “1” when an interrupt request is issued from the corresponding

peripheral hardware unit, and is reset to “0” when the interrupt is acknowledged.

Detecting these interrupt request flags (IRQ×××) when no interrupt is enabled will allow the state of each interrupt

request to be detected.

Directly writing “1” to an interrupt request flag via the window register is also equivalent to an interrupt request being

issued.

Once this flag has been set to “1”, it is not reset until the corresponding interrupt is acknowledged or an interrupt

request reset macro is executed.

If more than one interrupt request is issued at the same time, the interrupt request flag corresponding to the interrupt

that has not been acknowledged is not reset.

The configuration and function of the interrupt request flag are shown below.

Figure 12-2. Configuration Example of Interrupt Request Flag

Name

Address

R/W

Bit

Flag

symbol

b3

0

b2

0

b1

0

b0

I
R
Q
4

Interrupt request
register 1

Interrupt request
register 2

b3

0

b2

0

b1

0

b0

I
R
Q
3

Fixed to 0 Fixed to 0

IRQ3

0

1

Detects issuance status of interrupt request for INT (3)

Interrupt not requested

Interrupt requested

IRQ4

0

1

Detects issuance status of interrupt request for INT (4)

Interrupt not requested

Interrupt requested

Depends on model

159

CHAPTER 12 INTERRUPT FUNCTIONS

12.2.4 Configuration and functions of Interrupt permission flag (IP ×××)

Each interrupt permission flag enables the interrupt of the corresponding peripheral hardware unit.

All the following three conditions must be satisfied in order that an interrupt may be acknowledged:

• The interrupt is enabled by the corresponding interrupt permission flag.

• The interrupt request is issued by the corresponding interrupt request flag.

• The “EI” instruction (that enables all the interrupts) is executed.

Since the interrupt permission flag is in the interrupt permission register in the control flag, it can be read or written

through the window register (WR).

Once this flag has been set, it will not be reset until “0” is written to it through the window register.

The interrupt permission register configuration and functions are as follows.

Figure 12-3. Configuration Example of Interrupt Permission Flag

Name

Address

R/W

Bit

Flag

symbol

b3

0

b2

0

b1

0

b0

I
P
4

Interrupt permission
register 1

Interrupt permission
register 2

b3

I
P
3

b2

I
P
2

b1

I
P
1

b0

I
P
0

Fixed to 0

IP0

0

1

 Setting interrupt for INT (0)

Disables

Enables

IP1

0

1

 Setting interrupt for INT (1)

Disables

Enables

IP2

0

1

 Setting interrupt for INT (2)

Disables

Enables

IP3

0

1

 Setting interrupt for INT (3)

Disables

Enables

IP4

0

1

 Setting interrupt for INT (4)

Disables

Enables

Depends on model

160

CHAPTER 12 INTERRUPT FUNCTIONS

12.2.5 Stack pointer, address stack register, and program counter

The address stack register saves the return address to which execution is to be returned from an interrupt

processing routine.

The stack pointer specifies the address of the address stack register.

When an interrupt is acknowledged, therefore, the value of the stack pointer is decremented by one and the value

of the program counter at that time is saved to the address stack register specified by the stack pointer.

When the dedicated return instruction “RETI” is executed after the processing of the interrupt processing routine

has been executed, the contents of the address stack register specified by the stack pointer are restored to the program

counter, and the value of the stack pointer is incremented by one.

For further information, also refer to CHAPTER 4 ADDRESS STACK .

12.2.6 Interrupt enable flip-flop (INTE)

The interrupt enable flip-flop enables all the interrupts.

When this flip-flop is set, all the interrupts are enabled. When it is reset, all the interrupts are disabled.

This flip-flop is set or reset by using dedicated instructions “EI (to set)” and “DI (to reset)”.

The “EI” instruction sets this flip-flop when the instruction next to the “EI” instruction is executed, and the “DI”

instruction resets the flip-flop while the “DI” instruction is executed.

When an interrupt is acknowledged, this flip-flop is automatically reset.

Nothing is affected even if the “DI” instruction is executed in the DI state, or if the “EI” instruction is executed in

the EI state.

This flip-flop is reset on power-ON reset, CE reset, and on execution of the clock stop instruction.

12.2.7 Vector address generator (VAG)

VAG generates a branch destination address (vector address) of the program memory when a peripheral hardware

interrupt is acknowledged.

161

CHAPTER 12 INTERRUPT FUNCTIONS

12.2.8 Interrupt stack

The interrupt stack is configured as shown in Figure 12-4. It saves the system register contents, when an interrupt

request has been accepted.

When the interrupt request has been accepted and the system register contents have been saved, the system

register is reset to 0.

Figure 12-4. Configuration Example of Interrupt Stack

The interrupt stack can save up to the maximum stack level for each model. Therefore, the maximum levels for

nesting, which are to accept another interrupt in an interrupt processing routine, can be saved to the interrupt stack.

Data is saved to the interrupt stack each time an interrupt has been accepted. Each time the interrupt return

instruction (RETI) has been executed, the data is restored to the system register, as shown in (a) in Figure 12-5.

However, if an interrupt exceeding the maximum stack level is accepted, the first data is discarded, as shown in

(b) in Figure 12-5 (B). To prevent the data from being discarded, it must be saved by program.

Interrupt Stack (INTSK)

Bank stack

(BANKSK)

Status stack

(PSWSK)

Stack Name

Bit

A
dd

re
ss

0H

1H

b3

–

–

b2 b1 b0

BANKSK0

BANKSK1

b4

BCD

SK0

BCD

SK1

b3

Z

SK0

Z

SK1

b2

CY

SK0

CY

SK1

b1

CMP

SK0

CMP

SK1

b0

IXE

SK0

IXE

SK1

162

CHAPTER 12 INTERRUPT FUNCTIONS

Figure 12-5. Example of Interrupt Stack Operation (when maximum stack level = 2)

(a) When interrupt level is 2 (b) When interrupt level exceeds 2

Application
of VDD

Undefined Undefined

System register

Interrupt A

Interrupt B

RETI

RETI

Main program

A Undefined

B A

A A

A A

→

→

 B ←

A ←

System
regsiter

Interrupt
stack

Application
of VDD

Undefined Undefined

Interrupt stack

Interrupt A

Interrupt B

Interrupt C

RETI

RETI

RETI

Main program

A Undefined

B A

B B

B B

→

→

C ←

B BB ←

←

System
register

System
register

C B→ → A lost
System
register

B
(False data)

163

CHAPTER 12 INTERRUPT FUNCTIONS

12.3 Acknowledging Interrupts

12.3.1 Acknowledging interrupts and priority

An interrupt is acknowledged in the following procedure:

(1) Each peripheral hardware unit outputs an interrupt request signal to the corresponding interrupt control block

if a given interrupt condition is satisfied (e.g., if a valid signal is input to the external interrupt pin).

(2) When the interrupt control block has received the interrupt request signal from the peripheral hardware unit,

it sets the corresponding interrupt request flag (IRQ×××) to “1”.

(3) If the interrupt permission flag corresponding to the interrupt request flag (IP×××) is set to “1” when the interrupt

request flag is set to “1”, the interrupt control block outputs “1”.

(4) The signal output by the interrupt control block is ANDed with the output of the interrupt enable flip-flop, and

an interrupt acknowledge signal is output.

This interrupt enable flip-flop is set to “1” by the “EI” instruction and reset to “0” by the “DI” instruction.

If the interrupt control block outputs “1” while the interrupt enable flip-flop is “1”, the interrupt is acknowledged.

As shown in Figure 12-1, the interrupt acknowledge signal is input to each interrupt control block when the interrupt

has been acknowledged.

The interrupt request flag is reset to “0” by the signal input to the interrupt control block, and a vector address

corresponding to the interrupt is output.

If the interrupt control block outputs “1” at this time, the interrupt acknowledge signal is not transferred to the next

stage. If two or more interrupt requests are issued at the same time, the interrupts are acknowledged according to

the predetermined priority. This priority is called hardware priority.

In the flowchart in Figure 12-6, processing <1> is always performed in parallel. If two or more interrupt requests

are generated at the same time, each interrupt request flag (IRQ×××) is simultaneously set.

In processing <2>, however, interrupt servicing can be performed in any sequence by setting or resetting each

interrupt permission flag (IP×××) by program.

At this time, the interrupt having an interrupt permission flag is called a maskable interrupt. Because a maskable

interrupt, even one with a high hardware priority, can be disabled, its priority is called software priority.

For the interrupt permission flag, refer to 12.2.4 Configuration and function of interrupt permission flag

(IP×××).

164

CHAPTER 12 INTERRUPT FUNCTIONS

Figure 12-6. Accepting Interrupt

START

INT (4)

Interrupt
request

No

Yes<1>

<2>

Sets IRQ4

IP4 = 1 ?
no

yes

INT (3)

Interrupt
request

No

Yes

Sets IRQ3

IP3 = 1 ?
no

yes

INT (2)

Interrupt
request

No

Yes

Sets IRQ2

IP2 = 1 ?
no

yes

INT (1)

Interrupt
request

No

Yes

Sets IRQ1

IP1 = 1 ?
no

yes

yes

INT (0)

Interrupt
request

No

Yes

Sets IRQ0

Resets IRQ4 Resets IRQ3 Resets IRQ2

Accepts interrupt

Resets IRQ1 Resets IRQ0

IP0 = 1 ?

EI status ?

no

yes

no

yes

IRQ4 =
IP4 = 1 ?

no

yes IRQ3 =
IP3 = 1 ?

no

yes IRQ2 =
IP2 = 1 ?

no

yes IRQ1 =
IP1 = 1 ?

no

165

CHAPTER 12 INTERRUPT FUNCTIONS

12.3.2 Timing chart for acknowledging interrupt

Figure 12-7 shows the timing chart illustrating acknowledging interrupts.

(1) in this figure illustrates how one interrupt is acknowledged.

(a) in (1) shows the case where the interrupt request flag is lastly set to “1”, and (b) in (1) shows the case where

the interrupt permission flag is lastly set to “1”.

In either case, the interrupt is acknowledged when all the interrupt request flag, interrupt enable flip-flop, and

interrupt permission flag are set to “1”.

If the last flag or flip-flop that was set to “1” satisfies the first instruction cycle of the “MOVT DBF, @AR” instruction

or a given skip condition, the interrupt is acknowledged after the second instruction cycle of the “MOVT DBF, @AR”

instruction or the instruction that is skipped (NOP) has been executed.

The interrupt enable flip-flop is set in the instruction cycle next to the one in which the “EI” instruction is executed.

(2) in Figure 12-7 illustrates how more than one interrupt is used.

In this case, the interrupts are sequentially acknowledged according to the hardware priority if all the interrupt

permission flags are set. The hardware priority can be changed by manipulating the interrupt permission flag by

program.

“Interrupt cycle” shown in Figure 12-7 is a special cycle in which the interrupt request flag is reset, a vector address

is specified, and the contents of the program counter are saved after an interrupt has been acknowledged, and lasts

for the one instruction execution time.

Because the interrupt request flag is set to “1” by an interrupt request from the peripheral hardware, regardless

of the “EI” instruction and interrupt permission flag, whether an interrupt request has been issued or not can be checked

by checking the interrupt request flag (IRQ×××) by program.

For details, refer to 12.4 Operation After Interrupt Has Been Acknowledged .

166

CHAPTER 12 INTERRUPT FUNCTIONS

Figure 12-7. Timing Chart of Acknowledging Interrupt (1/3)

(1) When one interrupt (e.g., rising of external interrupt pin) is used

(a) If interrupt is not masked by interrupt permission flag (IP ×××)

<1> If “MOVT” instruction or normal instruction that satisfies skip condition is not executed when interrupt

is acknowledged

<2> If “MOVT” instruction or “instruction satisfying skip condition” is executed when interrupt is acknowl-

edged

Instruction
Number of steps in macro

EI Normal
instruction

Interrupt
cycle

INTE

Interrupt pin

IRQ××× flag

IP××× flag

1 instruction cycle

Interrupt enable period

Interrupt acknowledged

Interrupt processing routine

MOV
WR, #0001B

POKE
INTRM, WR

Instruction
Number of steps in macro

EI
Interrupt

cycle

INTE

Interrupt pin

IRQ××× flag

IP××× flag

Interrupt acknowledged

MOVT DBF,@AR
Skip instruction

Interrupt enable period Interrupt processing routine

MOV
WR, #0001B

POKE
INTPM, WR

167

CHAPTER 12 INTERRUPT FUNCTIONS

Figure 12-7. Timing Chart of Acknowledging Interrupt (2/3)

(b) If interrupt is kept pending by interrupt permission flag

Instruction
Number of steps in macro

EI

Interrupt pin

IRQ××× flag

IP××× flag

INTE

Interrupt
cycle

Interrupt acknowledged

Interrupt processing routineInterrupt pending period

MOV
WR, #0001B

POKE
INTPM, WR

168

CHAPTER 12 INTERRUPT FUNCTIONS

Figure 12-7. Timing Chart of Acknowledging Interrupt (3/3)

(2) When two interrupts (Example: Two types of interrupt pins 1 and 2 (2: Hardware priority)) are used

(a) Hardware priority

(b) Software priority

Interrupt pin 2 interrupt pending period

Interrupt pin 2 interrupt acknowledged

Interrupt pin 2 interrupt processing

Interrupt pin 1 pending period Interrupt pin 1
interrupt processing

Instruction
Number of steps in macro

EI

INTE

Interrupt pin 2

IRQ2 flag

IP2 flag

IP1 flag

IRQ1 flag

Interrupt pin 1

EIInterrupt
cycle

Interrupt pin 1 interrupt acknowledged

Interrupt
cycle

MOV
WR, #0011B

POKE
INTPM, WR

Interrupt pin 1 interrupt pending period

Interrupt pin 1 interrupt acknowledged

Interrupt pin 1 interrupt processing

Interrupt pin 2 interrupt pending period Interrupt pin 2
interrupt processing

Interrupt pin 2 interrupt acknowledged

Instruction
Number of steps in macro

EI

INTE

Interrupt pin 2

IRQ2 flag

IP2 flag

EI

Interrupt pin 1

IRQ1 flag

IP1 flag

Interrupt
cycle

Interrupt
cycle

MOV
WR, #0010B

POKE
INTPM, WR

MOV
WR, #0011B

POKE
INTPM, WR

169

CHAPTER 12 INTERRUPT FUNCTIONS

12.4 Operation After Interrupt Has been Acknowledged

When an interrupt has been acknowledged, the following processing is sequentially executed.

(1) The interrupt enable flip-flop and the interrupt request flag corresponding to the acknowledged interrupt are

reset to “0”, disabling the interrupts.

(2) The contents of the stack pointer are decremented by one.

(3) The contents of the program counter are saved to the address stack register specified by the stack pointer.

The contents saved at this time are the next program memory address that is used after the interrupt has been

acknowledged. For example, if a branch instruction is executed, the contents saved are the branch destination

address; if a subroutine call instruction is executed, they are the called address. Because the interrupt is

acknowledged after the next instruction is executed as a “NOP” instruction if a skip condition is satisfied by

a skip instruction, the saved contents are the skipped address.

(4) The least significant bit of the bank register (BANK) is saved to the interrupt stack.

(5) The contents of the vector address generator corresponding to the acknowledged interrupt are transferred to

the program counter. In other words, execution branches to an interrupt processing routine.

The processing (1) through (5) above is executed in one special instruction cycle in which the normal instruction

is not executed. This instruction cycle is called an interrupt cycle.

In other words, one instruction cycle time is necessary since an interrupt has been acknowledged until execution

branches to the corresponding vector address.

170

CHAPTER 12 INTERRUPT FUNCTIONS

12.5 Interrupt processing Routine

An interrupt is accepted immediately, when an interrupt request has been issued independently from the program

being executed at that time, as long as it is in the program area, where the interrupt is enabled.

Therefore, to return the execution to the original program, after the interrupt processing has been executed, the

status must be restored as if the interrupt processing had not been executed.

For example, if an arithmetic operation is executed during interrupt processing, the carry flag (CY) content may

change from that before the interrupt has been accepted. This leads to misjudgment, after the execution has been

restored to the original program.

It is therefore necessary to save and restore the system register and control register that may be manipulated by

the interrupt processing routine.

To enable another interrupt while one interrupt processing is being accomplished (nesting), refer to 12.6 Nesting .

171

CHAPTER 12 INTERRUPT FUNCTIONS

12.5.1 Saving

Among the system registers, only the bank (BANK) register and index enable flag are automatically saved by the

hardware. Save the other system registers through a program, if necessary.

As shown in Figure 12-8, the POKE and PEEK instructions are convenient for saving or restoring the system

registers.

The system registers can also be saved or restored by using the transfer instruction (LD r,m or ST m,r). However,

specifying data memory addresses, to which the registers are to be saved, is difficult unless the row address for the

general register is constant, when the interrupt has been accepted.

The reason is that, when the transfer instruction is used to save the general register, the saved address is not

constant, unless the general register address is constant. Consequently, at least the general register must be fixed

in the interrupt enable routine.

By contrast, since the address for the register file, that is controlled by the PEEK and POKE instructions, can be

specified independently from the general register contents. Since addresses 40H through 7FH for the register file

overlap the bank in the data memory selected at that time, the system register can be saved merely by specifying

the bank.

In Figure 12-8, the window register and register pointers (RPH and RPL) are saved by the PEEK and POKE

instructions. The general register is re-set to row address 07H in BANK1. The other system registers are saved by

the next ST instruction.

Figure 12-9 illustrates how the saving operation is performed in the example program in Figure 12-8.

12.5.2 Restoration processing

To restore registers, an operation in reverse to the saving processing should be performed, as shown in Figure

12-8.

When an interrupt has been accepted, the interrupt was naturally enabled (EI status). It is therefore necessary

to execute the EI instruction before executing the RETI instruction, as shown in Figure 12-8.

The EI instruction sets the interrupt enable flip-flop to 1 after the next RETI instruction has been executed.

Consequently, the interrupt is enabled after the execution has been returned to the program executed before the

interrupt was accepted.

When the sole use instruction “RETI” is executed, the following processing is automatically executed in sequence,

and the processing, during which the interrupt was accepted, is resumed.

(1) The address stack register contents, specified by the stack pointer, are restored to the program counter.

(2) The interrupt stack contents are restored to the low-order 3 bits in the bank register (BANK: address 79H)

and program status word (IXE, BCD, CMP, CY, and Z flags).

(3) The stack pointer contents are incremented by one.

The above steps (1) through (3) are executed in one instruction cycle, during which the RETI instruction is executed.

The only difference between the RETI instruction and subroutine return instructions RET and RETSK is the

operation to restore the bank register and program status word in (2) above.

172

CHAPTER 12 INTERRUPT FUNCTIONS

Figure 12-8. Saving and Restoring in Interrupt Processing Routine

Program example

M144
M145
M146
M147
M148
M14D
M14E
M15F
TMMD

 BANK1
 <1> POKE
 <2> PEEK
 <3> POKE

 <4> PEEK
 <5> POKE
 <6> MOV

 MOV
 <7> ST
 <8> ST
 <9> ST
<10> ST
<11> PEEK
<12> ST

; Sets bank 1
; Saves contents of window register to M148
;
; Saves contents of general register
; pointer to M14D and M14E
;
;
; Sets general register to row
; address 7 of band 1
;
; Saves necessary system registers
;
;
;
; Saves necessary control registers
;

M148, WR
WR, RPH
M14D, WR

WR, RPL
M14E, WR
RPH, #1

RPL, #0EH
M144, AR3
M145, AR2
M146, AR1
M147, AR0
WR, TMMD
M15F, WR

MEM
MEM
MEM
MEM
MEM
MEM
MEM
MEM
MEM

1.44H
1.45H
1.46H
1.47H
1.48H
1.4DH
1.4EH
1.5FH
0.89H

Interrupt processing
routine (DI status)

Main routine

Saves BANK and
PSWORD by
hardware

Restores saved
system registers

Interrupt processingInterrupt is accepted

EI

RETI

Saves necessary
system register
by software

→

BANK1
MOV

MOV
LD
LD
LD
LD

LD
POKE
PEEK
POKE
PEEK
POKE
PEEK

; Sets bank 1
; Sets general register to row
; address 7 of bank 1
;
; Restores saved system register
;
;
;

; Restores saved control register
;
; Retores general register pointer
;
;
;
; Restores saved window register

; Enables interrupt witn EI
; instruction: (sets INTE) after
; next RETI instruction is executed

; Restores BANK and PSWORD by hardware

RPH, 1

RPL, 0EH
AR3, M144
AR2, M145
AR1, M146
AR0, M147

WR, M15F
TMMD, WR
WR, M14D
RPH, WR
WR, M14E
RPL, WR
WR, M148

→

EI

173

CHAPTER 12 INTERRUPT FUNCTIONS

Figure 12-9. Saving System Register and Control Register When PEEK and POKE Instructions Are Used

Remark <1> through <12> corresponds to numbers in program in Figure 12-8.

12.5.3 Notes on interrupt processing routine

Pay close attention to the following points, concerning the interrupt processing routine:

(1) The bank register and program status word

The bank register and program status word are reset to “0”, after they are have been saved to the interrupt

stack.

(2) The other system registers saved through software

Data for the other system registers, saved through software, are not reset, even after they have been saved.

<12>

<3> <5><7>

<2> <4>

<8> <9> <10> <1>

<11>

AR3 AR2 AR1 AR0 WR RPH RPL

0

1

2

3

4

5

6

7

0

1

2

3

0 1 2 3 4 5 6 7 8 9 A B C D E F

Column address

R
ow

 a
dd

re
ss

Data memory

BANK1

POKE M148, WR

Saving area

TMMD

Control register

 Register file (RF)

<6> Specifies general
register

174

CHAPTER 12 INTERRUPT FUNCTIONS

12.6 Nesting

Nesting is a technique to process interrupts C and D that are generated from separate sources, while the interrupt

processing for sources A and B is being executed, as shown in Figure 12-10.

At this time, the interrupt depth is called a level.

To use nesting, consider the following points:

(1) Interrupt source priority

(2) Interrupt level limit, due to interrupt stack

12.6.1 and 12.6.2 describe (1) and (2) above in detail.

Figure 12-10. Example of Nesting

12.6.1 Interrupt source priority

In order to use a nesting, it is necessary to set the priorities for the interrupt sources.

For example, when interrupt sources are A, B, C, and D, the priorities can be:

A = B = C = D

or,

A < B < C < D

Note, however, that if all the sources are given the same priority (A = B = C = D), the main routine always accepts

interrupts A, B, C, and D. Yet, if interrupt C has been accepted, all the other interrupts A, B, and D are disabled, and

nesting cannot be implemented.

When the priorities are set as A < B < C < D, interrupt C takes precedence over A and B, even while A or B is being

processed.

Similarly, D takes precedence over C.

The priority can be set by the hardware or software, by using the interrupt permission flag, as described in 12.3

Acknowledging Interrupts .

Main routine

MAIN B D

A B

C

Interrupt level 1 Interrupt level 2

175

CHAPTER 12 INTERRUPT FUNCTIONS

Priorities for nesting interrupts must be specified in the following cases:

• Interrupt source A : Issues an interrupt request every 10 ms.

Interrupt service time: 4 ms

• Interrupt source B : Issues an interrupt request every 2 ms.

