LENESAS

-
»
1
s
<
Q
-
c
D

RX130 Group

Renesas Starter Kit
Smart Configurator Tutorial Manual
For CS+

RENESAS 32-Bit MCU
RX Family / RX100 Series

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Renesas Electronics
www.renesas.com Rev. 1.00 Jun 2017



10.

11.

12.

Notice

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits,
software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and
damages incurred by you or third parties arising from the use of these circuits, software, or information.

Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving
patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or
technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm,
application examples.

No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas
Electronics or others.

You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas
Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration,
modification, copy or otherwise misappropriation of Renesas Electronics products.

Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended

applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment;
home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication
equipment; key financial terminal systems; safety control equipment; etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life

or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (space and

undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas

Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas

Electronics product for which the product is not intended by Renesas Electronics.

When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes,
"General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are
within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation
characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out
of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products
have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them
against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of
Renesas Electronics products, such as safety design for hardware and software including but not limited to redundancy, fire control and
malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as
warranty for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please
evaluate the safety of the final products or systems manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each