Interrupt service time: 1 ms

Also, assume that A and B are both assigned the same priority.

If interrupt processing for A is executed while B is being processed, B is not processed several times.

Since an interrupt is generally used for processing with a high emergency status, it is necessary to determine the

priorities for these two interrupts, for example, A < B, so that A is disabled, while B is being processed, and that B

is accepted, even while A is being processed.

If nesting is used for purposes not emergent, priorities are not necessarily determined. However, if the number

of interrupt sources were to exceed the nesting limit, as described in 12.6.2 Interrupt limit by interrupt stack , it

is necessary to determine appropriate priorities, to prevent exceeding the interrupt level.

12.6.2 Interrupt limit by interrupt stack

The bank register contents in the system registers and program status word are saved to the interrupt stack.

Usually, the interrupt stack operates as shown in (a) in Figure 12-11.

The bank register and program status word are reset as soon as their contents are saved to the interrupt stack.

If nesting were to exceed the maximum level for the interrupt stack, the bank register contents and program status

word are not correctly restored, as shown in (b) in Figure 12-11.

However, if nesting is performed in a main routine, where the interrupt is enabled, so that the bank register and

program status word are always fixed and that the priorities for the interrupts are clear, the maximum stack level can

be exceeded by using the subroutine return instruction (RET) as shown in Figure 12-12.

However, at this time, the device operations and those for the emulator differ, as shown in Figures 12-12 and 12-

13.

As shown, the interrupt stack for the device is a “sweeping category”, while that for the emulator (IE-17K, IE-17K-

ET) is a “rotating category”.

The restoring processing for the interrupt stack is different, when the RETI instruction is executed, from that, when

the RET instruction is executed. Use the RET instruction as the last return instruction, when performing nesting,

exceeding the maximum stack level for each model.

176

CHAPTER 12 INTERRUPT FUNCTIONS

Figure 12-11. Interrupt Stack during Nesting

(a) Ordinary nesting

(b) Nesting exceeding maximum stack level (when interrupt stack is at level 2)

Interrupt
stack

Undefined

Undefined

MAIN

MAIN

MAIN

Undefined

Interrupt
stack

MAIN

MAIN

Main routine

MAIN

A

Interrupt A

RETI

A

A

MAIN

MAIN

B

Interrupt B

RETI

MAIN

A

A

Undefined

Undefined

A

A

Undefined

Main routine Interrupt A

RETI

A

A

A

MAIN

Interrupt B

RETI

B

B

A

A

C

Interrupt C

RETI

A BMAIN

If execution is returned to main routine at this point, BANK and PSWORD of
interrupt A are not correctly restored, and operation of main routine is not
performed correctly.

177

CHAPTER 12 INTERRUPT FUNCTIONS

Figure 12-12. Example showing Nesting Exceeding Maximum Stack Level

(when interrupt stack is at level 2)

In the example in Figure 12-12, in the main routine where the interrupt A priority is always lower than B and C

priorities, and where interrupt A is enabled, nesting for 3 levels can be implemented, if the bank register and program

status word are always fixed. The RET instruction is used, after the bank register and program status word in the

main routine are specified when the interrupt A processing has ended.

If the bank register and program status word for interrupt A are identical to those in the main routine, the RETI

instruction can be used. However, the 17K series Emulator (IE-17K, IE-17K-ET) cannot debug the RETI instruction,

because its operations are different from those for the actual device, as shown in Figure 12-13.

MAIN

A

A

Undefined

Undefined

A

A

Undefined

Main routine Interrupt A

RETI

A

A

A

MAIN

Interrupt B

RETI

B

B

A

A

C

Interrupt C

RETI

A BMAIN

BANK0
IXE, BCD, CY, Z, CMP
are all 0.

DI
BANK0
IXE, BCD, CY, Z, CMP
are all 0.

178

CHAPTER 12 INTERRUPT FUNCTIONS

Figure 12-13. Interrupt Stack Operation, When Maximum Stack Level Is Exceeded with

17K Series Emulator (IE-17K, IE-17K-ET) Used

When the RETI instruction is used by the Emulator (IE-17K, IE-17K-ET), the bank register (BANK) contents and

index enable flag for interrupt B are restored, as shown in Figure 12-13.

MAIN

B

A

Undefined

Undefined

B

A

Undefined

Main routine Interrupt A

RETI

MAIN

B

A

A

Interrupt B

RETI

B

B

A

A

C

Interrupt C

RETI

A BMAIN

CHAPTER 13 STANDBY FUNCTIONS

The standby function is to reduce the current consumption for the device, when the program processing is stopped.

The HALT mode is to reduce the current consumption, when only some device functions, for example the clock,

are operating.

The clock stop function is to reduce the current consumption, for example, when only the data memory contents

are retained.

The current consumption, however, is not reduced as specified, even when the standby function is used, depending

on the status for the hardware peripherals and pins. Take necessary measures, in terms of software as well as

hardware, to reduce the current consumption to the rated level, while referring to the Data Sheet for each model.

13.1 Configuration of Standby Block

Figure 13-1 shows the configuration of the standby block.

As shown in the figure, the standby block is divided into two blocks: halt control block and clock stop control block.

The halt control block consists of a halt control circuit, interrupt control block, timer carry (basic timer 0 carry), and

key input pins (port pins) and controls the operation of the CPU (program counter, instruction decoder, and ALU block).

The clock stop control block controls the operation clock oscillation circuit, CPU, system register, and control

registers, by using the clock stop control circuit.

Figure 13-1. Configuration Example of Standby Block

Interrupt
block

Timer carry
(Basic timer 0 carry)

Halt control
circuit HALT h

Program counter (PC)

Instruction decoder

ALU

System register

Control registerClock stop control
circuit STOP s

Halt block

Clock stop block

Port pins
(key input)

CE pin

XOUT pin

XIN pin Internal block

CPU

In
pu

t l
at

ch

179

180

CHAPTER 13 STANDBY FUNCTIONS

13.2 Standby Function

The standby function reduces the current consumption of the device by stopping some or all the operations of the

device.

The standby function can be used in two modes: halt and clock stop.

The halt mode is to reduce the current consumption of the device by executing a dedicated instruction “HALT h”

and stopping the operation of the CPU.

The clock stop mode is to reduce the current consumption of the device by executing a dedicated instruction “STOP

s” and stopping the crystal oscillation circuit.

In addition to the halt and clock stop modes, the operation mode of the device can be also set by the CE pin.

The CE pin is used to control the operation of the PLL frequency synthesizer and reset the device, and can be said

to be a type of the standby function in that it controls the operation of the PLL frequency synthesizer.

13.3 explains how to set the operation mode of the device by using the CE pin.

13.4 and 13.5 respectively explain the halt and clock stop modes.

13.3 Selecting Device Operation Mode with CE Pin

The CE pin controls the following functions (1) through (3) by using the level and rising edge of an externally input

signal.

(1) Controls operation of internal peripheral hardware

(2) Enables or disables clock stop instruction

(3) Resets device

13.3.1 Controlling operation of internal peripheral hardware

The hardware peripheral operates when the CE pin is at high level, and stops when it is at low level.

13.3.2 Enabling and disabling clock stop instruction

The clock stop instruction “STOP s” is enabled only when the CE pin is low.

The “STOP s” instruction is executed as a no-operation (NOP) instruction if it is executed when the CE pin is high.

13.3.3 Resetting device

The device can be reset (CE reset) by raising the CE pin.

The device can also be reset through power application (power-ON reset).

For details, refer to CHAPTER 14 RESET FUNCTIONS.

181

CHAPTER 13 STANDBY FUNCTIONS

13.3.4 Signal input to CE pin

The CE pin does not accept a low-level or high-level signal that does not last for a certain duration, which is specified

for each model, to prevent the device from malfunctioning due to noise.

Since the CE pin input level is reflected on the CE flag in the control register, it can be detected by the CE flag.

13.4 Halt Function

The halt function stops the operation clock of the CPU by executing the “HALT h” instruction.

When the “HALT h” instruction is executed, the program stops at the “HALT h” instruction, until the halt status is

released later.

Therefore, the current consumption of the device can be reduced in the halt status by the operating current of the

CPU.

The halt status can be released by key input, timer carry, or interrupt. The releasing condition of the key input,

timer carry (basic timer 0 carry), and interrupt is specified by the operand “h” of the “HALT h” instruction.

The conditions specified by “h”, under which that the halt mode is released, differ depending on the model. Refer

to the Data Sheet for the model used.

The “HALT h” instruction is valid regardless of the input level of the CE pin.

13.4.1 through 13.4.6 explain the halt status, halt release condition, and each halt release condition.

13.4.1 Halt status

All the operations of the CPU are stopped in the halt status.

In other words, program execution is stopped at the “HALT h” instruction.

However, the peripheral hardware units continue the operations set before the “HALT h” instruction is executed.

For details, refer to the Data Sheet for the model used.

182

CHAPTER 13 STANDBY FUNCTIONS

13.4.2 Halt release condition

Figure 13-2 shows the halt release conditions.

As shown in this figure, the halt release conditions are set by 4-bit data specified by operand “h” of the “HALT h”

instruction.

The halt status is released when the condition specified as “1” by operand “h” is satisfied.

When the halt status is released, the execution starts from the instruction next to the “HALT h” instruction.

If two or more release conditions are specified, and if any one of the specified conditions is satisfied, the halt

condition is released.

If the device is reset (power-ON reset or CE reset), the halt status is released, and each reset operation is

performed.

If 0000B is set as the halt release condition “h”, no release condition is set.

At this time, the halt status is released if the device is reset (power-ON reset or CE reset).

13.4.3 through 13.4.5 explain halt release conditions set by key input, timer carry (basic timer 0 carry), and interrupt.

13.4.6 shows an example when two or more release conditions are specified.

Figure 13-2. Halt Release Condition

Operand bit

b3 b2 b1 b0

Sets halt release condition

HALT h (4 bits)

Releases if high level is input to port pins (key input)

Releases if timer carry (basic timer 0 carry) FF is set to “1”

Undefined (fixed to “0”)

Releases if interrupt is acknowledged

Does not release even if condition is satisfied

Releases if condition is satisfied

0

1

183

CHAPTER 13 STANDBY FUNCTIONS

13.4.3 Releasing halt status by key input

Releasing the halt status by key input is specified by the “HALT 0001B”.

If releasing the halt status by key input is specified, the halt status is released when a high level is input to any

of the port 0D pins.

Remark The shared pins of port 0D pin differ depending on the model used. When using shared functions, or

using a general-purpose output port as a key source signel, refer to the cautions in the Data Sheet for

each model.

13.4.4 Releasing halt status by timer carry (basic timer 0 carry)

Releasing the halt status by the timer carry (basic timer 0 carry) is set by the “HALT 0010B”.

When the release of the halt status is set by the timer carry (basic timer 0 carry), the halt status is released as soon

as the timer carry (basic timer 0 carry) FF has been set to “1”.

The timer carry (basic timer 0 carry) FF corresponds to the dedicated flag in the control register, and is set to “1”

at fixed time intervals.

Therefore, the halt status can be released at fixed time intervals.

Remark The set time of the timer carry (basic timer 0 carry) differs depending on the model used. Refer to the

Data Sheet of each model.

13.4.5 Releasing halt status by interrupt

Releasing the halt status by an interrupt is set by the “HALT 1000B”.

If releasing the halt status by an interrupt is set, the halt status is released as soon as the interrupt has been

acknowledged.

Therefore, the interrupt source to be used to release the halt status must be specified by program in advance if

two or more interrupt sources exist.

So that the interrupt is acknowledged, all the interrupts must be enabled (by the EI instruction), each interrupt is

enabled (by setting the corresponding interrupt permission flag), in addition that the interrupt request from each

interrupt source must be issued.

Even if an interrupt request is issued, if that interrupt is not enabled, the interrupt is not acknowledged and the halt

status is not released.

When the halt status has been released because the interrupt has been acknowledged, the program flow branches

to the vector address of the interrupt.

If the “RETI” instruction is executed after the interrupt processing, the program flow returns to the instruction next

to the “HALT” instruction.

Remark The interrupt sources differ depending on the model used. Refer to the Data Sheet of each model.

184

CHAPTER 13 STANDBY FUNCTIONS

Caution When executing the HALT instruction which is to be released if the interrupt request flag (IRQ ×××)

for which the interrupt permission flag (IP ×××) is set is set, describe a NOP instruction immedi-

ately before the HALT instruction.

If a NOP instruction is described immediately before the HALT instruction, a time of one

instruction is generated in between the IRQ ××× manipulation instruction and HALT instruction.

In the case of the CLR1 IRQ ××× instruction, for example, clearing IRQ ××× is correctly reflected

on the HALT instruction (refer to Example 1 below). If a NOP instruction is not described

immediately before the HALT instruction, the CLR1 IRQ ××× instruction is not correctly reflected

on the HALT instruction, and the HALT mode is not set (refer to Example 2 below).

Examples 1. Program that correctly executes HALT instruction

; Sets IRQ×××

CLR1 IRQ×××
NOP ; Describes NOP instruction immediately before HALT instruction

; (clearing IRQ××× is correctly reflected on HALT instruction)

HALT 1000B ; Correctly executes HALT instruction (HALT mode is set)

2. Program that does not set HALT mode

; Sets IRQ×××

CLR1 IRQ××× ; Clearing IRQ××× is not reflected on HALT instruction

; (but on instruction next to HALT)

HALT 1000B ; HALT instruction is ignored (HALT mode is not set)

…
…

…
…

…
…

…
…

…
…

185

CHAPTER 13 STANDBY FUNCTIONS

13.4.6 If two or more release conditions are simultaneously set

If two or more release conditions are simultaneously set, and if even one of the conditions is satisfied, the halt status

is released.

The method to identify the release condition that is satisfied when two or more release conditions are specified

is shown below.

Examples 1.

HLTINT DAT 1000B
HLTTMR DAT 0010B
HLTKEY DAT 0001B
INTPIN DAT 0004H ; INT pin interrupt vector address symbol

; definition
START:

BR MAIN

ORG INTPIN

 Processing A ; INT pin interrupt processing

EI
RETI

TMRUP ; Timer carry processing

 Processing B

RET

KEYDEC: ; Key input processing

 Processing C

RET
MAIN:

SET2 TMMD1, TMMD0 ; Embedded macro
; Sets timer carry FF setting time to 1 ms

SET1 IP ; Embedded macro
; Enables INT pin interrupt

EI
LOOP:

HALT HLTINT OR HLTTMR OR HLTKEY
; Specifies interrupt, timer carry, and key input
; as halt release conditions

SKF1 TMCY ; Embedded macro
; Detects TMCY flag

CALL TMRUP ; Timer carry processing if set to “1”
SKF4 P0D3,P0D2,P0D1,P0D0 ; Detects key input

; Detects key input latch
CALL KEYDEC ; Key input processing if latched
BR LOOP

186

CHAPTER 13 STANDBY FUNCTIONS

In Example 1 , three halt release conditions are specified: INT pin interrupt, 1-ms timer carry, and key input.

To detect which condition has caused the halt status to be released, the vector address, TMCY flag, and P0D flag

are detected to identify the interrupt, timer carry, and key input, respectively.

When using two or more release conditions, the following two points must be noted.

(1) All the specified release conditions must be detected when the halt status has been released.

(2) The conditions must be sequentially detected starting from the one with the highest priority.

For example, if the program below “MAIN:” in example 1 is as shown in Example 2 below, care must be exercised.

Do not develop the program as shown in Example 2 if the timer carry has a high priority.

Remark The flag names may differ depending on the model used. Refer to the Data Sheet of each model.

Examples 2.

MAIN:

SET4 P1C3, P1C2, P1C1, P1C0 ; Uses general-purpose output port as key

SET2 TMMD1, TMMD0 ; source signal

SET1 IP

EI

LOOP:

HALT HLTINT OR HLTTMR OR HLTKEY

SKF4 P0D3, P0D2, P0D1, P0D0 ; Detects key input

BR KEYDEC

SKF1 TMCY

CALL TMRUP

BR LOOP

KEYDEC: ; Key input processing

Processing C

BR LOOP

In Example 2 , suppose the timer carry FF is set to “1” immediately after the halt status has been released by key

input.

Then the program executes the “HALT” instruction again after executing the key input processing.

Because the timer carry FF remains set at this time, the halt status is immediately released.

Usually, however, a high level is input for about 100 ms as key input. Consequently, execution further branches

to the key input processing.

As a result, the timer carry FF is not correctly detected.

Remark The flag names may differ depending on the model used. Refer to the Data Sheet of each model.

187

CHAPTER 13 STANDBY FUNCTIONS

13.5 Clock Stop Function

The clock stop function stops the crystal oscillation circuit by executing the “STOP s” instruction (clock stop status).

Therefore, the current consumption of the device is decreased to the minimum value.

The current consumption differs depending on the model used. Refer to the Data Sheet of each model.

Specify “0000B” as operand “s” of the “STOP s” instruction.

The “STOP s” instruction is valid only while the CE pin is low.

It is executed as a no-operation (NOP) instruction even when executed while the CE pin is high.

In other words, the “STOP s” instruction must be executed while the CE pin is low.

The clock stop status is released by raising the level of the CE pin from low to high (CE reset).

13.5.1 through 13.5.3 explain the clock stop status, how to release the clock stop status, and notes on using the

clock stop instruction.

13.5.1 Clock stop status

Because the crystal oscillation circuit is stopped in the clock stop status, all the device operations, such as those

of the CPU and peripheral hardware, are stopped.

For the operations of the CPU and peripheral hardware, refer to the Data Sheet of each model.

The power failure detection circuit does not operate in the clock stop status even if the supply voltage VDD of the

device is lowered to 2.2 V. Therefore, the data memory can be backed up at a low voltage. For the details on the

power failure detection circuit, refer to CHAPTER 14 RESET FUNCTIONS.

13.5.2 Releasing clock stop status

The clock stop status is released either by raising the level of the CE pin from low to high (CE reset), or by lowering

the supply voltage VDD of the device to 2.2 V or less once, and then increasing it to 4.5 V (power-ON reset).

Figures 13-3 and 13-4 respectively show how the clock stop is released on CE reset and power-ON reset.

If the clock stop status is released by power-ON reset, the power failure detection circuit operates.

For the details on power-ON reset, refer to 14.4 Power-ON Reset .

188

CHAPTER 13 STANDBY FUNCTIONS

Figure 13-3. Releasing Clock Stop Status by CE Reset

Figure 13-4. Releasing Clock Stop Status by Power-ON Reset

5 V

0 V
H

L
H

L

VDD

CE pin

XOUT pin

STOP s instruction Program starts from address 0 (CE reset)

Operation is as follows if clock stop instruction is not used
5 V

0 V
H

L
H

L

VDD

CE pin

XOUT pin

0 - tSET

Program starts from address 0 (CE reset)
CE reset is effected in synchronization with setting of
timer carry (basic timer 0 carry) FF after CE pin has
gone high

About 50 ms

5 V

0 V
H

L
H

L

VDD

CE pin

XOUT pin

Operation is as follows if clock stop instruction is not used
5 V

0 V
H

L
H

L

VDD

CE pin

XOUT pin

STOP s instruction

About 50 ms

Program starts from address 0
(Power-ON reset)

2.2 V

3.5 V

Oscillation stops

About 50 ms

Program starts from address 0
(Power-ON reset)

189

CHAPTER 13 STANDBY FUNCTIONS

13.5.3 Troubles occurring as result of executing clock stop instruction, when CE pin is high,

and remedies therefor

The clock stop instruction (STOP s) is valid, when the CE pin is at the low level.

Therefore, it is necessary to design processing that can be executed, when the CE pin happens to be at the high

level.

In the following program example, the CE pin status is detected in <1>. If it is at a low level, the clock stop instruction

“STOP XTAL” in <2> is executed, after processing A has been performed.

However, if the CE pin goes high, while the STOP XTAL instruction is being executed, as shown in Figure 13-5,

the instruction is treated as a no-operation (NOP) instruction.

At this time, assuming that the branch instruction “BR $-1” in <3> is missing, the program execution enters the main

processing, and malfunctioning may take place.

Therefore, either insert the branch instruction, as shown in <3>, or the program must be designed so that no

malfunction takes place, even after the execution enters the main processing.

When a branch instruction is used as in <3>, CE reset is effected in synchronization with the next setting for the

timer carry (basic timer 0 carry) FF, as shown in Figure 13-5, even when the CE pin level remains high.

Example

XTAL DAT 0000B ; Symbol definition for clock stop condition

CEJDG:

; <1>

SKF1 CE ; Macroinstruction

; Detects input level for CE pin

BR MAIN ; Branches to main processing if CE = high level

 Processing A ; Processing, when CE = low

; <2>

STOP XTAL ; Clock stops

; <3>

BR $-1

MAIN:

 Main processing

BR CEJDG

190

CHAPTER 13 STANDBY FUNCTIONS

Figure 13-5. Malfunctioning in Clock Stop Instruction, Due to CE Pin Input, and Remedy

5 V

0 V
VDD

H

L
Main

processing

<1><1><1> <2> STOP XTAL
is treated as NOP
because CE pin is high

Program starts from address 0 in
synchronization with setting of
timer carry (basic timer 0 carry)
FF (CE reset)

Detection of CE

Processing A

CE pin

CHAPTER 14 RESET FUNCTIONS

The reset functions are to initialize the device operation and are divided into power-ON reset and CE reset functions.

Which of the two reset functions is to be effected is determined by the program, after the operation has been started,

and an appropriate initialization program is executed.

The operation performed by the hardware and program, to determine which reset function is to be implemented,

is called power failure detection.

Power-ON reset is performed when the supply voltage VDD of the device is lowered from a specific level. At power-

ON reset, all the contents of the internal registers that can be rewritten are initialized.

The CE reset function is to resume operations, after data are retained at a low voltage in the range permitted by

the specifications in the clock stop status. Usually, therefore, the data memory contents are not rewritten, and the

main routine execution is resumed, after the major registers have been initialized.

Remark The names of the timers and flags used for reset differ depending on the product. Refer to the Data Sheet

of each model (in this chapter, timer carry, TMCY flag, and TMMD0 and 1 flags are used).

• Timer carry ↔ Basic timer 0 carry

• TMCY flag ↔ BTM0CY flag

• TMMD0, TMMD1, TMMD2, TMMD3 flags ↔ BTM0CY0, BTM0CY1, BTM1CY0, BTM1CY1 flags

14.1 Configuration of Reset Block

Figure 14-1 shows the configuration of the reset block.

The device is reset in two ways: by applying supply voltage VDD (power-ON reset or VDD reset) and by using the

CE pin (CE reset).

The power-ON reset block consists of a voltage detection circuit that detects a voltage input to the VDD pin, a power

failure detection circuit, and a reset control circuit.

The CE reset block consists of a circuit that detects the rising of a signal input to the CE pin, and a reset control

circuit.

Figure 14-1. Configuration Example of Reset Block

Selector

Timer carry

Divider

Reset control
circuit

Control register
System register
Stack
Program counter

Forced halt by timer carry

Reset signal
IRES

RES

RESET

STOP instruction

Rising
detection

circuit

Voltage
detection

circuit

Timer carry disable FF

R
S Q

TMCY flag read

STOP s
instruction

Power-ON clear signal (POC)

Power failure detection blockXOUT

XIN

VDD

CE

Timer FF block

191

192

CHAPTER 14 RESET FUNCTIONS

14.2 Reset Function

Power-ON reset is effected when supply voltage VDD rises from a specific level, and CE reset is effected when the

CE pin goes high.

Power-ON reset initializes the program counter, stack, system register, and control registers, and executes the

program from address 0000H.

CE reset initializes the program counter, stack, system register, and some control registers, and executes the

program from address 0000H.

The major differences between power-ON reset and CE reset are the control registers that are initialized and the

operation of the power failure detection circuit that is explained in 14.6.

Both power-ON reset and CE reset are controlled by the reset signals IRES, RES, and RESET output from the

reset control circuit shown in Figure 14-1.

Table 14-1 shows the relation among the IRES, RES, and RESET signals, and power-ON reset, and CE reset.

The reset control circuit also operates when the clock stop instruction (STOP s) explained in CHAPTER 13

STANDBY FUNCTIONS is executed.

14.3 and 14.4 respectively explain CE reset and power-ON reset.

14.5 explains the relation between CE reset and power-ON reset.

Table 14-1. Relation between Internal Reset Signals and Each Reset Operation

Internal Reset Signal Output Signal Control Operation by Each Reset Signal

CE Reset Power-ON Clock Stop

Reset

IRES × Forcibly sets device in halt status.

Halt status is released when timer carry FF is

set.

RES × Initializes some control registers.

RESET Initializes program counter, stack, system

register, and some control registers.

193

CHAPTER 14 RESET FUNCTIONS

14.3 CE Reset

CE reset is effected when the CE pin goes high.

When the CE pin goes high, the RESET signal is output in synchronization with the rising edge of the next timer

carry FF setting pulse, and the device is reset.

When CE reset is effected, the RESET signal initializes the program counter, stack, system register, and some

control registers, and the program is executed starting from address 0000H.

For the value to which each of the above registers is initialized, refer to the Data Sheet of each model.

The operation of CE reset differs depending on whether the clock stop instruction is used.

The differences in operation are explained in 14.3.1 and 14.3.2.

14.3.3 explains the points to be noted on using CE reset.

14.3.1 CE reset when clock stop (STOP s) instruction is not used

Figure 14-2 shows the operation of CE reset when the clock stop (STOP s) instruction is not used.

When the STOP s instruction is not used, the timer mode select register of the control registers is not initialized.

After the CE pin has gone high, therefore, the RESET signal is output at the rising edge of the timer carry FF setting

pulse selected at that time, and the device is reset.

Remark The timer mode select register is sometimes referred to as the basic timer clock select register depending

on the model. Refer to the Data Sheet of each model.

Figure 14-2. CE Reset Operation When Clock Stop Instruction Is Not Used

5 V

0 V
H

L
H

L
H

L
H

L
H

L
H

L

VDD

CE

XOUT

Timer carry FF
setting pulse

IRES

RES

RESET

Normal operation
Normal
operation

CE reset is effected at rising of
timer carry FF setting pulse.

If selected timer carry FF setting time is tSET,
this period “t” is 0 < t < tSET depending on timing of rising of CE pin.
During this period, program continues its operation.

R
es

et
 s

ig
na

ls

194

CHAPTER 14 RESET FUNCTIONS

14.3.2 CE reset when clock stop (STOP s) instruction is used

Figure 14-3 shows the operation of CE reset when the clock stop (STOP s) instruction is used.

When the STOP s instruction is used, the IRES, RES, and RESET signals are output as soon as the STOP s

instruction has been executed.

At this time, the timer mode select register of the control registers is initialized to 0000B by the RES signal, the

timer carry FF setting signal is set to 100 ms.

Because the IRES signal is output while the CE pin is low, the halt status, which can be released by the timer carry,

is forcibly set.

However, the device stops operation because the clock is stopped.

When the CE pin goes high, the clock stop status is released, and oscillation starts.

Because the halt status that can be released by the timer carry is set at this time by the IRES signal, the program

starts from address 0 when the CE pin goes high and then the timer carry FF setting pulse rises.

Because the timer carry FF setting pulse is initialized to 100 ms, CE reset is effected 50 ms after the CE pin has

gone high.

Figure 14-3. CE Reset Operation When Clock Stop Instruction Is Used

5 V

0 V
H

L
H

L
H

L
H

L
H

L
H

L

VDD

CE

XOUT

IRES

RES

RESET

Normal operation

Timer carry FF
setting pulse

Clock stop status Halt status

Stop s instruction Clock oscillation starts
Stop released

CE reset
Program starts from address 0.

50 ms

R
es

et
 s

ig
na

ls

195

CHAPTER 14 RESET FUNCTIONS

14.3.3 Notes on CE reset

Because CE reset is effected regardless of the instruction under execution, the following points <1> and <2> must

be noted.

(1) Time to execute timer processing such as watch

When developing a watch program by using the timer carry or timer interrupt, the processing of that program

must be completed in specific time.

For details, refer to the Data Sheet of each model.

(2) Processing of data and flag used for program

Care must be exercised in rewriting the contents of data or flag that cannot be processed with one instruction

and whose contents must not change even when CE reset is effected, such as a security code.

This is explained in detail by using the following examples.

196

CHAPTER 14 RESET FUNCTIONS

Examples 1.

R1 MEM 0.01H ; First digit of key input data of security code

R2 MEM 0.02H ; Second digit of key input data of security code

R3 MEM 0.03H ; First digit data for changing security code

R4 MEM 0.04H ; Second digit data for changing security code

M1 MEM 0.11H ; First digit of current security code

M2 MEM 0.12H ; Second digit of current security code

START:

 Key input processing

R1 ← contents of key A ; Security code input wait mode

R2 ← contents of key B ; Substitutes contents of pressed key into R1 and R2.

SET2 CMP, Z ;<1> ; Compares security code with input data.

SUB R1, M1

SUB R2, M2

SKT1 Z

BR ERROR ; Input data is different from security code.

MAIN:

 Key input processing

R3 ← contents of key C ; Security code rewriting mode

R4 ← contents of key D ; Substitutes contents of pressed key into R3 and R4.

ST M1, R3 ;<2> ; Rewrites security code.

ST M2, R4 ;<3>

BR MAIN

ERROR:

 Must not operate

Suppose the current security code is “12H” in the above program, the contents of data memory areas M1 and M2

are “1H” and “2H”, respectively.

If CE reset is effected, the contents of key input are compared with security code “12H” in <1>. If they coincide,

the normal processing is performed.

If the security code is changed by the main processing, the new code is written to M1 and M2 in <2> and <3>.

Suppose the security code is changed to “34H”, “3H” and “4H” are written to M1 and M2, respectively, in <2> and

<3>.

If CE reset is effected at the point where <2> is executed, the program is executed from address 0000H without

<3> executed.

Consequently, the security code is changed to “32H”, making impossible to clear the security.

In this case, use the program shown in following Example 2 .

197

CHAPTER 14 RESET FUNCTIONS

Examples 2.

R1 MEM 0.01H ; First digit of key input data of security code

R1 MEM 0.01H ; First digit of key input data of security code

R2 MEM 0.02H ; Second digit of key input data of security code

R3 MEM 0.03H ; First digit data for changing security code

R4 MEM 0.04H ; Second digit data for changing security code

M1 MEM 0.11H ; First digit of current security code

M2 MEM 0.12H ; Second digit of current security code

CHANGE FLG 0.13H.0 ; “1” while security code is changed

START:

 Key input processing

R1 ← contents of key A ; Security code input wait mode

R2 ← contents of key B ; Substitutes contents of pressed key into R1 and R2.

SKT1 CHANGE ;<4> ; If CHANGE flag is “1”

BR SECURITY_CHK

ST M1, R3 ; rewrites M1 and M2.

ST M2, R4

CLR1 CHANGE

SECURITY_CHK:

SET2 CMP, Z ;<1> ; Compares security code with input data.

SUB R1, M1

SUB R2, M2

SKT1 Z

BR ERROR ; Input data is different from security code.

MAIN:

 Key input processing

R3 ← contents of key C ; Security code rewriting mode

R4 ← contents of key D ; Substitutes contents of pressed key into R3 and R4.

SET1 CHANGE ;<5> ; Until security code is changed

; Sets CHANGE flag to “1”.

ST M1, R3 ;<2> ; Rewrites security code

ST M2, R4 ;<3>

CLR1 CHANGE ; When security code has been changed, sets

; CHANGE flag to “0”.

BR MAIN

ERROR:

 Must not operate

In the program in Example 2 , the CHANGE flag is set to “1” in <5> before the security code is changed in <2> and

<3>.

Therefore, the security code is rewritten in <4> even if CE reset is effected before <3> is executed.

198

CHAPTER 14 RESET FUNCTIONS

14.4 Power-ON Reset

Power-ON reset is effected when the supply voltage VDD of the device rises from a specific level (called power-

ON clear voltage).

If the supply voltage VDD is lower than the power-ON clear voltage, a power-ON clear signal (POC) is output from

the voltage detection circuit shown in Figure 14-1.

When the power-ON clear voltage is output, the crystal oscillation circuit is stopped, and the device operation is

stopped.

While the power-ON clear signal is output, the IRES, RES, and RESET signals are output.

If supply voltage VDD exceeds the power-ON clear voltage, the power-ON clear signal is cleared, and crystal

oscillation is started. At the same time, the IRES, RES, and RESET signals are also cleared.

At this time, the halt status is set to be released by the timer carry due to the IRES signal. Therefore, power-ON

reset is effected at the rising edge of the next timer carry FF setting signal.

The timer carry FF setting signal is initialized to 100 ms by the RESET signal. For this reason, reset is effected

50 ms after supply voltage VDD has exceeded the power-ON clear voltage, and the program is started from address

0.

This operation is illustrated in Figure 14-4.

The program counter, stack, system register, and control registers are initialized as soon as the power-ON clear

signal has been output.

For the value to which each of the above registers is to be initialized, refer to the Data Sheet of each model.

The power-ON clear voltage is 3.5 V (rated value) during normal operation, and 2.2 V (rated value) in the clock

stop status.

The operations performed when the power-ON clear voltage is at the respective levels are explained in 14.4.1 and

14.4.2.

The operation to be performed if the supply voltage VDD rises from 0 V is explained in 14.4.3.

Figure 14-4. Operation of Power-ON Reset

5 V

0 V
H

L
H

L
H

L
H

L
H

L
H

VDD

CE

XOUT

IRES

RES

RESET

Normal operation

Timer carry FF
setting pulse

Device operation stops Halt status

Power-ON clear released
Oscillation starts

Power-ON reset
Program starts
from address 0.

50 ms

L
H

L

Power-ON clear signal

Power-ON clear voltage

R
es

et
 s

ig
na

ls

199

CHAPTER 14 RESET FUNCTIONS

14.4.1 Power-ON reset during normal operation

Figure 14-5 (a) shows the operation.

As shown in the figure, the power-ON clear signal is output and the device operation stops regardless of the input

level of the CE pin, if the supply voltage VDD drops below 3.5 V.

If VDD rises beyond 3.5 V again, the program starts from address 0000H after 50 ms of halt status.

The “normal operation” is when the clock stop instruction is not used and includes the halt status that is set by the

halt instruction.

14.4.2 Power-ON reset in clock stop status

Figure 14-5 (b) shows the operation.

As shown in the figure, the power-ON clear signal is output and the device operation stops if supply voltage VDD

drops below 2.2 V.

However, it seems as if the device operation were not changed because the device is in the clock stop status.

When supply voltage VDD rise beyond 3.5 V next time, the program starts from address 0000H after 50 ms of halt

status.

14.4.3 Power-ON reset when supply voltage V DD rises from 0 V

Figure 14-5 (c) shows the operation.

As shown in the figure, the power-ON clear signal is output until supply voltage VDD rises from 0 V to 3.5 V.

When VDD rises beyond the power-ON clear voltage, the crystal oscillation circuit starts operating, and the program

starts from address 0000H after 50 ms of halt status.

200

CHAPTER 14 RESET FUNCTIONS

Figure 14-5. Power-ON Reset and Supply Voltage V DD

(a) During normal operation (including halt status)

(b) In clock stop status

(c) When supply voltage V DD rises from 0 V

5 V

0 V
H

L
H

L
H

VDD

CE

XOUT

L
Power-ON

clear signal

Power-ON clear voltage

Normal operation Device operation stops Halt status

50 ms

Power-ON clear released
Oscillation starts

Power-ON reset
Program starts from address 0.

3.5 V

5 V

0 V

H

L
H

L
H

VDD

CE

XOUT

L
Power-ON

clear signal

2.2 V
3.5 V Power-ON clear voltage

Normal operation Device operation stops Halt status

50 ms

Power-ON clear released
Oscillation starts

Power-ON reset
Program starts from address 0.

STOP s instruction

Clock stop

5 V

0 V

H

L
H

L
H

VDD

CE

XOUT

L
Power-ON

clear signal

Power-ON clear voltage3.5 V

Device operation stops Halt status

50 ms

Power-ON clear released
Oscillation starts

Power-ON reset
Program starts from address 0.

201

CHAPTER 14 RESET FUNCTIONS

14.5 Relation between CE Reset and Power-ON Reset

There is a possibility that power-ON reset and CE reset are effected at the same time when power is first applied.

The reset operations performed at this time are explained in 14.5.1 through 14.5.3.

14.5.4 explains the points to be noted in raising supply voltage VDD.

14.5.1 If VDD pin and CE pin rise simultaneously

Figure 14-6 (a) shows the operation.

At this time, the program starts from address 0000H due to power-ON reset.

14.5.2 If CE pin rises in forced halt status of power-ON reset

Figure 14-6 (b) shows the operation.

At this time, the program starts from address 0000H due to power-ON reset in the same manner as in 14.5.1.

14.5.3 If CE pin rises after power-ON reset

Figure 14-6 (c) shows the operation.

At this time, the program starts from address 0000H due to power-ON reset, and the program starts from address

0000H again at the rising of the next timer carry FF setting signal because of CE reset.

202

CHAPTER 14 RESET FUNCTIONS

Figure 14-6. Relation between Power-ON Reset and CE Reset

(a) If VDD and CE pins rise simultaneously

(b) If CE pin rises in halt status

(c) If CE pin rises after power-ON reset

5 V

0 V

H

L

H

VDD

CE

L
Timer carry FF

setting pulse

3.5 V Power-ON clear voltage

Halt status
50 ms Normal operation

Power-ON reset
Program starts

Operation
stops

5 V

0 V

H

L

H

VDD

CE

L
Timer carry FF

setting pulse
Halt status

50 ms Normal operation

Power-ON reset
Program starts

Power-ON clear voltage3.5 V

Operation
stops

5 V

0 V

H

L

H

VDD

CE

L
Timer carry FF

setting pulse
Halt status

50 ms Normal operation

Power-ON reset
Program starts

Power-ON clear voltage3.5 V

CE reset
Program starts

Operation
stops

203

CHAPTER 14 RESET FUNCTIONS

14.5.4 Notes on raising supply voltage V DD

When raising supply voltage VDD, keep in mind the following points (1) and (2).

(1) When raising supply voltage V DD from power-ON clear voltage

It is necessary to raise supply voltage VDD to higher than 3.5 V at least once.

This is illustrated in Figure 14-7.

Suppose, for example, only a voltage less than 3.5 V is applied on application of VDD with a program that backs

up VDD at 2.2 V by using the clock stop instruction, as shown in Figure 14-7, the power-ON clear signal is

continuously output, and the program does not operate.

Because the output ports of the device output undefined values, the current consumption increases in some

cases.

If the device is backed up by batteries, therefore, the back-up time is substantially shortened.

Figure 14-7. Notes on Raising V DD

5 V

0 V

H

L

H

VDD

CE

L

Timer carry
FF setting pulse

H

L

H

L

3.5 V
2.2 V

XOUT

Power-ON
clear signal

Operation stops

Opera-
tion
stops

Halt status
50 ms Normal operation Back up

Current consumption may increase
during this period because
output ports are undefined.

Power-ON reset
Program starts

STOP s
instruction

Power-ON
clear voltage

Initialization is
executed during
this period, and
then clock stop
instruction is
executed.

204

CHAPTER 14 RESET FUNCTIONS

(2) Restoring from clock stop status

To restore the device from the back-up status while supply voltage VDD is backed up at 2.2 V by using the clock

stop instruction, VDD must be raised to 3.5 V or higher within 50 ms after the CE pin has gone high.

As shown in Figure 14-8, the device is restored from the clock stop status by means of CE reset. Because

the power-ON clear voltage is changed to 3.5 V 50 ms after the CE pin has gone high, power-ON reset is

effected unless VDD is 3.5 V or higher at this point.

The same applies when VDD is lowered.

Figure 14-8. Restoring from Clock Stop Status

5 V

0 V

H

L

H

VDD

CE

L

Timer carry
FF setting pulse

H

L

H

L

3.5 V
2.2 V

XOUT

Power-ON
clear signal

Power-ON
clear voltage

Back up by clock
stop instruction

Halt status
50 ms Normal operation

Processing
where
CE = low Back up

CE reset
Program starts

STOP s
instruction

Power-ON clear voltage is
changed to 3.5 V at this point.
Therefore, VDD must rise to 3.5 V
or higher before this point.

Power-ON clear voltage is
changed to 2.2 V at this point.
Therefore, VDD must not fall
below 3.5 V before this point.

205

CHAPTER 14 RESET FUNCTIONS

14.6 Power Failure Detection

Power failure detection is used to judge whether power-ON reset by application of supply voltage VDD, or CE reset

has been effected when the device is reset, as shown in Figure 14-9.

Because the contents of the data memory and ports are “undefined” on power application, these contents are

initialized by means of power failure detection.

In contrast, the previous values of the data memory and output port remain unchanged at CE reset, and therefore,

they do not have to be initialized.

A power failure can be detected in two ways: by using the power failure detection circuit to detect the TMCY flag,

and by detecting the contents of the data memory (RAM judgement).

14.6.1 and 14.6.2 explain how a power failure is detected by using the power failure detection circuit and TMCY

flag.

14.6.3 and 14.6.4 explain how a power failure is detected by RAM judgement method.

Figure 14-9. Power Failure Detection Flow Chart

14.6.1 Power failure detection circuit

The power failure detection circuit consists of a voltage detection circuit, a timer carry disable flip-flop that is set

by the output (power-ON clear signal) of the voltage detection circuit, and a timer carry, as shown in Figure 14-1.

The timer carry disable FF is set to “1” by the power-ON clear signal, and is reset to “0” when an instruction that

reads the TMCY flag is executed.

When the timer carry disable FF is set to “1”, the TMCY flag is not set to “1”.

When the power-ON clear signal is output (at power-ON reset), the program is started with the TMCY flag reset,

and the TMCY flag is disabled from being set until an instruction that reads the TMCY flag is executed.

Once the instruction that reads the TMCY flag has been executed, the TMCY flag is set each time the timer carry

FF setting pulses has risen. It can be judged whether power-ON reset (power failure) or CE reset (not power failure)

has been effected by detecting the contents of the TMCY flag when the device is reset. Power-ON reset has been

effected if the TMCY flag is reset to “0”; CE reset has been effected if it is set to “1”.

The voltage at which a power failure can be detected is the same as the voltage at which power-ON reset is effected,

or VDD = 3.5 V during crystal oscillation, or VDD = 2.2 V in the clock stop status.

Figure 14-10 shows the transition of the status of the TMCY flag.

Figures 14-11 and 14-10 show the timing chart and the operation of the TMCY flag.

Program starts

Power
failure detection

Power failure

Not power
failure Initializes data

memory and
output ports

206

CHAPTER 14 RESET FUNCTIONS

Figure 14-10. Status Transition of TMCY Flag

CE = low CE = any CE = high

 < 1 > VDD = low
Operation stops

Crystal oscillation starts
Forced halt (approx. 50 ms)

Power-ON reset

 < 2 >

Clock stop

 < 5 >

CE resetNormal
operation

STOP 0 CE = H → L

Disables setting of
TMCY flag.

Normal operation
CE reset wait

Crystal oscillation starts
Forced halt (50 ms)

SKT1 TMCY or
SKF1 TMCY

TMCY = 0

Timer carry FF
setting pulse rises.

CE = L CE = H

SKT1 TMCY or
SKF1 TMCY

CE = L → H

CE = L → H

Clock stop CE reset
STOP 0 CE = H → L

Enables setting
of TMCY flag

Normal operation
CE reset wait

Crystal oscillation starts
Forced halt (50 ms)

TMCY = 1

Timer carry FF
setting pulse rises.

CE = L → H

CE = L → H

VDD = L → 3.5 V

 < 3 >

Normal
operation

 < 7 >

< 8 >

< 9 >

 < 10 > < 11 >

<12 > < 13 >

Normal
operation

Normal
operation

 < 14 > < 15 >

 < 16 >

 < 17 >

 < 4 > < 6 >

207

CHAPTER 14 RESET FUNCTIONS

Figure 14-11. Operation of TMCY Flag

(a) When BTM0CY flag never detected (SKT1 TMCY or SKF1 TMCY is not executed)

(b) When detecting power failure by TMCY flag

5 V

0 V
H

L
H

L
H

VDD

CE

L

Timer carry
FF setting pulse

TMCY

Operation in
Figure 13-10

Timer time
changed

STOP
0000 B

< 1 > < 2 > < 6 > < 8 > < 6 > < 5 > < 4 > < 9 > < 6 > < 1 >

< 7 >< 7 >< 3 >

< 5 >

5 V

0 V
H

L
H

L
H

VDD

CE

L

Timer carry
FF setting pulse

TMCY

Operation in Figure 13-10

Timer time
changed

STOP
0000 B

TMCY = 0
Power failure

TMCY = 1
Not power failure

TMCY = 1
Not power failure

< 1 > < 2 > <6> <14> < 13 > < 16 > < 14 > < 13 > < 12 > < 17 > < 14 > < 1 >

< 15 > < 15 >< 3 >
< 11 >

SKT1 TMCY instruction

208

CHAPTER 14 RESET FUNCTIONS

14.6.2 Notes on detecting power failure by TMCY flag

The following points must be noted when using the TMCY flag for watch counting.

(1) Updating watch

When developing a watch program by using the timer carry, the watch must be updated after a power failure

has been detected.

This is because counting of the watch is skipped once because the TMCY flag is reset to “0” when the TMCY

flag is read on detection of a power failure.

(2) Watch updating processing time

The processing to update the watch must be completed before the next timer carry FF setting pulse rises.

This is because, if the CE pin goes high during the watch updating processing, CE reset is effected without

the watch updating processing completed.

When detecting a power failure, the following points must be noted.

(3) Timing of power failure detection

To count the watch by using the TMCY flag, the TMCY flag must be read to detect a power failure within the

time since the program has started from address 0000H until the next timer carry FF setting pulse rises.

For example if the timer carry FF setting time is set to 5 ms, and a power failure is detected 6 ms after the

program has been started, the TMCY flag is overlooked once.

Power failure detection and initial processing must be completed within the timer carry FF setting time as shown

in the following example.

This is because, if the CE pin goes high and CE reset is effected during power failure detection processing

and initial processing, these processing may be stopped in midway, and thus problems may occur.

To change the timer carry FF setting time by the initial processing, the instruction that changes the time must

be executed at the end of the initial processing, and the instruction must be one instruction.

This is because the initial processing may not be completely executed because of CE reset if the timer carry

FF setting time is changed before the initial processing is executed, as shown in the following example.

209

CHAPTER 14 RESET FUNCTIONS

Example
START: ; Program address 0000H
;<1>

Processing on reset

;<2>
SKT1 TMCY ; Power failure detection
BR INITIAL

BACKUP:
;<3>

Watch updating

BR MAIN
INITIAL:
;<4>

Initial processing

;<5>
INITFLG TMMD1, NOT TMMD0 ; Embedded macro

; Sets timer carry FF setting time to 5 ms

MAIN:

Main processing

SKT1 TMCY
BR MAIN

Watch updating

BR MAIN

Example of operation

5 V
0 V

H
L

H
L

VDD

CE

Timer carry FF
setting pulse

50 ms 5 ms

< 2 > Power failure detection

If processing time of < 1 > + < 4 > is
longer than 100 ms, CE reset is effected
in middle of processing < 4 >.

If processing time of < 1 > + < 3 >
is too long, CE reset is effected.

< 5 >

CE reset CE reset

50 ms

5-ms pulse

50-ms pulse

 < 1 > < 4 > < 1 > < 3 >

< 2 > Power failure detection

CE reset may be effected immediately depending
on when timer carry FF setting time is changed.
Therefore, if < 5 > is executed before < 4 >,
power failure processing < 4 > may not be
completely executed.

210

CHAPTER 14 RESET FUNCTIONS

14.6.3 Power failure detection by RAM judgement method

The RAM judgement method is to detect a power failure by judging whether the contents of the data memory at

a specific address are the specified value.

An example of a program that detects a power failure by the RAM judgement method is shown below.

The RAM judgement method detects a power failure by comparing an “undefined” value with the “specified value”

because the contents of the data memory are “undefined” on application of supply voltage VDD.

Therefore, there is a possibility that a wrong judgment may be made as explained in 14.6.4 Notes on detecting

power failure by RAM judgement method .

When the RAM judgement method is used, however, the device can be backed up at a voltage lower than that at

which a power failure is detected, by using the power failure detection circuit, as shown in Table 14-2.

Table 14-2. Comparing Power Failure Detection by Power Failure Detection

Circuit and RAM Judgement Method

Power Failure Detection Circuit RAM Judgement Method

Data hold voltage Effective value Rated value Effective value Rated value

(in clock stop status) 1-2 V 2.2 V 0-1 V 2.0 V

Operating status No malfunctioning Malfunctioning may occur

211

CHAPTER 14 RESET FUNCTIONS

Example Program to detect power failure by RAM judgement method

M012 MEM 0.12H

M034 MEM 0.34H

M056 MEM 0.56H

M107 MEM 1.07H

M128 MEM 1.28H

M16F MEM 1.6FH

DATA0 DAT 1010B

DATA1 DAT 0101B

DATA2 DAT 0110B

DATA3 DAT 1001B

DATA4 DAT 1100B

DATA5 DAT 0011B

START:

SET2 CMP, Z

SUB M012, #DATA0 ; If M012 = DATA0 and

SUB M034, #DATA1 ; M034 = DATA1 and

SUB M056, #DATA2 ; M035 = DATA2 and

BANK1

SUB M107, #DATA3 ; M107 = DATA3 and

SUB M128, #DATA4 ; M128 = DATA4 and

SUB M16F, #DATA5 ; M16F = DATA5,

BANK0

SKF1 Z

BR BACKUP ; branches to BACKUP

;INITIAL:

Initial processing

MOV M012, #DATA0

MOV M034, #DATA1

MOV M056, #DATA2

BANK1

MOV M107, #DATA3

MOV M128, #DATA4

MOV M16F, #DATA5

BR MAIN

BACKUP:

Backup processing

MAIN:

Main processing

212

CHAPTER 14 RESET FUNCTIONS

14.6.4 Notes on detecting power failure by RAM judgement method

The value of the data memory on application of supply voltage VDD is basically “undefined”, and therefore, the

following points (1) and (2) must be noted.

(1) Data to be compared

Where the number of bits of the data memory to be compared by the RAM judgement method is “n bits”, the

probability at which the value of the data memory coincides with the value to be compared on application of

VDD is (1/2)n.

This means that backup is judged at a probability of (1/2)n when a power failure is detected by the RAM

judgement method.

To lower this probability, as many bits as possible must be compared.

Because the contents of the data memory on application of VDD are likely to be the same value such as “0000B”

and “1111B”, it is recommended to mix “0” and “1” as data to be compared, such a “1010B” and “0110B” to

reduce the possibility of a wrong judgment.

(2) Notes on program

If VDD rises from the level at which the data memory contents may be destroyed as shown in Figure 14-12,

and even if the value of the data memory area to be compared is normal, the values of the other data memory

areas may be destroyed.

This is judged as backup if a power failure is detected by the RAM judgement method. Therefore, consideration

must be given so that the program does not hang up even if the contents of the data memory are destroyed.

Figure 14-12. V DD and Destruction of Data Memory Contents

Data memory destruction start voltage

5 V

0 V

VDD

Values of data memory areas not used for RAM judgement may be destroyed.

Data memory for RAM judgement (normal)

Data memory

CHAPTER 15 INSTRUCTION SET

Some mnemonics are not supported by some devices. Refer to the Data Sheet of the target device or User’s Manual

of the device file.

15.1 Instruction Set Outline

b15

b14 – b11 0 1

BIN HEX

0 0 0 0 0 ADD r, m ADD m, #n4

0 0 0 1 1 SUB r, m SUB m, #n4

0 0 1 0 2 ADDC r, m ADDC m, #n4

0 0 1 1 3 SUBC r, m SUBC m, #n4

0 1 0 0 4 AND r, m AND m, #n4

0 1 0 1 5 XOR r, m XOR m, #n4

0 1 1 0 6 OR r, m OR m, #n4

0 1 1 1 7 INC AR

INC IX

MOVT DBF, @AR

BR @AR

CALL @AR

RET

SYSCAL entry

RETSK

EI

DI

RETI

PUSH AR

POP AR

GET DBF, p

PUT p, DBF

PEEK WR, rf

POKE rf, WR

RORC r

STOP s

HALT h

NOP

1 0 0 0 8 LD r, m ST m, r

1 0 0 1 9 SKE m, #n4 SKGE m, #n4

1 0 1 0 A MOV @r, m MOV m, @r

1 0 1 1 B SKNE m, #n4 SKLT m, #n4

1 1 0 0 C BR addr (page 0) CALL addr

1 1 0 1 D BR addr (page 1) MOV m, #n4

1 1 1 0 E BR addr (page 2) SKT m, #n

1 1 1 1 F BR addr (page 3) SKF m, #n

213

214

CHAPTER 15 INSTRUCTION SET

15.2 Legend

AR : Address register

ASR : Address stack register indicated by stack pointer

addr : Program memory address (11 bits, with highest bit fixed to 0)

BANK : Bank register

CMP : Compare flag

CY : Carry flag

DBF : Data buffer

entry : Entry address of system segment

h : Halt release condition

INTEF : Interrupt enable flag

INTR : Register automatically saved to stack when interrupt occurs

INTSK : Interrupt stack register

IX : Index register

MP : Data memory row address pointer

MPE : Memory pointer enable flag

m : Data memory address indicated by mR, mC

mR : Data memory row address (high)

mC : Data memory column address (low)

n : Bit position (4 bits)

n4 : Immediate data (4 bits)

PC : Program counter

p : Peripheral address

pH : Peripheral address (high-order 3 bits)

pL : Peripheral address (low-order 4 bits)

r : General register column address

rf : Register file address

rfR : Register file row address (high-order 3 bits)

rfC : Register file column address (low-order 4 bits)

SP : Stack pointer

s : Stop release condition

WR : Window register

(×) : Contents addressed by ×

215

CHAPTER 15 INSTRUCTION SET

15.3 Instruction List

Instruction Mnemonic Operand Operation
Machine Code

Op Code Operand

Addition ADD r, m (r) ← (r) + (m) 00000 mR mC r

m, #n4 (m) ← (m) + n4 10000 mR mC n4

ADDC r, m (r) ← (r) + (m) + CY 00010 mR mC r

m, #n4 (m) ← (m) + n4 + CY 10010 mR mC n4

INC AR AR ← AR + 1 00111 000 1001 0000

IX IX ← IX + 1 00111 000 1000 0000

Subtraction SUB r, m (r) ← (r) – (m) 00001 mR mC r

m, #n4 (m) ← (m) – n4 10001 mR mC n4

SUBC r, m (r) ← (r) – (m) – CY 00011 mR mC r

m, #n4 (m) ← (m) – n4 – CY 10011 mR mC n4

Logical OR r, m (r) ← (r) ∨ (m) 00110 mR mC r

operation m, #n4 (m) ← (m) ∨ n4 10110 mR mC n4

AND r, m (r) ← (r) ∧ (m) 00100 mR mC r

m, #n4 (m) ← (m) ∧ n4 10100 mR mC n4

XOR r, m (r) ← (r) ∨ (m) 00101 mR mC r

m, #n4 (m) ← (m) ∨ n4 10101 mR mC n4

Test SKT m, #n CMP ←0, if (m) ∧ n = n, then skip 11110 mR mC n

SKF m, #n CMP ← 0, if (m) ∧ n = 0, then skip 11111 mR mC n

Compare SKE m, #n4 (m) – n4, skip if zero 01001 mR mC n4

SKNE m, #n4 (m) – n4, skip if not zero 01011 mR mC n4

SKGE m, #n4 (m) – n4, skip if not borrow 11001 mR mC n4

SKLT m, #n4 (m) – n4, skip if borrow 11011 mR mC n4

Rotate RORC r → CY → (r)b3 → (r) b2 → (r) b1 → (r) b0 00111 000 0111 r

Transfer LD r, m (r) ← (m) 01000 mR mC r

ST m, r (m) ← (r) 11000 mR mC r

MOV @r, m if MPE = 1 : (MP, (r)) ← (m) 01010 mR mC r

if MPE = 0 : (BANK, mR, (r)) ← (m)

m, @r if MPE = 1 : (m) ← (MP, (r)) 11010 mR mC r

if MPE = 0 : (m) ← (BANK, mR, (r))

m, #n4 (m) ← n4 11101 mR mC n4

MOVTNote DBF, @AR SP ← SP – 1, ASR ← PC, PC ← AR, 00111 000 0001 0000

DBF ← (PC), PC ← ASR, SP ← SP +1

PUSH AR SP ← SP – 1, ASR ← AR 00111 000 1101 0000

POP AR AR ← ASR, SP ← SP + 1 00111 000 1100 0000

PEEK WR, rf WR ← (rf) 00111 rfR 0011 rfC

POKE rf, WR (rf) ← WR 00111 rfR 0010 rfC

Note As an exception, two machine cycles are necessary for executing the MOVT instruction.

216

CHAPTER 15 INSTRUCTION SET

Instruction Mnemonic Operand Operation
Op Code

Op Code Operand

Transfer GET DBF, p DBF ← (p) 00111 PH 1011 PL

PUT p, DBF (p) ← DBF 00111 PH 1010 PL

Branch BR addr PC10–0

← addr, PAGE ← 0 01100 addr

PC10–0

← addr, PAGE ← 1 01101

PC10–0

← addr, PAGE ← 2 01110

PC10–0

← addr, PAGE ← 3 01111

@AR PC ← AR 00111 000 0100 0000

Subroutine CALL addr SP ← SP – 1, ASR ← PC,
11100 addr

PC10–0 ← addr, PAGE ← 0

@AR SP ← SP – 1, ASR ← PC, PC ← AR 00111 000 0101 0000

SYSCAL entry SP ← SP – 1, ASR ← PC, SGR ← 1, 00111 entryH 0000 entryL

PC12, 11 ← 0, PC10–8 ← entryH, PC7–4 ← 0,

PC3–0 ← entryL

RET PC ← ASR, SP ← SP + 1 00111 000 1110 0000

RETSK PC ← ASR, SP ← SP + 1 and skip 00111 001 1110 0000

RETI PC ← ASR, INTR ← INTSK, SP ← SP + 1 00111 100 1110 0000

Interrupt EI INTEF ← 1 00111 000 1111 0000

DI INTEF ← 0 00111 001 1111 0000

Other STOP s STOP 00111 010 1111 s

operations HALT h HALT 00111 011 1111 h

NOP No operation 00111 100 1111 0000

217

CHAPTER 15 INSTRUCTION SET

15.4 Assembler (RA17K) Macro instructions

Legend

flag n : FLG type symbol

< > : Can be omitted

Mnemonic Operand Operation n

Embedded SKTn flag 1, ... flag n if (flag 1) to (flag n)=all “1”, then skip 1 ≤ n ≤ 4

macro SKFn flag 1, ... flag n if (flag 1) to (flag n)=all “0”, then skip 1 ≤ n ≤ 4

SETn flag 1, ... flag n (flag 1) to (flag n) ← 1 1 ≤ n ≤ 4

CLRn flag 1, ... flag n (flag 1) to (flag n) ← 0 1 ≤ n ≤ 4

NOTn flag 1, ... flag n if (flag n)=”0", then (flag n) ← 1 1 ≤ n ≤ 4

if (flag n)=”1", then (flag n) ← 0

INITFLG <NOT> flag 1, if description=NOT flag n, then (flag n) ← 0 1 ≤ n ≤ 4

... <<NOT> flag n> if description=flag n, then (flag n) ← 1

BANKn (BANK) ← n 0 ≤ n ≤ 2

Extension BRX Label Jump Label —

CALLX function-name CALL sub-routine —

INITFLGX <NOT/INV> flag 1, if description = NOT (or INV) ← 0 n ≤ 4

... <NOT/INV> flag n flag, (flag) ← 0

if description = flag, (flag) ← 1

218

CHAPTER 15 INSTRUCTION SET

15.5 Instruction Functions

15.5.1 Addition instructions

(1) ADD r,m Add data memory to general register

<1> OP code

10 8 7 4 3 0

00000 mR mC r

<2> Function

When CMP = 0 (r) ← (r) + (m)

Adds the contents of a specified data memory address to the contents of a specified general register,

and stores the result in the general register.

When CMP = 1 (r) + (m)

The result is not stored in the register, and the carry flag (CY) and Zero flag (Z) are affected according

to the result.

If a carry has occurred as a result of the addition, the carry flag (CY) is set. If not, the carry flag is reset.

If the result of the addition is other than zero, the zero flag (Z) is reset, regardless of the compare flag

(CMP).

If the result of the addition becomes zero, with the compare flag reset (CMP = 0), the zero flag (Z) is set.

If the result of the addition becomes zero, with the compare flag set (CMP = 1), the zero flag (Z) is not

changed.

Addition can be executed in binary or BCD, which can be selected by the BCD flag (BCD) of the PSWORD.

<3> Example 1

To add the contents of address 0.2FH to those of address 0.03H and store the result in address 0.03H

when row address 0 (0.00H-0.0FH) of bank 0 is specified as the general register (RPH=0, RPL=0):

(0.03H) ← (0.03H) + (0.2FH)

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

ADD MEM003, MEM02F

219

CHAPTER 15 INSTRUCTION SET

Example 2

To add the contents of address 0.2FH to those of address 0.23H and store the result in address 0.23H

when row address 2 (0.20H-0.2FH) of bank 0 is specified as the general register (RPH=0, RPL=4):

(0.23H) ← (0.23H) + (0.2FH)

MEM023 MEM 0.23H

MEM02F MEM 0.2FH

MOV BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0Note

MOV RPL, #04H ; General register row address 2

ADD MEM023, MEM02F

Note
Register

RPH RPL

RP

b3Bit

Data 0

b2

0

b1

0

b0

0

b3 b2 b1 b0

B

C

D

Bank

Row address

The assignment of RP (general register pointer) in the system register is as shown above.

Therefore, to set bank 0 and row address 2 in a general register, 00H must be stored in RPH and 04H,

in RPL.

In this case, the arithmetic operations to be performed thereafter are carried out in binary and 4-bit units,

because the BCD (binary coded decimal) flag is reset.

Example 3

To add the contents of address 0.6FH to those of address 0.03H and store the result in address 0.03H:

If IXE = 1, IXH = 0, IXM = 4, and IXL = 0, i.e., if IX = 0.40H, data memory address 0.6FH can be specified

by specifying address 2FH.

(0.03H) ← (0.03H) + (0.6FH)

Address obtained by ORing index register contents 0.40H with

data memory address 0.2FH

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV IXH, #00H ; IX ← 00001000000B

MOV IXM, #04H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag ← 1

ADD MEM003, MEM02F ; IX 00001000000B(0.40H)

; Bank operand OR)00000101111B(0.2FH)

; Specified address 00001101111B(0.6FH)

220

CHAPTER 15 INSTRUCTION SET

Example 4

To add the contents of address 0.3FH to those for address 0.03H and store the result in address 0.03H:

If IXE = 1, IXH = 0, IXM = 1, and IXL = 0, i.e., if IX = 0.10H, data memory address 0.3FH can be specified

by specifying address 2FH.

(0.03H) ← (0.03H) + (0.3FH)

Address obtained by ORing index register contents 0.10H with

data memory address 0.2FH

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV BANK, #00H

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV IXH, #00H ; IX ← 00000010000B (0.10H)Note

MOV IXM, #01H

MOV IXL, #00H

SET1 IXE ; IXE flag ← 1

ADD MEM003, MEM02F ; IX 00000010000B(0.10H)

; Bank operand OR)00000101111B(0.2FH)

; Specified address 00100111111B(0.3FH)

Note

The IX (index pointer) assignment in the system register is as shown above.

Therefore, in order that IX = 0.10H, 00H must be stored in IXH, 01H in IXM, and 00H in IXL.

In this case, since the MPE (memory pointer enable) flag is reset, MP (memory pointer) is invalid for

general register indirect transfer.

<4> Precaution

The first operand for the ADD r, m instruction is the column address of a general register. Therefore, if

the instruction is described as follows, the column address of the general register is 03H:

MEM013 MEM 0.13H

MEM02F MEM 0.2FH

ADD MEM013, MEM02F

Means column address of general register.

Low-order 4 bits (03H in this case) are valid.

When CMP flag = 1, the addition result is not stored.

When the BCD flag is 1, the BCD operation result is stored.

Register
IXH IXM

IX

b3Bit

Data

b2

0

b1

0

b0

0

b3 b2 b1 b0

IXL

b3 b2 b1 b0

BankM

P

E
Row address

Column address

0

221

CHAPTER 15 INSTRUCTION SET

(2) ADD m, #n4 Add immediate data to data memory

<1> OP code

10 8 7 4 3 0

10000 mR mC n4

<2> Function

When CMP = 0 (m) ← (m) + n4

Adds the immediate data to the contents of a specified data memory address and stores the results

in the data memory.

When CMP = 1 (m) + n4

The result is not stored in the data memory, and the carry flag (CY) and zero flag (Z) are affected

according to the result.

If a carry has occurred as a result of the addition, the carry flag (CY) is set. If not, the carry flag is reset.

If the result of the addition is other than zero, the zero flag (Z) is reset, regardless of the compare flag

(CMP).

If the result of the addition becomes zero, with the compare flag reset (CMP = 0), the zero flag (Z) is set.

If the result of the addition becomes zero, with the compare flag set (CMP = 1), the zero flag (Z) is not

changed.

Addition can be executed in binary 4-bit units or BCD, which can be selected by the BCD flag (BCD) of

the PSWORD.

<3> Example 1

To add 5 to the contents of address 0.2FH and store the result in address 0.2FH:

(0.2FH) ← (0.2FH) + 5

MEM02F MEM 0.2FH

ADD MEM02F, #05H

Example 2

To add 5 to the contents of address 0.6FH and store the result in address 0.6FH: At this time, if IXE =

1, IXH = 0, IXM = 4, and IXL = 0, i.e., if IX = 0.40H, data memory address 0.6FH can be specified by

specifying address 2FH.

(0.6FH) ← (0.6FH) + 05H

Address obtained by ORing index register contents 0.40H with data

memory address 0.2FH

MEM02F MEM 0.2FH

MOV BANK, #00H ; Data memory bank 0

MOV IXH, #00H ; IX ← 00001000000B(0.40H)

MOV IXM, #04H

MOV IXL, #00H

SET1 IXE ; IXE flag ← 1

ADD MEM02F, #05H ; IX 00001000000B(0.40H)

; Bank operand OR)00000101111B(0.2FH)

; Specified address 00001101111B(0.6FH)

222

CHAPTER 15 INSTRUCTION SET

Example 3

To add 5 to the contents of address 0.2FH and store the result in address 0.2FH: If IXE = 1, IXH = 0, IXM

= 0, and IXL = 0, i.e., if IX = 0.00H, data memory address 0.2FH can be specified by specifying address

2FH.

(2.2FH) ← (0.2FH) + 05H

Address obtained by ORing index register contents 0.00H with data

memory address 0.2FH

MEM02F MEM 0.2FH

MOV BANK, #00H ; Data memory bank 0

MOV IXH, #00H ; IX ← 00000000000B

MOV IXM, #00H

MOV IXL, #00H

SET1 IXE ; IXE flag ← 1

ADD MEM02F, #05H ; IX 00000000000B(0.00H)

; Bank operand OR)00000101111B(0.2FH)

; Specified address 00000101111B(0.2FH)

<4> Precaution

When CMP flag = 1, the result of the addition is not stored.

When BCD flag = 1, the result of a BCD operation is stored.

223

CHAPTER 15 INSTRUCTION SET

(3) ADDC r, m Add data memory to general register with carry flag

<1> OP code

10 8 7 4 3 0

00010 mR mC r

<2> Function

When CMP = 0 (r) ← (r) + (m) + CY

Adds the contents of a specified data memory address and the carry flag CY value to the contents of

a general register, and stores the result in the general register specified by r.

When CMP = 1 (r) + (m) + CY

The result is not stored in the register, and the carry flag (CY) and zero flag (Z) are affected by the

result.

You can use this ADDC instruction to easily add, two or more words.

If a carry has occurred as a result of the addition, the carry flag (CY) is set. If not, the carry flag is reset.

If the result of the addition is other than zero, the zero flag (Z) is reset regardless of the compare flag (CMP).

If the addition results in zero, with the compare flag reset (CMP = 0), the zero flag (Z)is set.

If the result of the addition results in zero, with the compare flag set (CMP = 1), the zero flag (Z) is not

affected.

You can perform addition in binary and 4-bit units or BCD, which you can select by the BCD flag of the

PSWORD.

<3> Example 1

To add the contents of 12-bit addresses 0.2DH through 0.2FH to the 12-bit contents of addresses 0.0DH

through 0.0FH and store the result in the 12 bits of addresses 0.0DH through 0.0FH when row address

0 in bank 0 (0.00H-0.0FH) is specified as a general register:

0.0FH ← (0.0FH) + (0.2FH)

0.0EH ← (0.0EH) + (0.2EH) + CY

0.0DH ← (0.0DH) + (0.2DH) + CY

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MEM02D MEM 0.2DH

MEM02E MEM 0.2EH

MEM02F MEM 0.2FH

MOV BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

ADD MEM00F, MEM02F

ADDC MEM00E, MEM02E

ADDC MEM00D, MEM02D

224

CHAPTER 15 INSTRUCTION SET

Example 2

To shift the 12-bit contents of addresses 0.2DH through 0.2FH 1 bit to the left with the carry flag when

row address 2 (0.20H-0.2FH) of bank 0 is specified as a general register:

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MEM02D MEM 0.2DH

MEM02E MEM 0.2EH

MEM02F MEM 0.2FH

MOV RPH, #00H ; General register bank 0

MOV RPL, #04H ; General register row address 2

MOV BANK, #00H ; Data memory bank 0

ADDC MEM00F, MEM02F

ADDC MEM00E, MEM02E

ADDC MEM00D, MEM02D

Example 3

To add the contents of addresses 0.40H through 0.4FH to the contents of address 0.0FH and store the

result in address 0.0FH:

(0.0FH) ← (0.0FH) + (0.40H) + (0.41H) + ········· + (0.4FH)

MEM00F MEM 0.0FH

MEM000 MEM 0.00H

MOV BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV IXH, #00H ; IX ← 00001000000B (0.40H)

MOV IXM, #04H

MOV IXL, #00H

LOOP1:

SET1 IXE ; IXE flag ← 1

ADD MEM00F, MEM000

CLR1 IXE ; IXE flag ← 0

INC IX ; IX ← IX + 1

SKE IXL, #0

JMP LOOP1

Bank 0
Address 0FH

CY
(Carry flag)

Bank 0
Address 0EH

Bank 0
Address 0DH

CY
(Carry flag)

225

CHAPTER 15 INSTRUCTION SET

Example 4

To add the 12-bit contents of addresses 0.40H through 0.42H to the 12-bit contents of addresses 0.0DH

through 0.0FH and store the result in the 12 bits of addresses 0.0DH through 0.0FH:

(0.0DH) ← (0.0DH) + (0.40H)

(0.0EH) ← (0.0EH) + (0.41H) + CY

(0.0FH) ← (0.0FH) + (0.42H) + CY

MEM000 MEM 0.00H

MEM001 MEM 0.01H

MEM002 MEM 0.02H

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MOV BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV IXH, #00H ; IX ← 00001000000 (0.40H)

MOV IXM, #04H

MOV IXL, #00H

SET1 IXE ; IXE flag ← 1

ADD MEM00D, MEM000 ; (0.0DH) ← (0.0DH) + (0.40H)

ADDC MEM00E, MEM001 ; (0.0EH) ← (0.0EH) + (0.41H)

ADDC MEM00F, MEM002 ; (0.0FH) ← (0.0FH) + (0.42H)

226

CHAPTER 15 INSTRUCTION SET

(4) ADDC m, #n4 Add immediate data to data memory with carry flag

<1> OP code

10 8 7 4 3 0

10010 mR mC n4

<2> Function

When CMP = 0 (m) ← (m) + n4 + CY

Adds the immediate data to the contents of a specified data memory address, including the carry flag

(CY), and stores the results in the data memory address.

When CMP = 1 (m) + n4 + CY

The result is not stored in the data memory, and the carry flag (CY) and zero flag (Z) are affected by

the result.

If a carry has occurred as a result of the addition, the carry flag (CY) is set. If not, the carry flag is reset.

If the result of the addition is other than zero, the zero flag (Z) is reset, regardless of the compare flag

(CMP).

If the result of the addition becomes zero, with the compare flag reset (CMP = 0), the zero flag is set.

If the result of the addition becomes zero, with the compare flag set (CMP = 1), the zero flag is not affected.

You can perform addition in binary or BCD, which you can select by the BCD flag of the PSWORD.

<3> Example 1

To add 5 to the 12-bit contents of addresses 0.0DH through 0.0FH and store the result in addresses 0.0DH

through 0.0FH:

(0.0FH) ← (0.0FH) + 05H

(0.0EH) ← (0.0EH) + CY

(0.0DH) ← (0.0DH) + CY

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MOV BANK, #00H ; Data memory bank 0

ADD MEM00F, #05H

ADDC MEM00E, #00H

ADDC MEM00D, #00H

227

CHAPTER 15 INSTRUCTION SET

Example 2

To add 5 to the 12-bit contents of addresses 0.4DH through 0.4FH and store the result in addresses 0.4DH

through 0.4FH:

(0.4FH) ← (0.4FH) + 05H

(0.4EH) ← (0.4EH) + CY

(0.4DH) ← (0.4DH) + CY

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MOV BANK, #00H ; Data memory bank 0

MOV IXH, #00H ; IX ← 00001000000B(0.40H)

MOV IXM, #04H

MOV IXL, #00H

SET1 IXE ; IXE flag ← 1

ADD MEM00F, #5 ; (0.4FH) ← (0.4FH) + 5H

ADDC MEM00E, #0 ; (0.4EH) ← (0.4EH) + CY

ADDC MEM00D, #0 ; (0.4DH) ← (0.4DH) + CY

(5) INC AR Increment address register

<1> OP code

10 8 7 4 3 0

00111 000 1001 0000

<2> Function

AR ← AR + 1

Increments the contents of the address register (AR).

<3> Example 1

To add 1 to the 16-bit contents of AR3 through AR0 (address registers) in the system register and store

the result in AR3 through AR0:

; AR0 ← AR0 + 1

; AR1 ← AR1 + CY

; AR2 ← AR2 + CY

; AR3 ← AR3 + CY

INC AR

This instruction effect can also be implemented by an addition instruction, as follows:

ADD AR0, #01H

ADDC AR1, #00H

ADDC AR2, #00H

ADDC AR3, #00H

228

CHAPTER 15 INSTRUCTION SET

Example 2

To transfer table data in 16-bit units (1 address) to DBF (data buffer) by using the table reference

instruction (for details, refer to 10.4 Data Buffer and Table Reference):

; Address Table data

010H DW 0F3FFH

011H DW 0A123H

012H DW 0FFF1H

013H DW 0FFF5H

014H DW 0FF11H

:

:

MOV AR3, #0H ; Table data address

MOV AR2, #0H ; Sets 0010H in address register

MOV AR1, #1H

MOV AR0, #0H

LOOP:

MOVT @AR ; Reads table data to DBF

:

:

: ; Processing referencing table data

INC AR ; register by 1

BR LOOP

<4> Precaution

The number of bits of the address registers (AR0 through AR3) that can be used differs according to the

model. For details, refer to the Data Sheet of each model.

229

CHAPTER 15 INSTRUCTION SET

(6) INC IX Increment index register

<1> OP code

10 8 7 4 3 0

00111 000 1000 0000

<2> Function

IX ← IX + 1

Increments the contents of the index register (IX).

<3> Example 1

To add 1 to the 12-bit contents of IXH, IXM, and IXL (index registers) in the system register and store the

result in IXH, IXM, and IXL:

; IXL ← IXL + 1

; IXM ← IXM + CY

; IXH ← IXH + CY

; INC IX

You can also execute this instruction by an addition instruction, as follows:

ADD IXL, #01H

ADDC IXM, #00H

ADDC IXH, #00H

Example 2

To clear all the contents of data memory addresses 0.00H through 0.73H to 0 by using the index register:

MOV IXH, #00H ; Sets index register contents to 00H in bank 0

MOV IXM, #00H ;

MOV IXL, #00H

RAM clear:

MEM000 MEM 0.00H

SET1 IXE ; IXE flag ← 1

MOV MEM000, #00H ; Writes 0 to data memory indicated by index register

CLR1 IXE ; IXE flag ← 0

INC IX

SET2 CMP, Z ; CMP flag ← 1, Z flag ← 1

SUB IXL, #03H ; Checks if index register contents are 73H for bank 0

SUBC IXM, #07H ;

SUBC IXH, #00H ;

SKT1 Z ; Loops until index register contents become 73H for bank 0

BR RAM clear ;

230

CHAPTER 15 INSTRUCTION SET

15.5.2 Subtraction instructions

(1) SUB r, m Subtract data memory from general register

<1> OP code

10 8 7 4 3 0

00001 mR mC r

<2> Function

When CMP = 0 (r) ← (r) – (m)

Subtracts the contents of a specified data memory address from the contents of a specified general

register, and stores the result in the general register.

When CMP = 1 (r) – (m)

The result is not stored in the register, and the carry flag (CY) and zero flag (Z) are affected by the result.

If a borrow has occurred as a result of the subtraction, the carry flag (CY) is set. If not, the carry flag is

reset.

If the result of the subtraction is other than zero, the zero flag (Z) is reset, regardless of the compare

flag (CMP).

If the subtraction results in zero, with the compare flag reset (CMP = 0), the zero flag (Z) is set.

If the subtraction results in zero, with the compare flag set (CMP = 1), the zero flag (Z) is not affected.

You can perform subtraction in binary and 4-bit units or BCD, which you can select by the BCD flag of

the PSWORD.

<3> Example 1

To subtract the contents of address 0.2FH from those of address 0.03H and store the result in address

0.03H when the row address 0 (0.00H-0.0FH) of bank 0 is specified as a general register (RPH=0, RPL=0):

(0.03H) ← (0.03H) + (0.2FH)

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

SUB MEM003, MEM02F

Example 2

To subtract the contents of address 0.2FH from those of address 0.23H and store the result in address

0.23H when row address 2 (0.20H-0.2FH) of bank 0 is specified as a general register (RPH=0, RPL=4):

(0.23H) ← (0.23H) – (0.2FH)

MEM023 MEM 0.23H

MEM02F MEM 0.2FH

MOV BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV RPL, #04H ; General register row address 2

SUB MEM023, MEM02F

231

CHAPTER 15 INSTRUCTION SET

Example 3

To subtract the contents of address 0.6FH from those of address 0.03H, and store the result in address

0.03H: If IXE = 1, IXH = 0, IXM = 4, and IXL = 0, i.e., if IX = 0.40H, data memory address 0.6FH can be

specified by specifying address 2FH.

(0.03H) ← (0.03H) – (0.6FH)

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV BANK,#00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV IXH, #00H ; IX ← 00001000000B (0.40H)

MOV IXM, #04H ;

MOV IXL, #00H ;

SET1 IXE ; IXE ← flag 1

SUB MEM003, MEM02F ; IX 00001000000B(0.40H)

; Bank operand OR)00000101111B(0.2FH)

; Specified address 00001101111B(0.6FH)

Example 4

To subtract the contents of address 0.3FH from those of address 0.03H and store the result in address

0.03H: If IXE = 1, IXH = 0, IXM = 1, and IXL = 0, i.e., if IX = 0.10H, data memory address 0.3FH can be

specified by specifying address 2FH.

(0.03H) ← (0.03H) + (0.3FH)

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV BANK,#00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV IXH, #00H ; IX ← 00000010000B (0.10H)

MOV IXM, #01H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag ← 1

SUB MEM003, MEM02F ; IX 00000010000B(0.10H)

; Bank operand OR)00000101111B(0.2FH)

; Specified address 00000111111B(0.3FH)

<4> Precaution

The first operand of the SUB r, m instruction must be a general register address. Therefore, if you make

the following description, address 03H is specified as a register.

MEM013 MEM 0.13H

MEM02F MEM 0.2FH

SUB MEM013, MEM02F

General register address must be within the 00H-0FH range (set register

pointer to other than row address 1).

When CMP flag = 1, the result of the subtraction is not stored.

When the BCD flag = 1, the result of the BCD operation is stored.

232

CHAPTER 15 INSTRUCTION SET

(2) SUB m, #n4 Subtract immediate data from data memory

<1> OP code

10 8 7 4 3 0

10001 mR mC n4

<2> Function

When CMP = 0 (m) ← (m) – n4

Subtracts specified immediate data from the contents of a specified data memory address, and stores

the result in the data memory address.

When CMP = 1 (m) – n4

The result is not stored in the data memory, and the carry flag (CY) and zero flag (Z) are affected by

the result.

If a borrow has occurred as a result of the subtraction, the carry flag (CY) is set. If not, the carry flag is

reset.

If the result of the subtraction is other than zero, the zero flag (Z) is reset regardless of the compare flag

(CMP).

If the subtraction results in zero when the compare flag is reset (CMP = 0), the zero flag is set.

If the subtraction results in zero when the compare flag is set (CMP = 1), the zero flag is not affected.

You can perform subtraction in binary and 4-bit units and BCD, which you can select by the BCD flag for

the PSWORD.

<3> Example 1

To subtract 5 from the address 0.2FH contents and store the result in address 0.2FH:

(0.2FH) ← (0.2FH) – 5

MEM02F MEM 0.2FH

SUB MEM02F, #05H

Example 2

To subtract 5 from the contents of address 0.6FH and store the result in address 0.6FH: At this time, if

IXE = 1, IXH = 0, IXM = 4, and IXL = 0, i.e., if IX = 0.40H, data memory address 0.6FH can be specified

by specifying address 2FH.

0.6FH ← (0.6FH) – 5

Address obtained by ORing index register contents 0.40H with data

memory address 0.2FH

MEM02F MEM 0.2FH

MOV BANK, #00H ; Data memory bank 0

MOV IXH, #00H ; IX ← 00001000000B (0.40H)

MOV IXM, #04H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag ← 1

SUB MEM02F, #05H ; IX 00001000000B(0.40H)

; Bank operand OR)00000101111B(0.2FH)

; Specified address 00001101111B(0.6FH)

233

CHAPTER 15 INSTRUCTION SET

Example 3

To subtract 5 from the contents of address 0.2FH and store the result in address 0.2FH: If IXE = 1, IXH

= 0, IXM = 0, and IXL = 0, i.e., if IX = 0.00H, data memory address 0.2FH can be specified by specifying

address 2FH.

(0.2FH) ← (0.2FH) – 5

Address obtained by ORing index register contents 0.00H with data

memory address 0.2FH

MEM02F MEM 0.2FH

MOV BANK0, #00H ; Data memory bank 0

MOV IXH, #00H ; IX ← 00000000000B (0.00H)

MOV IXM, #00H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag ← 1

SUB MEM02F, #05H ; IX 00000000000B(0.00H)

; Bank operand OR)00000101111B(0.2FH)

; Specified address 00000101111B(0.2FH)

<4> Precaution

When CMP flag = 1, the result of the subtraction is not stored.

When BCD flag = 1, the result of the BCD format operation is stored.

234

CHAPTER 15 INSTRUCTION SET

(3) SUBC r, m Subtract data memory from general register with carry flag

<1> OP code

10 8 7 4 3 0

00000 mR mC r

<2> Function

When CMP = 0 (r) ← (r) – (m) – CY

Subtracts the contents of a specified data memory, including the carry flag (CY), from the contents of

a specified general register, and stores the result in the general register. By using this SUBC

instruction, subtraction of two or more words can be easily carried out.

When CMP = 1 (r) – (m) – CY

The result is not stored in the register, and the carry flag (CY) and zero flag (Z) are affected by the result.

If a borrow has occurred, as a result of the subtraction, the carry flag (CY) is set. If not, the carry flag

is reset.

If the result of the subtraction is other than zero, the zero flag (Z) is reset, regardless of the compare flag

(CMP).

If the subtraction results in zero when the compare flag is reset (CMP = 0), the zero flag is reset.

If the subtraction results in zero when the compare flag set (CMP = 1), the zero flag is not changed.

You can perform subtraction in binary and 4-bit units or BCD, which you can select by the BCD flag of

the PSWORD.

<3> Example 1

To subtract the 12-bit contents of addresses 0.2DH through 0.2FH from the 12-bit contents of addresses

0.0DH through 0.0FH and store the result in the 12 bits of addresses 0.0DH through 0.0FH when row

address 0 of bank 0 (0.00H-0.0FH) is specified as a general register:

(0.0FH) ← (0.0FH) – (0.2FH)

(0.0EH) ← (0.0EH) – (0.2EH) – CY

(0.0DH) ← (0.0DH) + (0.2DH) – CY

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MEM02D MEM 0.2DH

MEM02E MEM 0.2EH

MEM02F MEM 0.2FH

SUB MEM00F, MEM02F

SUBC MEM00E, MEM02E

SUBC MEM00D, MEM02D

235

CHAPTER 15 INSTRUCTION SET

Example 2

To subtract the 12-bit contents of addresses 0.40H through 0.42H from the 12-bit contents of addresses

0.0DH through 0.0FH and store the result in the 12 bits of addresses 0.0DH through 0.0FH:

(0.0DH) ← (0.0DH) – (0.40H)

(0.0EH) ← (0.0EH) – (0.41H) – CY

(0.0FH) ← (0.0FH) + (0.42H) – CY

MEM000 MEM 0.00H

MEM001 MEM 0.01H

MEM002 MEM 0.02H

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MOV BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV IXH, #00H ; IX ← 00001000000B (0.40H)

MOV IXM, #04H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag ← 1

SUB MEM00D, MEM000 ; (0.0DH) ← (0.0DH) – (0.40H)

SUBC MEM00E, MEM001 ; (0.0EH) ← (0.0EH) – (0.41H)

SUBC MEM00F, MEM002 ; (0.0FH) ← (0.0FH) – (0.42H)

Example 3

To compare the 12-bit contents of addresses 0.00H through 0.03H with the 12-bit contents of addresses

0.0CH through 0.0FH and jump to LAB1, if both the 12-bit contents are the same. If not, jump to LAB2.

MEM000 MEM 0.00H

MEM001 MEM 0.01H

MEM002 MEM 0.02H

MEM003 MEM 0.03H

MEM00C MEM 0.0CH

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

SET2 CMP, Z ; CMP flag ← 1, Z flag ← 1

SUB MEM000, MEM00C ; 0.00H-0.03H, because CMP flag is set

SUBC MEM001, MEM00D ; Address contents are not affected

SUBC MEM002, MEM00E ;

SUBC MEM003, MEM00F ;

SKF1 Z ; Z flag = 1, if result is the same.

BR LAB1 ; Z flag = 0, if result is not the same.

BR LAB2

:

LAB1 : :

:

LAB2 : :

:

236

CHAPTER 15 INSTRUCTION SET

(4) SUBC m, #n4 Subtract immediate data from data memory with carry flag

<1> OP code

10 8 7 4 3 0

10011 mR mC n4

<2> Function

When CMP = 0 (m) ← (m) – n4 – CY

Subtracts specified immediate data from the contents of a specified data memory, including the carry

flag, and stores the result in the data memory address.

When CMP = 1 (m) – n4 – CY

The result is not stored in the data memory, and the carry flag (CY) and zero flag (Z) are affected by

the result.

If a borrow has occurred as a result of the subtraction, the carry flag (CY) is set. If not, the carry flag is

reset.

If the result of the subtraction is other than zero, the zero flag (Z) is reset, regardless of the compare flag

(CMP).

If the subtraction results in zero when the compare flag is reset (CMP = 0), the zero flag is set.

If the subtraction results in zero when the compare flag is set (CMP = 1), the zero flag is not changed.

You can perform subtraction in binary and 4-bit units or BCD, which can be selected by the BCD flag of

the PSWORD.

<3> Example 1

To subtract 5 from the 12-bit contents of addresses 0.0DH through 0.0FH and store the result in addresses

0.0DH through 0.0FH:

(0.0FH) ← (0.0FH) – 05H

(0.0EH) ← (0.0EH) – CY

(0.0DH) ← (0.0DH) – CY

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

SUB MEM00F, #05H

SUBC MEM00E, #00H

SUBC MEM00D, #00H

237

CHAPTER 15 INSTRUCTION SET

Example 2

To subtract 5 from the 12-bit contents of addresses 0.4DH through 0.4FH and store the result in addresses

0.4DH through 0.4FH:

(0.4FH) ← (0.4FH) – 05H

(0.4EH) ← (0.4EH) – CY

(0.4DH) ← (0.4DH) – CY

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MOV BANK, #00H ; Data memory bank 0

MOV IXH, #00H ; IX ← 00001000000B (0.40H)

MOV IXM, #04H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag ← 1

SUB MEM00F, #5 ; (0.4FH) ← (0.4FH) – 5

SUBC MEM00E, #0 ; (0.4EH) ← (0.4EH) – CY

SUBC MEM00D, #0 ; (0.4DH) ← (0.4DH) – CY

Example 3

To compare the 12-bit contents of addresses 0.00H through 0.03H with immediate data 0A3FH and jump

to LAB1 when both the 12-bit contents are the same. If not, jump to LAB2.

MEM000 MEM 0.00H

MEM001 MEM 0.01H

MEM002 MEM 0.02H

MEM003 MEM 0.03H

SET2 CMP, Z ; CMP flag ← 1, Z flag ← 1

SUB MEM000, #0H ; 0.00H-0.03H, because CMP flag is set

SUBC MEM001, #0AH ; Address contents are not affected

SUBC MEM002, #3H ;

SUBC MEM003, #0FH ;

SKF1 Z ; Z flag = 1, if result is the same.

BR LAB1 ; Z flag = 0, if result is not the same.

BR LAB2

:

LAB1: :

:

LAB2: :

:

:

238

CHAPTER 15 INSTRUCTION SET

15.5.3 Logical operation instructions

(1) OR r, m OR between general register and data memory

<1> OP code

10 8 7 4 3 0

00110 mR mC r

<2> Function

(r) ← (r) ∨ (m)

ORs the contents of a specified data memory address with the contents of a specified general register,

and stores the result in the general register.

<3> Example

To OR the contents of address 0.03H (1010B) with the contents of address 0.2FH (0111B) and store the

result (1111B) in address 0.03H.

(0.03H) ← (0.03H) ∨ (0.2FH)

1 0 1 0 Address 03H

OR

0 1 1 1 Address 2FH

↓
1 1 1 1 Address 03H

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV MEM003, #1010B

MOV MEM02F, #0111B

OR MEM003, MEM02F

239

CHAPTER 15 INSTRUCTION SET

(2) OR m, #n4 OR between data memory and immediate data

<1> OP code

10 8 7 4 3 0

10110 mR mC n4

<2> Function

(m) ← (m) ∨ n4

ORs the contents of a specified data memory address with specified immediate data and stores the result

in the data memory address.

<3> Example 1

To set bit 3 (MSB) of address 0.03H.

(0.03H) ← (0.03H) ∨ 1000B

Address 0.03H

1 × × × × : don't care

MEM003 MEM 0.03H

OR MEM003, #1000B

Example 2

To set all the bits of address 0.03H.

MEM003 MEM 0.03H

OR MEM003, #1111B

or

MEM003 MEM 0.03H

MOV MEM003, #0FH

240

CHAPTER 15 INSTRUCTION SET

(3) AND r, m AND between general register and data memory

<1> OP code

10 8 7 4 3 0

00100 mR mC r

<2> Function

(r) ← (r) ∧ (m)

ANDs the contents of a specified data memory address with the contents of a specified general register,

and stores the result in the general register.

<3> Example

To AND the contents of address 0.03H (1010B) with the contents of address 0.2FH (0110B) and store

the result (0010B) in address 0.03H.

(0.03H) ← (0.03H) ∧ (0.2FH)

1 0 1 0 Address 03H

AND

0 1 1 0 Address 2FH

↓
0 0 1 0 Address 03H

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV MEM003, #1010B

MOV MEM02F, #0110B

AND MEM003, MEM02F

241

CHAPTER 15 INSTRUCTION SET

(4) AND m, #n4 AND between data memory and immediate data

<1> OP code

10 8 7 4 3 0

00000 mR mC n4

<2> Function

(m) ← (m) ∧ n4

ANDs the contents of a specified data memory address with specified immediate data, and stores the

result in the data memory address.

<3> Example 1

To reset bit 3 (MSB) of address 0.03H.

(0.03H) ← (0.03H) ∧ 0111B

Address 0.03H

0 × × × ×: don't care

MEM003 MEM 0.03H

AND MEM003, #0111B

Example 2

To reset all the bits of address 0.03H.

MEM003 MEM 0.03H

AND MEM003, #0000B

or,

MEM003 MEM 0.03H

MOV MEM003, #00H

242

CHAPTER 15 INSTRUCTION SET

(5) XOR r, m Exclusive OR between general register and data memory

<1> OP code

10 8 7 4 3 0

00101 mR mC r

<2> Function

(r) ← (r) ∨ (m)

Exclusive-ORs the contents of a specified data memory address with the contents of a specified general

register, and stores the result in the general register.

<3> Example 1

To compare the contents of address 0.03H with those of address 0.0FH, set and store in address 0.03H

bits not in agreement. If all the bits of address 0.03H are reset (i.e., if the address 0.03H contents are

the same as those of address 0.0FH), jump to LBL1; otherwise, to jump to LBL2.

This example compares the status of an alternate switch (address 0.03H contents) with the internal status

(address 0.0FH contents) and to branch to the processing of the switch that has affected.

1 0 1 0 Address 03H

XOR

0 1 1 0 Address 0FH

↓
1 1 0 0 Address 03H

↑ ↑
Bits that have affected

MEM003 MEM 0.03H

MEM00F MEM 0.0FH

XOR MEM003, MEM00F

SKNE MEM003, #00H

BR LBL1

BR LBL2

Example 2

To clear the address 0.03H contents

0 1 0 1 Address 03H

XOR

0 1 0 1 Address 03H

↓
0 0 0 0 Address 03H

MEM003 MEM 0.03H

XOR MEM003, MEM003

243

CHAPTER 15 INSTRUCTION SET

(6) XOR m, #n4 Exclusive OR between data memory and immediate data

<1> OP code

10 8 7 4 3 0

10101 mR mC n4

<2> Function

(m) ← (m) ∨ n4

Exclusive-ORs the contents of a specified data memory address with specified immediate data, and stores

the result in the data memory address.

<3> Example

To invert bits 1 and 3 of address 0.03H and store the results in address 03H:

1 1 0 0 Address 03H

XOR

1 0 1 0

↓
0 1 1 0 Address 03H

↑ ↑
Inverted bits

MEM003 MEM 0.03H

XOR MEM003, #1010B

244

CHAPTER 15 INSTRUCTION SET

15.5.4 Test instructions

(1) SKT m, #n Skip next instruction if data memory bits are true

<1> OP code

10 8 7 4 3 0

11110 mR mC n

<2> Function

CMP ← 0, if (m) ∧ n = n, then skip

Skips the next one instruction if the result of ANDing the specified data memory contents with immediate

data n is equal to n (Excecutes as NOP instruction).

<3> Example 1

To jump to AAA if bit 0 of address 03H is ‘1’; if it is ‘0’, to jump to BBB.

SKT 03H, #0001B

BR BBB

BR AAA

Example 2

To skip the next instruction if both bits 0 and 1 of address 03H are ‘1’:

SKT 03H, #0011B

b3 b2 b1 b0

Skip condition 03H × × 1 1 ×: don’t care

Example 3

The results of executing of the following two instructions are the same:

SKT 13H, #1111B

SKE 13H, #0FH

245

CHAPTER 15 INSTRUCTION SET

(2) SKF m, #n Skip next instruction if data memory bits are false

<1> OP code

10 8 7 4 3 0

11111 mR mC n

<2> Function

CMP ← 0, if (m) ∧ n = 0, then skip

Skips the next one instruction if the result of ANDing the specified data memory contents with immediate

data n is 0 (Executes as NOP instruction).

<3> Example 1

To store immediate data 00H in data memory address 0FH if bit 2 of address 13H is 0; if it is 1, to jump

to ABC.

MEM013 MEM 0.13H

MEM00F MEM 0.0FH

SKF MEM013, #0100B

BR ABC

MOV MEM00F, #00H

Example 2

To skip the next instruction if both bits 3 and 0 of address 29H are ‘0’.

SKF 29H, #1001B

b3 b2 b1 b0

Skip condition 29H 0 × × 0 ×: don’t care

Example 3

The results of executing the following two instructions are the same:

SKF 34H, #1111B

SKE 34H, #00H

246

CHAPTER 15 INSTRUCTION SET

15.5.5 Compare instructions

(1) SKE m, #n4 Skip if data memory equal to immediate data

<1> OP code

10 8 7 4 3 0

01001 mR mC n4

<2> Function

(m) – n4, skip if zero

Skips the next one instruction if the contents of a specified data memory address are equal to the value

of the immediate data (Executes as NOP instruction).

<3> Example

To transfer 0FH to address 24H, if the address 24H contents are 0. If not, jump to OPE1.

MEM024 MEM 0.24H

SKE MEM024, #00H

BR OPE1

MOV MEM024, #0FH

OPE1 :

247

CHAPTER 15 INSTRUCTION SET

(2) SKNE m, #n4 Skip if data memory not equal to immediate data

<1> OP code

10 8 7 4 3 0

01011 mR mC n4

<2> Function

(m) – n4, skip if not zero

Skips the next one instruction if the contents of a specified data memory address are not equal to the value

of the immediate data (Executes as NOP instruction).

<3> Example

To jump to XYZ if the contents of address 1FH are 1 and if the address 1EH contents are 3; otherwise,

jump to ABC.

To compare 8-bit data, this instruction is used in the following combination.

3 1

IEH 0011 IFH 0001

MEM01E MEM 0.1EH

MEM01F MEM 0.1FH

SKNE MEM01F, #01H

SKE MEM01E, #03H

BR ABC

BR XYZ

The same operation can be performed by using the compare and zero flags as follows:

MEM01E MEM 0.1EH

MEM01F MEM 0.1FH

SET2 CMP, Z ; CMP flag ← 1, Z flag ← 1

SUB MEM01F, #01H

SUBC MEM01E, #03H

SKT1 Z

BR ABC

BR XYZ

248

CHAPTER 15 INSTRUCTION SET

(3) SKGE m, #n4 Skip if data memory greater than or equal to immediate data

<1> OP code

10 8 7 4 3 0

11001 mR mC n4

<2> Function

(m) – n4, skip if not borrow

Skips the next one instruction if the contents of a specified data memory address are greater than the value

of the immediate data (Executes as NOP instruction).

<3> Example

To execute RET if the 8-bit data, stored in addresses 1FH (higher) and 2FH (lower) is greater than

immediate data 17H; otherwise, execute RETSK.

MEM01F MEM 0.1FH

MEM02F MEM 0.2FH

SKGE MEM01F, #1

RETSK

SKNE MEM01F, #1

SKLT MEM02F, #8 ; 7+1

RET

RETSK

(4) SKLT m, #n4 Skip if data memory less than immediate data

<1> OP code

10 8 7 4 3 0

11011 mR mC n4

<2> Function

(m) – n4, skip if borrow

Skips the next one instruction if the contents of a specified data memory address are less than the value

of the immediate data (Executes as NOP instruction).

<3> Example

To store 01H in address 0FH if the address 10H contents is greater than immediate data ‘6’; otherwise,

to store 02H in address 0FH.

MEM00F MEM 0.0FH

MEM010 MEM 0.10H

MOV MEM00F, #02H

SKLT MEM010, #06H

MOV MEM00F, #01H

249

CHAPTER 15 INSTRUCTION SET

15.5.6 Rotation instruction

(1) RORC r Rotate right general register with carry flag

<1> OP code

3 0

00111 000 0111 r

<2> Function

Rotates the contents of a general register specified by r 1 bit to the right with the carry flag.

<3> Example 1

To rotate the value of address 0.00H (1000B) 1 bit to the right when row address 0 (0.00H-0.0FH) of bank

0 is specified as a general register (RPH = 0, RPL = 0). As a result, the value of the address becomes

0100B.

(0.00H) ← (0.00H) ÷ 2

MEM000 MEM 0.00H

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

CLR1 CY ; Carry flag ← 0

RORC MEM000

Example 2

To rotate the value 0FA52H of the data buffer (DBF) 1 bit to the right when row address 0 (0.00H-0.0FH)

of bank 0 is specified as a general register (RPH = 0, RPL = 0). As a result, the value of the data buffer

becomes 7D29H.

CY (r) b3 (r) b2 (r) b1 (r) b0

MEM00C MEM 0.0CH

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

CLR1 CY ; Carry flag ← 0

RORC MEM00C

RORC MEM00D

RORC MEM00E

RORC MEM00F

0 1 1 1 1

CY 0CH

1 0 1 0

0DH

0 1 0 1

0EH

0 0 1 0

0FH

0 1 1 1 1 1 0 1 0 0 1 0 1 0 0 1

CY

0

250

CHAPTER 15 INSTRUCTION SET

15.5.7 Transfer instructions

(1) LD r, m Load data memory to general register

<1> OP code

10 8 7 4 3 0

01000 mR mC r

<2> Function

(r) ← (m)

Loads the contents of a specified data memory address to a specified general register.

<3> Example 1

To load the address 0.2FH contents to address 0.03H.

(0.03H) ← (0.2FH)

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

LD MEM003, MEM02F

Example 2

To store the address 0.2FH contents to address 1.23H, when row address 2 (1.20H-1.2FH) in bank 1 is

specified as a general register (RPH = 1, RPL = 4):

(1.23H) ← (0.2FH)

MEM123 MEM 1.23H

MEM02F MEM 0.2FH

MOV RPH, #01H ; General register bank 1

MOV RPL, #04H ; General register row address 0

LD MEM123, MEM02F

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column addressBank 0

System register

←General register

R
ow

 a
dd

re
ss

251

CHAPTER 15 INSTRUCTION SET

Example 3

To load the address 0.6FH contents to address 0.03H. At this time, if IXE = 1, IXH = 0, IXM = 4, and IXL

= 0, i.e., if IX = 0.40H, data memory address 0.6FH can be specified by specifying address 2FH.

IXH ← 00H

IXM ← 04H

IXL ← 00H

IXE flag ← 1

(0.03H) ← (0.6FH)

Address obtained by ORing index register contents 040H with data memory

contents 0.2FH

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV IXH, #00H ; IX ← 00001000000B (0.40H)

MOV IXM, #04H

MOV IXL, #00H

SET1 IXE ; IXE flag ← 1

LD MEM003, MEM02F

0

1

2

3

4

5

6

7

10 2 3 4

Column addressBank 0

5 6 7 8 9 A B C D E F

System register

0

1

2

3

4

5

6

7

General register

10 2 3 4

Column address

R
ow

 a
dd

re
ss

R
ow

 a
dd

re
ss

Bank 1

5 6 7 8 9 A B C D E F

System register

252

CHAPTER 15 INSTRUCTION SET

Example 4

To store the address 2.3FH contents to address 0.03H. At this time, data memory address 2.3FH can

be specified by selecting data memory address 2FH, if IXE = 1, IXH = 1, IXM = 1, and IXL = 0, i.e., IX

= 2.10H.

(0.03H) ← (2.3FH)

Address obtained as result of ORing index register contents, 2.10H, and

data memory address 0.2FH

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV IXH, #01H ; IX ← 00100010000B (2.10H)

MOV IXM, #01H

MOV IXL, #00H

SET1 IXE ; IXE flag ← 1

LD MEM003, MEM02F

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column addressBank 0

System register

←General register

R
ow

 a
dd

re
ss

0

1

2

3

4

5

6

7

10 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

10 2 3 4 6 7 8 9 A B C D E F5

Column addressBank 0

System register

General register

Column address

R
ow

 a
dd

re
ss

R
ow

 a
dd

re
ss

Bank 2

System register

253

CHAPTER 15 INSTRUCTION SET

<4> Precaution

The first operand for the LD r, m instruction is a column address. Therefore, if the instruction is described

as follows, the column address for the general register is 03H:

MEM013 MEM 0.13H

MEM02F MEM 0.2FH

LD MEM013, MEM02F

Indicates general register column address. Low-order 4 bits (in this case,

03H) are valid. In this case, address 03H is specified, if row address 0 in

bank 0 is selected as general register.

(2) ST m, r Store general register to data memory

<1> OP code

10 8 7 4 3 0

11000 mR mC r

<2> Function

(m) ← (r)

Stores the contents of a specified general register to a specified data memory address.

<3> Example 1

To store the contents of address 0.03H in address 0.2FH.

(0.2FH) ← (0.03H)

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

ST 2FH, 03H ; Transfers general register contents to data memory

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column addressBank 0

System register

←General register

R
ow

 a
dd

re
ss

254

CHAPTER 15 INSTRUCTION SET

Example 2

To store the address 1.13H contents to address 0.2FH. Row address 1 in bank 1 (1.10H-1.1FH) is

specified as the general register by the register pointer.

(0.2FH) ← (1.13H)

MEM02F MEM 0.2FH

MEM113 MEM 1.13H

MOV RPH, #01H ; General register bank 1

MOV RPL, #02H ; General register row address 1

ST MEM02F, MEM113 ; Transfers general register contents to data memory

0

1

2

3

4

5

6

7

10 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

10 2 3 4 6 7 8 9 A C D E F5 B

Column addressBank 0

System register

General register

Column address

R
ow

 a
dd

re
ss

R
ow

 a
dd

re
ss

Bank 1

System register

255

CHAPTER 15 INSTRUCTION SET

Example 3

To store the contents of 0.00H in addresses 0.18H through 0.1FH. Data memory (18H to 1FH) is

addressed by the index register.

(0.18H) ← (0.00H)

(0.19H) ← (0.00H)

:

:

:

:

(0.1FH) ← (0.00H)

MOV IXH, #00H ; IX ← 00000000000B (0.00H)

MOV IXM, #00H

MOV IXL, #00H ; Specifies address 0.00H in data memory.

MEM018 MEM 0.18H

MEM000 MEM 0.00H

LOOP1:

SET1 IXE ; IXE flag ← 1

ST MEM018, MEM000 ; (0.1 x H) ← (0.00H)

CLR1 IXE ; IXE flag ← 0

INC IX ; IX ← IX + 1

SKGE IXL, #08H

BR LOOP1

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column addressBank 0

System register

←General register

R
ow

 a
dd

re
ss

256

CHAPTER 15 INSTRUCTION SET

(3) MOV @r, m Move data memory to destination indirect

<1> OP code

10 8 7 4 3 0

01010 mR mC r

<2> unction

When MPE = 1

(MP,(r)) ← (m)

When MPE = 0

(BANK, mR, (r)) ← (m)

Stores the contents of a specified data memory address to the data memory addressed by the contents

of a specified general register.

When MPE = 0, transfer is executed in the same row address of the same bank.

<3> Example 1

To store the contents of address 0.20H in address 0.2FH with the MPE flag cleared to 0. The destination

data memory source address is the same row address as that of the transfer source, and the contents

of the general register at address 0.00H are the column address.

(0.2FH) ← (0.20H)

MEM000 MEM 0.00H

MEM020 MEM 0.20H

CLR1 MPE ; MPE flag 0

MOV MEM000,#0FH ; Sets column address in general register

MOV @MEM000, MEM020 ; Stores

Example 2

To store the contents of address 0.20H in address 0.3FH with the MPE flag set to 1. The row address

of the data memory at the transfer destination is specified is the contents of memory pointer MP, and the

column address is the contents of the general register at address 0.00H.

(0.3FH) ← (0.20H)

MEM000 MEM 0.00H

MEM020 MEM 0.20H

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column addressBank 0

System register

←General register

R
ow

 a
dd

re
ss

F

257

CHAPTER 15 INSTRUCTION SET

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV 00H, #0FH ; Sets column address in general register

MOV MPH, #00H ; Sets row address in memory pointer

MOV MPL, #03H ;

SETI MPE ; MPE flag ← 1

MOV @MEM000, MEM020 ; Stores

Example 3

To store the address 0.1FH contents to addresses 1.10H through 1.1FH:

(1.10H) ← (0.10H)

(1.11H) ← (0.10H)

 :

 :

(1.1FH) ← (0.10H)

MEM000 MEM 0.00H

MEM010 MEM 0.10H

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV MEM000, #00H ; Sets column address in general register

MOV MPH, #00H ; Sets bank 1 and row address 1

MOV MPL, #09H ; in memory pointer

SET1 MPE ; MPE flag ← 1

LOOP1:

MOV @MEM000, MEM010 ; ((MP), (00H)) ← (10H)

ADD MEM000, #01H ; Column address + 1

SKT1 CY ; Finished up to address 1FH in bank 1

BR LOOP1

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column addressBank 0

System register

←General register

R
ow

 a
dd

re
ss

F

258

CHAPTER 15 INSTRUCTION SET

(4) MOV m, @r Move data memory to destination indirect

<1> OP code

10 8 7 4 3 0

11010 mR mC r

<2> Function

When MPE = 1

(m) ← (MP,(r))

When MPE = 0

(m) ← (BANK,mR, (r))

Stores the contents of the data memory addressed by the contents of a specified general register to

another data memory address.

When MPE = 0, transfer is executed in the same row address of the same bank.

<3> Example 1

To store the contents of address 0.2FH in address 0.20H with the MPE flag cleared to 0. The data memory

at the transfer source is at the same row address as the destination, and the column address is the contents

of the general register at address 0.00H.

(0.20H) ← (0.2FH)

MEM000 MEM 0.00H

MEM020 MEM 0.20H

CLR1 MPE ; MPE flag ← 0

MOV MEM000, #0FH ; Sets column address in general register

MOV MEM020, @MEM000 ; Stores

0

1

2

3

4

5

6

7

10 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

10 2 3 4 6 7 8 9 A C D E F5 B

Column addressBank 0

System register

General register

Column address

R
ow

 a
dd

re
ss

R
ow

 a
dd

re
ss

Bank 1

System register

259

CHAPTER 15 INSTRUCTION SET

Example 2

To store the contents of address 0.3FH in address 0.20H with the MPE flag set to 1. The row address

of the data memory at the transfer source is the contents of the memory pointer, and the column address

is the contents of the general register at address 0.00.

(0.20H) ← (0.3FH)

MEM000 MEM 0.00H

MEM020 MEM 0.20H

MOV MEM000, #0FH ; Sets column address in general register

MOV MPH, #00H ; Sets row address in memory pointer

MOV MPL, #03H ;

SETI MPE ; MPE flag ← 1

MOV MEM020, @MEM000 ; Stores

Example 3

To store the addresses 0.20H contents through 0.2FH to addresses 1.10H through 1.1FH. The row

addresses for the transfer source data memory addresses are the same as those for the data memory

addresses used for relaying. The column addresses are specified by the general register at address

0.00H.

The row addresses for the destination data memory addresses are specified by the memory pointer M

contents. The column addresses are specified by the address 0.00H contents.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column addressBank 0

System register

←General register

R
ow

 a
dd

re
ss

F

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column addressBank 0

System register

←General register

R
ow

 a
dd

re
ss

F

260

CHAPTER 15 INSTRUCTION SET

(1.10H) ← (0.20H)

(1.11H) ← (0.21H)

(1.12H) ← (0.22H)

 :

 :

(1.1FH) ← (0.2FH)

MEM000 MEM 0.00H

MEM020 MEM 0.20H

CLR1 MPE ; MPE flag ← 0

MOV MEM000, #00H ; Sets column address in general register

MOV MPH, #00H ; Sets memory pointer

MOV MPL, #09H ; Bank 1, row address 1

LOOP1:

MOV MEM020, @MEM000 ; (20H) ← (2, (00H))

SET1 MPE ; MPE flag ← 1

MOV @MEM000, MEM020 ; ((MP), (00H)) ← (20H)

CLR1 MPE ; MPE flag ← 0

ADD MEM000, #01H ; Column address + 1

SKT1 CY ; Finished up to 1FH in bank 1

BR LOOP1

0

1

2

3

4

5

6

7

10 2 4 5 6 7 8 9 A B D E F

0

1

2

3

4

5

6

7

1 2 3 4

Column address

5 6 7 8 9 A B C E F

System register

System register

0 D

3 C

Bank 0

General register
In this case, data is
transferred through 20H.

R
ow

 a
dd

re
ss

R
ow

 a
dd

re
ss

Bank 1

261

CHAPTER 15 INSTRUCTION SET

(5) MOV m, #n4 Move immediate data to data memory

<1> OP code

10 8 7 4 3 0

11001 mR mC n4

<2> Function

(m) ← n4

Stores immediate data in a specified data memory address.

<3> Example 1

To store immediate data 0AH in data memory address 0.50H.

(0.50H) ← 0AH

MEM050 MEM 0.50H

MOV MEM050, #0AH

Example 2

To store immediate data 07H in address 0.32H when data memory address 0.00H is specified and if IXH

= 0, IXM = 3, IXL = 2, and IXE flag = 1.

(0.32H) ← 07H

MEM000 MEM 0.00H

MOV IXH, #00H ; IX ← 00000110010B (0.32H)

MOV IXM, #03H

MOV IXL, #02H

SET1 IXE ; IXE flag ← 1

MOV MEM000, #07H

(6) MOVT DBF, @AR Move program memory data specified by AR to DBF

<1> OP code

10 8 7 4 3 0

00111 000 0001 0000

<2> Function

SP ← SP – 1, ASR ← PC, PC ← AR,

DBF ← (PC), PC ← ASR, SP ← SP + 1

Stores the program memory contents, addressed by address register AR, in data buffer DBF.

Because this instruction temporarily uses one level of stack, pay attention to the nesting of subroutines

and interrupts.

262

CHAPTER 15 INSTRUCTION SET

<3> Example 1

To transfer 16 bits of table data to data buffers (DBF3, DBF2, DBF1, and DBF0) according to the values

of the address registers (AR3, AR2, AR1, and AR0) in the system register.

; *

; ** Table data

; *

Address ORG 0010H

0010H DW 0000000000000000B ; (0000H)

0011H DW 1010101111001101B ; (0ABCDH)

:

:

; *

; ** Table reference program

; *

MOV AR3, #00H ; AR3 ← 00H Sets 0011H in address register

MOV AR2, #00H ; AR2 ← 00H

MOV AR1, #01H ; AR1 ← 01H

MOV AR0, #01H ; AR0 ← 01H

MOVT DBF, @AR ; Transfers data of address 0011H to DBF

In this case, the data is stored in DBF as follows:

DBF3 = 0AH

DBF2 = 0BH

DBF1 = 0CH

DBF0 = 0DH

Example 2

To set channel numbers in data memory addresses 0.10H and 011H, obtain the PLL (value N) frequency

division, and transfers it to the PLL register:

; *

; ** Table data for value N

; *

Address ORG 0010H

0010H DW 0F58H ; 87.5 MHz (minimum frequency: channel 00)

0011H DW 0F5CH ; 87.6 MHz

0012H DW 0F60H ; 87.7 MHz

0013H DW 0F64H ; 87.8 MHz

0014H DW 0F68H ; 87.9 MHz

0015H DW 0F6CH ; 88.0 MHz

0016H DW 0F70H ; 88.1 MHz

0017H DW 0F74H ; 88.2 MHz

:

:

; *

; ** Value N setting program

; *

263

CHAPTER 15 INSTRUCTION SET

MEM010 MEM 0.10H

MEM011 MEM 0.11H

MOV RPH, #00H ; RPH ← 00H Set row address 7

MOV RPL, #0EH ; RPL ← 0EH (0.70H-0.7FH) as general register

MOV AR3, #00H ; AR3 ← 0

MOV AR2, #00H ; AR2 ← 0

LD AR1, MEM010 ; AR1 ← 10H Channel data, high

LD AR0, MEM011 ; AR0 ← 11H Channel data, low

ADD AR1, #01H ; 0010H as table data start address

ADDC AR2, #00H ; Adds 0010H to address register as transfer is made

ADDC AR3, #00H ; from address

MOVT DBF, @AR ; Stores table data in DBF

PUT PLLR, DBF ; Transfers value N to PLL register (PLLR)

:

:

0010H

0011H

0012H

0013H

0014H

0

1

2

3

4

5

6

7

10 2 3 4

Bank 0

5 6 7 8 9 A B C D E F

System register

F 5 80

; ∗

; ∗ ∗

; ∗

DW

DW

DW

DW

DW

Table data

0F58H

0F5CH

0F60H

0F64H

0F68H

; 87.5 MHz

; 87.6 MHz

; 87.7 MHz

; 87.8 MHz

; 87.9 MHz

AR

1 0

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅

R
ow

 a
dd

re
ss

264

CHAPTER 15 INSTRUCTION SET

<4> Precaution 1

The number of bits, in address registers AR3, AR2, AR1, and AR0, differ depending on the microcontroller

model to be used. Refer to the Data Sheet for your microcontroller.

Precaution 2

When using the MOVT instruction, one stack level is used. Therefore, pay attention to the stack level,

when the instruction is used in subroutines or interrupt processing.

(7) PUSH AR Push address register

<1> OP code

10 8 7 4 3 0

00111 000 1101 0000

<2> Function

SP ← SP–1,

ASR ← AR

Decrements the stack pointer SP and stores the value of the address register AR in the address stack

register specified by the stack pointer.

<3> Example 1

To set 003FH in the address register and store it in stack.

MOV AR3, #00H

MOV AR2, #00H

MOV AR1, #03H

MOV AR0, #0FH

PUSH AR

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column addressBank 0

System register

R
ow

 a
dd

re
ss

F300

S T A C

0 0 3 F

K

265

CHAPTER 15 INSTRUCTION SET

Example 2

To set the return address of a subroutine in the address register and return if there is a data table following

the CALL instruction.

ORG 10H

CALL SUB1

; *

; * * DATA TABLE

; *

DW 1A1FH

DW 002FH

DW 010AH

DW 0555H

DW 0FFFH

ORG 30H

Contents "0011H" (address next to
that of CALL instruction) are loaded
to address register if POP instruction
is executed at this point.

MOV AR3, #00H

MOV AR2, #00H

MOV AR1, #03H

MOV AR0, #00H

PUSH AR

RET

POP AR

SUB1 :

···········

···········

···········

········

266

CHAPTER 15 INSTRUCTION SET

(8) POP AR Pop address register

<1> OP code

00111 000 1100 0000

<2> Function

AR ← ASR

SP ← SP+1

Loads the contents of the address stack register specified by the stack pointer to address register AR,

and then increments the value of stack pointer SP.

<3> Example

If the PSW contents have been changed in an interrupt processing routine when interrupt processing is

performed and you want to transfer the PSW contents to the address register through WR, you should

save them at the beginning of the interrupt processing, to the address stack register by the PUSH

instruction. Then, restore them to the address register by the POP instruction before return, and transfer

them to PSW through WR.

PEEK WR, PSW

POKE AR0, WR

PUSH AR

Interrupt processing routine

POP AR

PEEK WR, AR0

POKE PSW, WR

RET (or RETI)

EI

Interrupt source generation

············

············
············

·························

267

CHAPTER 15 INSTRUCTION SET

(9) PEEK WR, rf Peek register file to window register

<1> OP code

00111 rfR 0011 rfC

<2> Function

WR ← (rf)

Stores the register file contents to window register WR.

<3> Example

To store the stack pointer contents (SP) at address 01H in the register file to the window register.

PEEK WR, SP

SP

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column addressBank 0

System register

R
ow

 a
dd

re
ss

WR

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3R
ow

 a
dd

re
ss

Column address

Register file

268

CHAPTER 15 INSTRUCTION SET

(10) POKE rf, WR Poke window register to register file

<1> OP code

10 8 7 4 3 0

00111 rfR 0010 rfC

<2> Function

(rf) ← WR

Stores the window register WR contents to the register file.

<3> Example

To store immediate data 0FH in P0DBIO of the register file through the window register.

MOV WR, #0FH

POKE P0DBIO, WR ; Sets all P0D0, P0D1, P0D2, and P0D3 in output mode

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column addressBank 0

System register

R
ow

 a
dd

re
ss

WR

0 1 2 4 5 6 7 8 9 A B C D E F

0

1

2

3R
ow

 a
dd

re
ss

Column address

Register file P0DBIO

3

269

CHAPTER 15 INSTRUCTION SET

<4> Precaution

Addresses 40H through 7FH in the register file appear in data memory in a program. Consequently, the

PEEK and POKE instructions can access addresses 40H through 7FH of each bank of the data memory

in addition to the register file. For example, these instructions can also be used as follows:

MEM05F MEM 0.5FH

PEEK WR, PSW ; Stores PSW (7FH) contents in system register to WR

POKE MEM05F, WR ; Stores WR contents to data memory at address 5FH

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column addressBank 0

System register

R
ow

 a
dd

re
ss

WR

PEEK WR, PSW

PSW

POKE 5FH, WR

Register
file

Data
memory

270

CHAPTER 15 INSTRUCTION SET

(11) GET DBF, p Get peripheral data to data buffer

<1> OP code

10 8 7 4 3 0

00000 PH 1011 PL

<2> Function

DBF ← (p)

Stores the peripheral circuit contents to data buffer DBF.

DBF is a 16-bit area of addresses 0CH through 0FH of BANK0 of the data memory regardless of the value

of the bank register.

<3> Example 1

To store the 8-bit contents of the shift register SIOSFR of the serial interface in data buffers DBF0 and

DBF1.

GET DBF, SIOSFR

<4> Precaution

The data buffer is 16 bits wide. The number of bits differs depending on the peripheral hardware to be

accessed. For example, when the GET instruction is executed to a peripheral hardware register whose

valid bit length is 8 bits, data is stored in the low-order 8 bits of data buffer DBF (DBF1, DBF0).

21

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column addressBank 0

System register

DBF

R
ow

 a
dd

re
ss

12H

Peripheral
hardware register

SIOSFR

DBF0

b0

DBF1

b7

DBF2

Retained

DBF3

Valid bits

b0b7

Retained

GET

Data of peripheral
hardware register

Data buffer

271

CHAPTER 15 INSTRUCTION SET

(12) PUT p, DBF Put data buffer to peripheral

<1> OP code

10 8 7 4 3 0

00111 PM 1010 PL

<2> Function

(p) ← DBF

Stores the data buffer DBF contents in the peripheral register.

DBF is a 16-bit area of addresses 0CH through 0FH of BANK0 of the data memory regardless of the value

of the bank register.

<3> Example 1

To set 0AH and 05H in data buffers DBF1 and DBF0, respectively, and transfer them to the shift register

(SIOSFR) for serial interface.

MOV BANK, #00H ; Data memory bank 0

MOV DBF0, #05H

MOV DBF1, #0AH

PUT SIOSFR, DBF

<4> Precaution

The data buffer is 16 bits wide. The number of bits differs depending on the peripheral hardware to be

accessed. For example, when the PUT instruction is executed to the peripheral hardware register whose

valid bit length is 8-bit, the low-order 8 bits data of data buffer DBF (DBF1, DBF0) is transferred to a

peripheral hardware register (DBF3 and DBF2 data is not transferred).

5A

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1

2

3

4

5

6

7

Column addressBank 0

System register

DBF

R
ow

 a
dd

re
ss

0A5H

Peripheral
circuit

SIOSFR

DBF0

b3 b2 b1 b0

DBF1

b7 b6 b5 b4

DBF2

Don't care

DBF3

Valid bits

b0b7

Don't care

PUT

Data of peripheral
hardware

Data buffer

272

CHAPTER 15 INSTRUCTION SET

15.5.8 Branch instructions

(1) BR addr Branch to the address

<1> OP code

10 0

011××Note addr

Note Refer to <4> Precaution

<2> Function

PC10–0 ← addr

Branches to an address specified by addr.

The address range to which execution can be directly branched by this instruction is 8K steps from address

0000H to 1FFFH.

To branch address 2000H or those that follow, use the BR @AR instruction.

<3> Example

FLY LAB 0FH ; Defines FLY = 0FH

:

:

BR FLY ; Jumps to address 0F

:

:

BR LOOP1 ; Jumps to LOOP1

:

:

BR $ + 2 ; Jumps to address two addresses lower than the current address

:

BR $ – 3 ; Jumps to address three addresses higher than the current address

:

:

LOOP1:

<4> Precation

The BR instruction does not use the division of “page”, and the instruction can be written in the ROM

addresses 0000H-1FFFH. However, the BR instruction branching within page 0 (addresses 0000H-

07FFH) and the BR instruction branching in page 1 (07FFH-0FFFH), and the BR instruction branching

in page 2 (1000H-17FFH) and the BR instruction branching in page 3 (17FFH-1FFFH) differ in OP code.

The OP codes are 0C in page 0, 0D in page 1, 0E in page 2, and 0F in page 3.

If these instructions are assembled with the 17K-series assembler, the jump destination is automatically

referenced.

273

CHAPTER 15 INSTRUCTION SET

If OP code is 0C If OP code is 0D

(if jump destination address is in page 0) (if jump destination address is in page 1)

If OP code is 0E If OP code is 0F

(if jump destination address is in page 2) (if jump destination address is in page 3)

07FFH

0FFFH

17FFH

1FFFH

0000H

0800H

1000H

1800H

BR ADD1

BR ADD1

BR ADD1

BR ADD1

Page 0

Page 1

Page 2

Page 3

ADD1 : 07FFH

0FFFH

17FFH

1FFFH

0000H

0800H

1000H

1800H

BR ADD1

BR ADD1

BR ADD1

BR ADD1

Page 0

Page 1

Page 2

Page 3

ADD1 :

07FFH

0FFFH

17FFH

1FFFH

0000H

0800H

1000H

1800H

BR ADD1

BR ADD1

BR ADD1

BR ADD1

Page 0

Page 1

Page 2

Page 3

ADD1 :

07FFH

0FFFH

17FFH

1FFFH

0000H

0800H

1000H

1800H

BR ADD1

BR ADD1

BR ADD1

BR ADD1

Page 0

Page 1

Page 2

Page 3

ADD1 :

274

CHAPTER 15 INSTRUCTION SET

To perform patch correction during debugging, it is necessary for the programmer to convert 0C, 0D, 0E,

and 0F.

Address conversion is also necessary when the jump destination of the BR instructions are in addresses

0000H-07FFH, 0800H-0FFFH, 1000H-17FFH, and 1800H-1FFFH. In other words, addresses 0000H,

0800H, 1000H, and 1800H are treated as address 000H, starting from which the subsequent addresses

are incremented by 1.

Caution The number of pages of each model in the µPD170×× series differs. For details, refer to

the Data Sheet of each model.

07FFH

0FFFH

17FFH

1FFFH

0000H

0800H

1000H

1800H

BR ADD1

ADD1 :

0C500

ADD2 :

ADD3 :

ADD4 :

BR ADD2 0D501

BR ADD3 0E60A

BR ADD4 0F6FF

BR ADD1 0C500

BR ADD3 0E60A

0500H

0D01H

160AH

1EFFH

Machine code (1-4-3-4-4 format)

275

CHAPTER 15 INSTRUCTION SET

(2) BR @AR Branch to the address specified by address register

<1> OP code

00111 000 0100 0000

<2> Function

PC ← AR

Branches to a program address specified by address register AR.

<3> Example 1

To set 003FH in the address registers AR (AR0-AR3) and jump to address 003FH by the BR @AR

instruction.

MOV AR3, #00H ; AR3 ← 00H

MOV AR2, #00H ; AR2 ← 00H

MOV AR1, #03H ; AR1 ← 03H

MOV AR0, #0FH ; AR0 ← 0FH

BR @AR ; Jumps to address 003FH

Example 2

To change the branch destination as follows according to the contents of data memory address 0.10H.

0.10H contents Branch destination label

00H → AAA

01H → BBB

02H → CCC

03H → DDD

04H → EEE

05H → FFF

06H → GGG

07H → HHH

08H-0FH → ZZZ

;*

;** Jump table

;*

ORG 10H

BR AAA

BR BBB

BR CCC

BR DDD

BR EEE

BR FFF

BR GGG

BR HHH

BR ZZZ

276

CHAPTER 15 INSTRUCTION SET

:

:

:

MEM010 MEM 0.10H

MOV AR3, #00H ; AR3 ← 00H 001 x H in AR

MOV AR2, #00H ; AR2 ← 00H

MOV AR1, #01H ; AR1 ← 01H

MOV RPH, #00H ; General register bank 0

MOV RPL, #02H ; General register row address 1

ST AR0, MEM010 ; AR0 ← 0.10H

SKLT AR0, #08H

MOV AR0, #08H ; Sets 08H in AR0 if AR0 contents are greater than 08H

BR @AR

<4> Precaution

The number of bits of the address registers (AR0 through AR3) differs depending on the model. Refer

to the Data Sheet of each model.

277

CHAPTER 15 INSTRUCTION SET

15.5.9 Subroutine instructions

(1) CALL addr Call subroutine

<1> OP code

10 0

11100 addr

<2> Function

SP ← SP – 1, ASR ← PC,

PC10–0 ← addr, PAGE ← 0

Increments the value of the program counter (PC), saves it in the stack, and branches to the subroutine

whose address is specified by addr.

The subroutine that can be called by this instruction is within 2K steps from address 0000H to 07FFH.

Therefore, it is recommended that a subroutine that is frequently used be located in the range of address

0000H to 07FFH.

To call a subroutine located at address 0800H or those that follow, use the CALL @AR instruction.

<3> Example 1

Example 2

CALL SUB1

SUB1 :

MAIN

CALL SUB1

SUB1 :

MAIN

RET

SUB2 :

RET

SUB3 : ·················

RET

············

RET

······
CALL SUB3

······

······
CALL SUB2

······

·······

·······

·······

·······

278

CHAPTER 15 INSTRUCTION SET

<4> Precaution

When using the CALL instruction, the address to be called, i.e., the first address in a subroutine, must

be placed in page 0 (0000H-07FFH). To call a subroutine, whose first address is outside page 0, use the

CALL @AR instruction.

When first address for subroutine is in page 0

If the first address for a subroutine is in page 0 as shown in the figure above, the end address for the

subroutine (RET or RETSK instruction) may be outside page 0.

As long as the first address for the subroutine is in page 0, the CALL instruction can be used without

applying the page concept. However, if the first page in the subroutine cannot be placed in page 0, use

the BR instruction in page 0, and branch the execution to the subroutine through this BR instruction, as

follows:

CALL SUB1

CALL

SUB1:

RET

SUB1

Page 0

















Page 1






















CALL

SUB2 :

RET

SUB2

CALL SUB2

Page 0

















Page 1






















H0000

H
H

F
0

F
0

7
8

0
0

H
H

F
0

F
0

F
0

0
1

H0000

H
H

F
0

F
0

7
8

0
0

H
H

F
0

F
0

F
0

0
1

279

CHAPTER 15 INSTRUCTION SET






































CALL

SUB2 : BR

SUB1 :

RET

SUB1

SUB2

CALL SUB2

Page 0

Page 1

H0000

H
H

F
0

F
0

7
8

0
0

H
H

F
0

F
0

F
0

0
1

280

CHAPTER 15 INSTRUCTION SET

(2) CALL @AR Call subroutine specified by address register

<1> OP code

00111 000 0101 0000

<2> Function

SP ← SP – 1,

ASR ← PC,

PC ← AR

Increments the value of the program counter (PC), saves it in the stack, and branches to the subroutine

that starts from the address specified by the address register (AR).

<3> Example 1

To set 0020H in address register AR (AR0-AR3) and call the subroutine at address 0020H by the CALL

@AR instruction.

MOV AR3, #00H ; AR3 ← 00H

MOV AR2, #00H ; AR2 ← 00H

MOV AR1, #02H ; AR1 ← 02H

MOV AR0, #00H ; AR0 ← 00H

CALL @AR ; Calls subroutine at address 0020H

Example 2

To call the following subroutine by the data memory address 0.10H contents:

0.10H contents Subroutine name

00H → SUB1

01H → SUB2

02H → SUB3

03H → SUB4

04H → SUB5

05H → SUB6

06H → SUB7

07H → SUB8

08H-0FH → SUB9

281

CHAPTER 15 INSTRUCTION SET

<4> Precaution

The number of bits of the address registers (AR0 through AR3) that can be used differs depending on

the model of the device. For details, refer to the Data Sheet of each model.

SUB9 :SUB8 :SUB7 :SUB6 :SUB5 :SUB4 :

SUB3 :SUB2 :SUB1 :

Execution returns here if RET
instruction is executed in
each subroutine

; *

: * * Jump table for subroutine

; *

ORG 10H

BR SUB1

BR SUB2

BR SUB3

BR SUB4

BR SUB5

BR SUB6

BR SUB7

BR SUB8

BR SUB9

MOV AR3, #00H ; AR3←00H 001xH to address register

MOV AR2, #00H ; AR2←00H

MOV AR1, #01H ; AR1←01H

MOV RPH, #00H ; Bank 0 of general register

MOV RPL, #02H ; Row address 1 of general register

ST AR0, 10H ; AR0←0.10H

SKLT AR0, #08H ; Makes AR0 contents 08 if AR0 contents

MOV AR0, #08H; are greater than 08H

CALL @AR To jump table

···················

RET

···················

RET

···················

RET

···················

RET

···················

RET

···················

RET

·······

·······

···················

RET

···················

RET

···················

RET

·······

·······

282

CHAPTER 15 INSTRUCTION SET

(3) SYSCAL entry Call system segment entry address

<1> OP code

<2> Function

SP ← (SP) – 1, ASR ← PC + 1,

SGR ← SYSSEG, PAGE ← 0, PC (10-8) ← entryH,

PC (7-4) ← 0, PC (3-0) ← entryL

Increments the value of the program counter (PC), saves it in the stack, and branches to the subroutine

specified by entry on page 0 of the system segment.

The subroutines that can be called by this instruction are 256 steps of the system segment entry address

on page 0 of the system segment.

<3> Example 1

MAIN:
 :
 :
 :
SYSCAL 34H
 :
 :
 :

CSEG n

ORG 304H
 :
 :
 :
RET

(n: system segment)

Example 2

MAIN:
 :
 :
 :
SYSCAL.D.L. ((ENTRY SHR 4 AND 0070H) OR (ENTRY AND 000FH))
 :
 :
 :

ENTRY:
 :
 :
 :
RET

00111 entryH 0000 entryL

283

CHAPTER 15 INSTRUCTION SET

<4> Precaution

As an operand of SYSCAL instruction, specify the symbol with data type, not label type. When the value

operand exceeds 7 bits, the assembler (RA17K) generates an error.

In Example 2 above, however, an error does not occur even though the “ENTRY” address does not exist

in the system segment entry address. In this case, the address branched to by the SYSCAL instruction

differs from the address expected by the user. Therefore, care must be taken when debugging.

(4) RET Return to the main program from subroutine

<1> OP code

10 8 7 4 3 0

00111 000 1110 0000

<2> Function

PC ← ASR,

SP ← SP + 1

Returns execution from a subroutine to the main program.

Restores the return address, saved by the CALL instruction to the stack, to the program counter.

<3> Example

(5) RETSK Return to the main program then skip next instruction

<1> OP code

00111 001 1110 0000

CALL SUB1

SUB1 ; ·················

RET

··············

··············

284

CHAPTER 15 INSTRUCTION SET

<2> Function

PC ← ASR, SP ← SP + 1 and skip

Returns execution from a subroutine to the main program.

Skips the instruction next to the CALL instruction (Executes as NOP instruction).

Restores the return address, saved by the CALL instruction to the stack, to the program counter PC, and

then increments the program counter contents.

<3> Example

To execute the RET instruction and return the execution to the instruction next to the CALL instruction

if the LSB (least significant bit) at address 25H of the data memory (RAM) is 0; if the LSB is 1, to execute

the RETSK instruction to return the execution to the instruction after the next to the CALL instruction (ADD

03H, 16H in this example).

(6) RETI Return to the main program from interrupt service routine

<1> OP code

00111 100 1110 0000

<2> Function

PC ← ASR, INTR ← INTSK, SP ← SP + 1

Returns execution from an interrupt processing program to the main program.

Restores to the program counter the return address which was saved in the stack by a vectored interrupt.

A part of the system registers is also restored to the states before the occurrence of the vectored interrupt.

<3> Example

If it is necessary to save the current bank address, because a vectored interrupt occurs, when the data

memory is in bank 1 and data memory bank 0 is used for the interrupt processing:

·············

·············

CALL SUB1

BR LOOP

ADD 03H, 16H SKF 25H, #0001B

RETSK ;LSB of 25H is "1"

RET ;LSB of 25H is "0"

SUB1

·················

285

CHAPTER 15 INSTRUCTION SET

<4> Precaution 1

The contents of the system register are automatically saved by an interrupt (which can be restored by the

RETI instruction) are the PSWORD.

Precaution 2

If the RETI instruction is used in the place of the RET instruction to return from an ordinary subroutine,

the bank contents (which were saved when the interrupt has occurred) may be replaced with the contents

of the interrupt stack. Consequently, probably the bank contents are unknown to the user. To avoid this,

be sure to use the RET (or RETSK) instruction to return from a subroutine.

; BANK0

RET1

Interrupt processing routine

EI

BANK1

Bank selected before
interrupt processing
is restored when execution
has been returned. In this
example, bank 1 is restored.

When program execution branches to
interrupt service routine, bank of
some devices is reset.

BANK0

Interrupt request occurs →

286

CHAPTER 15 INSTRUCTION SET

15.5.10 Interrupt instructions

(1) EI Enable Interrupt

<1> OP code

00111 000 1111 0000

<2> Function

INTEF ← 1

Enables the vectored interrupt.

The interrupt is enabled after the instruction next to the EI instruction has been executed.

<3> Example 1

As shown in the following example, the interrupt request is accepted after the next instruction (except the

instruction that manipulates the program counter) has been executed, and then the execution flow shifts

to a vector addressNote1.

Notes 1. The vector address differs depending on the interrupt accepted. For details, refer to the Data

Sheet of the model used.

········

MOV 0AH #00H

ADD 0BH, #01H

ADD 0CH, #01H

EI
·········

············
DI

········

Note 2
Interrupt service
routine (vector address)

MOV 0AH, #01H

SUB 0BH, #01H
·······

EI

Interrupt request occurs →

Interrupt request occurs →

EI
RET

·············

287

CHAPTER 15 INSTRUCTION SET

2. The interrupt accepted (an interrupt request occurs after the execution of the EI instruction and

the execution flow shifts to an interrupt service routine) is the interrupt whose interrupt enable

flag (IP×××) is set. The flow of the program is not changed (i.e., the interrupt is not accepted)

even if an interrupt request occurs after the EI instruction has been executed with the interrupt

enable flag of each interrupt not set. However, the interrupt request flag (IRQ×××) is set. The

interrupt is therefore accepted at the point where the interrupt enable flag is set. For details,

refer to the Data Sheet of the model used.

Example 2

An example of an interrupt that is caused by an interrupt request that has been accepted while an

instruction that manipulates the program counter is executed as follows.

(2) DI Disable interrupt

<1> OP code

00111 001 1111 0000

<2> Function

INTEF ← 0

Disables the vectored interrupt.

<3> Example

Refer to Example 1 in (1) EI.

Interrupt request occurs →

········

MOV 0AH, #00H

ADD 0BH, #01H

EI
·········

············

Interrupt service
routine (vector address)

EI
RET

·············

BR
·········

ABC

ABC :

288

CHAPTER 15 INSTRUCTION SET

15.5.11 Other instructions

(1) STOP s Stop CPU and release by condition s

<1> OP code

3 0

00111 010 1111 s

<2> Function

Stops the system clock and sets the device in the STOP mode.

By setting the device in the STOP mode, the current consumption of the device can be minimized.

The condition, under which the STOP mode is released, is specified by the operand (s).

The STOP release condition (s) differs depending on each model. Refer to the Data Sheet of the model

used.

(2) HALT h Halt CPU and release by condition h

<1> OP code

3 0

00111 011 1111 h

<2> Function

Sets the device in the HALT mode.

By setting the device in the HALT mode, the current consumption of the device can be reduced.

The condition, under which the HALT mode is released, is specified by the operand (h).

The HALT release condition (h) differs depending on each model. Refer to the Data Sheet of the model

used.

(3) NOP No operation

<1> OP code

00111 100 1111 0000

<2> Function

Executes nothing but consumes one machine cycle.

289

APPENDIX A DEVELOPMENT TOOLS

The following tools are available for program development for the µPD170×× series.

A.1 Hardware

Name Description

In-circuit emulator IE-17K, IE-17K-ET, and EMU-17K are in-circuit emulators common to the 17K series. IE-17K and

IE-17K, IE-17K-ET are used by connecting to the host machine (PC-9800 series or IBM PC/ATTM) via

IE-17K-ETNote 1 , RS232-C.

EMU-17KNote 2 By using in combination with a system evaluation board (SE board) specific to each model, they

can operate as an emulator matched to the model used. Use of SIMPLEHOST, a man-machine

interface software, realizes a more powerful debugging environment.

Moreover, the EMU-17K is provided with a function to check the contents of data memory in real

time.

SE board Used for system evaluation by itself, and used for debugging in combination with in-circuit

emulator.

Emulation probe Used in combination with a conversion socket to connect the SE board and the target system. It

varies depending on the model used.

Conversion socket Used to connect the emulation probe and the target system. It varies depending on the device

package.

PROM programmer By connecting with the program adapter, this can be used to program PROM products.

AF-9703Notes 3, 4

AF-9704Notes 3, 4

AF-9705Note 4

AF-9706Note 4

Program adapter This is used in combination with a PROM programmer. It varies depending on the model used.

Notes 1. Standard price version: External power supply type

2. This is a product of Naito Densei Machida Mfg. Co., Ltd. For details, contact Naito Densei Machida

Mfg. Co., Ltd. (TEL: 044-822-3813)

3. Production stopped.

4. This is a product of Ando Electric Co., Ltd. For details, contact Ando Electric Co., Ltd. (TEL: 03-3733-

1163)

290

APPENDIX A DEVELOPMENT TOOLS

A.2 Software

Name Description Host Machine OS Supply Part Number

Media

17K assembler RA17K is an assembler common to 17K PC-9800 series Japanese 3.5" µSAA13RA17K

(RA17K) series products. Used in combination WindowsTM 2HD

with device files for program development. IBM PC/AT and Japanese 3.5" µSAB13RA17K

compatible Windows 2HC

English µSBB13RA17K

Windows

Device file Used in combination with RA17K. Differs PC-9800 series Japanese 3.5" µSAA13AS170××
(AS170××) depending on the model used. Windows 2HD

IBM PC/AT and Japanese 3.5" µSAB13AS170××
compatible Windows 2HC

English µSBB13AS170××
Windows

Support software Software to provide man-machine PC-9800 series Japanese 3.5" µSAA13ID17K

(SIMPLEHOST) interface in Windows when developing Windows 2HD

programs using in-circuit emulator and IBM PC/AT and Japanese 3.5" µSAB13ID17K
personal computer. compatible Windows 2HC

English µSBB13ID17K

Windows

Remark ××: Differs depending on the model used.

APPENDIX B HOW TO ORDER THE MASK ROM

After you have developed your program, place your order for a mask ROM as follows:

(1) Reservation for ordering mask ROM

Inform NEC in advance when you need the mask ROM; otherwise, the mask ROM may not be delivered in

time to meet your needs.

(2) Creating ordering medium

The medium in which the mask ROM is ordered is a UV-EPROM.

First, create a hex file (with extension characters .PRO) for ordering the mask ROM by adding assemble option

/PROM of the assembler (RA17K).

Next, write the hex file for ordering the mask ROM in the UV-EPROM.

When ordering with a UV-EPROM, create three UV-EPROM, all having identical contents.

Caution You cannot order a mask ROM by creating a hex file with .ICE.

(3) Creating necessary documents

Fill out the following forms, when ordering for the mask ROM:

• Mask ROM ordering sheet

• Mask ROM ordering check sheet

(4) Ordering

Submit the medium created in (2) and documents created in (3) to NEC by the deadline date for ordering.

Remark For details, refer to ROM Code Ordering Procedure (IEM-1366) .

291

[MEMO]

292

APPENDIX C INSTRUCTION INDEX

C.1 Instruction Index (by function)

[Addition]

ADD r, m ... 218

ADD m, #n4 .. 221

ADDC r, m ... 223

ADDC m, #n4 .. 226

INC AR .. 227

INC IX .. 229

[Subtraction]

SUB r, m ... 230

SUB m, #n4 .. 232

SUBC r, m ... 234

SUBC m, #n4 .. 236

[Logical]

OR r, m ... 238

OR m, #n4 .. 239

AND r, m ... 240

AND m, #n4 .. 241

XOR r, m ... 242

XOR m, #n4 .. 243

[Test]

SKT m, #n .. 244

SKF m, #n .. 245

[Compare]

SKE m, #n .. 246

SKNE m, #n .. 247

SKGE m, #n .. 248

SKLT m, #n .. 248

[Rotate]

RORC r .. 249

[Transfer]

LD r, m ... 250

ST m, r .. 253

MOV @r, m ... 256

MOV m, @r .. 258

MOV m, #n4 .. 261

MOVT DBF, @AR 261

PUSH AR .. 264

POP AR .. 266

PEEK WR, rf ... 267

POKE rf, WR... 268

GET DBF, p .. 270

PUT p, DBF.. 271

[Branch]

BR addr .. 272

BR @AR .. 275

[Subroutine]

CALL addr .. 277

CALL @AR .. 280

SYSCAL entry ... 282

RET ... 283

RETSK .. 283

RETI .. 284

[Interrupt]

EI ... 286

DI ... 287

[Others]

STOP s ... 288

HALT h ... 288

NOP .. 288

293

294

APPENDIX C INSTRUCTION INDEX

C.2 Instruction Index (by alphabetic order)

[A]

ADD m, #n4 .. 221

ADD r, m ... 218

ADDC m, #n4 .. 226

ADDC r, m ... 223

AND m, #n4 .. 243

AND r, m ... 242

[B]

BR addr .. 272

BR @AR .. 275

[C]

CALL addr .. 277

CALL @AR .. 280

[D]

DI ... 287

[E]

EI ... 286

[G]

GET DBF, p .. 270

[H]

HALT h ... 288

[I]

INC AR .. 227

INC IX .. 229

[L]

LD r, m ... 250

[M]

MOV m, #n4 .. 261

MOV m, @r ... 258

MOV @r, m ... 256

MOVT DBF, @AR 261

[N]

NOP ... 288

[O]

OR m, #n4 .. 239

OR r, m ... 238

[P]

PEEK WR, rf ... 267

POKE rf, WR... 268

POP AR .. 266

PUSH AR .. 264

PUT p, DBF.. 271

[R]

RET ... 283

RETI ... 284

RETSK ... 283

RORC r ... 249

[S]

SKE m, #n .. 246

SKF m, #n .. 245

SKGE m, #n4 .. 248

SKLT m, #n4 .. 248

SKNE m, #n4 .. 247

SKT m, #n .. 244

ST m, r ... 253

STOP s ... 288

SUB m, #n4 .. 232

SUB r, m ... 230

SUBC m, #n4 .. 236

SUBC r, m ... 234

SYSCAL entry ... 282

[X]

XOR m, #n4 .. 243

XOR r, m ... 242

295

APPENDIX D REVISION HISTORY

A history of the revisions up to this edition is shown below. “Applied to:” indicates the chapters to which the revision

was applied.

Edition Contents Applied to:

2nd Assembler changed (AS17K → RA17K) Throughout

In-circuit emulator IE-17K-ET added Throughout

CHAPTER 14 ONE-TIME PROM MODEL in previous edition deleted CHAPTER 14 ONE-TIME PROM

MODEL in previous edition

Related Documents in INTRODUCTION changed INTRODUCTION

µPD170×× Product Development and List of Functions in CHAPTER 1 CHAPTER 1 GENERAL

GENERAL deleted

6.7.3 Notes on using general register pointer added CHAPTER 6 SYSTEM REGISTER

(SYSREG)

Diagram of the relationship between program status word (PSWORD) and CHAPTER 8 ARITHEMETIC

status flip-flop in Figure 8-1. Configuration of ALU Block added LOGICAL UNIT (ALU)

Operation and description of instructions added to Table 8-1. ALU

Processing Instructions

The following descriptions added to 8.2.3 Status flip-flop functions :

(1) Z flag

(2) CY flag

(3) CMP flag

(4) BCD flag

Table 8-2. Results for Binary 4-bit and BCD Operations changed

Table 8-3. Arithmetic Operation Instructions added

Table 8-4. Logical Operation Instructions added

Table 8-6. Bit Testing Instructions added

Table 8-7. Compare Instructions added

Example 3 added to 9.4.2 Symbol definition of register file and CHAPTER 9 REGISTER FILE (RF)

reserved words

Description added to 12.2.6 Interrupt enable flip-flop (INTE) CHAPTER 12 INTERRUPT

FUNCTIONS

Remarks added to: CHAPTER 13 STANDBY

13.4.3 Releasing halt status by key input FUNCTIONS

13.4.4 Releasing halt status by timer carry (basic timer 0 carry)

Remark and Caution added to 13.4.5 Releasing halt status by interrupt

12.6 Current Dissipation in Halt and Clock Stop Modes in previous

edition deleted

Description added to 14.4 Power-ON Reset CHAPTER 14 RESET

FUNCTION

15.5.9 (3) SYSCAL entry added CHAPTER 15 INSTRUCTION SET

A.1 Hardware and A.2 Software changed APPENDIX A DEVELOPMENT TOOLS

C.1 Instruction Index (by function) added APPENDIX C INSTRUCTION INDEX

APPENDIX D REVISION HISTORY added APPENDIX D REVISION HISTORY

[MEMO]

296

Although NEC has taken all possible steps
to ensure that the documentation supplied
to our customers is complete, bug free
and up-to-date, we readily accept that
errors may occur. Despite all the care and
precautions we've taken, you may
encounter problems in the documentation.
Please complete this form whenever
you'd like to report errors or suggest
improvements to us.

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: 02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-719-5951

Address

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: 1-800-729-9288

1-408-588-6130

Europe
NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-6465-6829

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Semiconductor Technical Hotline
Fax: 044-548-7900

I would like to report the following error/make the following suggestion:

Document title:

Document number: Page number:

Thank you for your kind support.

If possible, please fax the referenced page or drawing.

Excellent Good Acceptable PoorDocument Rating

Clarity

Technical Accuracy

Organization

CS 98.2

Name

Company

From:

Tel. FAX

Facsimile Message

	COVER
	MAJOR REVISIONS IN THIS VERSION
	INTRODUCTION
	CHAPTER 1 GENERAL
	1.1 Internal Configuration of uPD170xx Subseries

	CHAPTER 2 PROGRAM MEMORY (ROM)
	2.1 Program Memory Configuration
	2.2 Program Memory Functions
	2.3 Program Flow
	2.4 Branching Program
	2.4.1 Direct branch
	2.4.2 Indirect branch
	2.4.3 Notes on debugging

	2.5 Subroutine
	2.5.1 Direct subroutine call
	2.5.2 Indirect subroutine call

	2.6 System Call
	2.7 Table Referencing
	2.8 Notes on Using Operand for Branch and Subroutine Call Instructions

	CHAPTER 3 PROGRAM COUNTER (PC)
	3.1 Program Counter Configuration
	3.2 Program Counter Functions
	3.2.1 When branch (BR) instruction is executed
	3.2.2 When subroutine call (CALL) or subroutine return (RET, RETSK) instruction is executed
	3.2.3 When table reference (MOVT) instruction is executed
	3.2.4 When interrupt is accepted and when interrupt return (RETI) instruction is executed
	3.2.5 When skip instruction is executed
	3.2.6 On reset
	3.2.7 On system call instruction execution

	3.3 Segment Register (SGR)
	3.4 Notes on Using Program Counter

	CHAPTER 4 ADDRESS STACK
	4.1 Address Stack Configuration
	4.2 Address Stack Functions
	4.3 Stack Pointer (SP)
	4.3.1 Stack pointer configuration
	4.3.2 Stack pointer operation

	4.4 Address Stack Registers
	4.5 Stack Operations, When Subroutine, Table Reference, or Interrupt Is Executed
	4.5.1 When subroutine call (CALL) or return (RET, RETSK) instruction is executed
	4.5.2 Table reference instruction (MOVT DBF, @AR)
	4.5.3 System call instruction (SYSCAL) and return instruction (RETI, RETSK)
	4.5.4 When interrupt is accepted or when return (RETI) instruction is executed

	4.6 ASR7 Nesting Level for Stack and PUSH AR and POP AR Instructions

	CHAPTER 5 DATA MEMORY (RAM)
	5.1 Data Memory Configuration
	5.2 Notes on Specifying Data Memory Address

	CHAPTER 6 SYSTEM REGISTER (SYSREG)
	6.1 System Register Configuration
	6.2 System Register Functions
	6.2.1 Each register functions
	6.2.2 System register manipulation instruction

	6.3 Address Register (AR)
	6.3.1 Address register configuration
	6.3.2 Address register functions
	6.3.3 Table reference instruction (MOVT DBF, @AR)
	6.3.4 Stack manipulation instruction (PUSH AR, POP AR)
	6.3.5 Indirect branch instruction (BR @AR)
	6.3.6 Indirect subroutine call instruction (CALL @AR)
	6.3.7 Address register and data buffer

	6.4 Window Register (WR)
	6.4.1 Window register configuration
	6.4.2 Window register functions
	6.4.3 PEEK WR, rf instruction
	6.4.4 POKE rf, WR instruction

	6.5 Bank Register (BANK)
	6.5.1 Bank register configuration
	6.5.2 Bank register function

	6.6 Index Register (IX) and Data Memory Row Address Pointer (MP: Memory Pointer)
	6.6.1 Configurations for index register and data memory row address pointer
	6.6.2 Index register and data memory row address pointer functions
	6.6.3 When MPE = 0, IXE = 0 (no data memory modification)
	6.6.4 When MPE = 1, IXE = 0 (diagonal indirect transfer)
	6.6.5 When MPE = 0, IXE = 1 (data memory address index modification)
	6.6.6 When MPE = 1, IXE = 1

	6.7 General Register Pointer (RP)
	6.7.1 General register pointer configuration
	6.7.2 General register pointer functions
	6.7.3 Notes on using general register pointer

	6.8 Program Status Word (PSWORD)
	6.8.1 Program status word configuration
	6.8.2 Program status word function
	6.8.3 Index enable flag (IXE)
	6.8.4 Zero (Z) and compare (CMP) flags
	6.8.5 Carry flag (CY)
	6.8.6 Binary coded decimal flag (BCD)
	6.8.7 Notes on executing arithmetic operation

	6.9 Notes on Using System Registers
	6.9.1 Reserved words of system registers
	6.9.2 Handling system register fixed to "0"

	CHAPTER 7 GENERAL REGISTER (GR)
	7.1 General Register Configuration
	7.2 General Register Functions
	7.3 Notes on General Register Use
	7.3.1 Address specification for general register
	7.3.2 Row address in general
	7.3.3 Operation between general register and immediate data

	7.4 Address Generation and Operation for General Register and Data Memory by Each Instruction

	CHAPTER 8 ARITHMETIC LOGIC UNIT (ALU)
	8.1 ALU Block Configuration
	8.2 ALU Block Function
	8.2.1 ALU function
	8.2.2 Functions of temporary registers A and B
	8.2.3 Status flip-flop functions
	8.2.4 Binary 4-bit operation
	8.2.5 BCD operation
	8.2.6 ALU block processing sequence

	8.3 Arithmetic Operation (Binary 4-bit addition/subtraction and BCD addition/subtraction)
	8.3.1 Addition/subtraction when CMP = 0, BCD = 0
	8.3.2 Addition/subtraction when CMP = 1, BCD = 0
	8.3.3 Addition/subtraction when CMP = 0, BCD = 1
	8.3.4 Addition/subtraction when CMP = 1, BCD = 1
	8.3.5 Notes on using arithmetic operation instruction

	8.4 Logical Operation
	8.4.1 Logical sum (Logical OR)
	8.4.2 Logical product (Logical AND)
	8.4.3 Logical exclusive sum (Logical exclusive OR)

	8.5 Bit Testing
	8.5.1 True bit (1) testing
	8.5.2 False bit (0) testing

	8.6 Compare
	8.6.1 Comparison of "Equal to"
	8.6.2 Comparison of "Not equal to"
	8.6.3 Comparison of "Greater than"
	8.6.4 Comparison of "Less than"

	8.7 Rotation Processing
	8.7.1 Right rotation processing
	8.7.2 Left rotation processing

	CHAPTER 9 REGISTER FILE (RF)
	9.1 Register File Configuration
	9.2 Register File Functions
	9.2.1 Register file functions
	9.2.2 Register file manipulation instruction

	9.3 Control Register
	9.3.1 Control register configuration
	9.3.2 Hardware peripheral control functions for control register

	9.4 Notes on Using Register File
	9.4.1 Notes on manipulating control registers (read-only and unused registers)
	9.4.2 Symbol definition of register file and reserved words
	9.4.3 Notes on using assembler (RA17K) macroinstructions

	CHAPTER 10 DATA BUFFER (DBF)
	10.1 Data Buffer Configuration
	10.2 Data Buffer Functions
	10.3 Notes on Using Data Buffer
	10.3.1 When manipulating addresses for write-only and read-only registers and an unused address
	10.3.2 Specification of peripheral register address

	10.4 Data Buffer and Table Reference
	10.4.1 Table reference operation
	10.4.2 Table reference program example

	10.5 Data Buffer and Hardware Peripherals
	10.5.1 Controlling hardware peripherals
	10.5.2 Data length when transferring data with peripheral register

	CHAPTER 11 GENERAL-PURPOSE PORTS
	11.1 General-Purpose Port Configuration
	11.2 Function of General-Purpose Ports
	11.2.1 General-purpose port data register (port register)

	CHAPTER 12 INTERRUPT FUNCTIONS
	12.1 Interrupt Block Configuration
	12.2 Interrupt Functions
	12.2.1 Hardware peripheral
	12.2.2 Interrupt request processing block
	12.2.3 Configuration and function of interrupt request flag (IRQxxx)
	12.2.4 Configuration and functions of Interrupt permission flag (IPxxx)
	12.2.5 Stack pointer, address stack register, and program counter
	12.2.6 Interrupt enable flip-flop (INTE)
	12.2.7 Vector address generator (VAG)
	12.2.8 Interrupt stack

	12.3 Acknowledging Interrupts
	12.3.1 Acknowledging interrupts and priority
	12.3.2 Timing chart for acknowledging interrupt

	12.4 Operation After Interrupt Has been Acknowledged
	12.5 Interrupt processing Routine
	12.5.1 Saving
	12.5.2 Restoration processing
	12.5.3 Notes on interrupt processing routine

	12.6 Nesting
	12.6.1 Interrupt source priority
	12.6.2 Interrupt limit by interrupt stack

	CHAPTER 13 STANDBY FUNCTIONS
	13.1 Configuration of Standby Block
	13.2 Standby Function
	13.3 Selecting Device Operation Mode with CE Pin
	13.3.1 Controlling operation of internal peripheral hardware
	13.3.2 Enabling and disabling clock stop instruction
	13.3.3 Resetting device
	13.3.4 Signal input to CE pin

	13.4 Halt Function
	13.4.1 Halt status
	13.4.2 Halt release condition
	13.4.3 Releasing halt status by key input
	13.4.4 Releasing halt status by timer carry (basic timer 0 carry)
	13.4.5 Releasing halt status by interrupt
	13.4.6 If two or more release conditions are simultaneously set

	13.5 Clock Stop Function
	13.5.1 Clock stop status
	13.5.2 Releasing clock stop status
	13.5.3 Troubles occurring as result of executing clock stop instruction, when CE pin is high, and remedis therefor

	CHAPTER 14 RESET FUNCTIONS
	14.1 Configuration of Reset Block
	14.2 Reset Function
	14.3 CE Reset
	14.3.1 CE reset when clock stop (STOP s) instruction is not used
	14.3.2 CE reset when clock stop (STOP s) instruction is used
	14.3.3 Notes on CE reset

	14.4 Power-ON Reset
	14.4.1 Power-ON reset during normal operation
	14.4.2 Power-ON reset in clock stop status
	14.4.3 Power-ON reset when supply voltage VDD rises from 0 V

	14.5 Relation between CE Reset and Power-ON Reset
	14.5.1 If VDD pin and CE pin rise simultaneously
	14.5.2 If CE pin rises in forced halt status of power-ON reset
	14.5.3 If CE pin rises after power-ON reset
	14.5.4 Notes on raising supply voltage VDD

	14.6 Power Failure Detection
	14.6.1 Power failure detection circuit
	14.6.2 Notes on detecting power failure by TMCY flag
	14.6.3 Power failure detection by RAM judgement method
	14.6.4 Notes on detecting power failure by RAM judgement method

	CHAPTER 15 INSTRUCTION SET
	15.1 Instruction Set Outline
	15.2 Legend
	15.3 Instruction List
	15.4 Assembler (RA17K) Macro instructions
	15.5 Instruction Functions
	15.5.1 Addition instructions
	15.5.2 Subtraction instructions
	15.5.3 Logical operation instructions
	15.5.4 Test instructions
	15.5.5 Compare instructions
	15.5.6 Rotation instruction
	15.5.7 Transfer instructions
	15.5.8 Branch instructions
	15.5.9 Subroutine instructions
	15.5.10 Interrupt instructions
	15.5.11 Other instructions

	APPENDIX A DEVELOPMENT TOOLS
	A.1 Hardware
	A.2 Software

	APPENDIX B HOW TO ORDER THE MASK ROM
	APPENDIX C INSTRUCTION INDEX
	C.1 Instruction Index (by function)
	C.2 Instruction Index (by alphabetic order)

	APPENDIX D REVISION HISTORY

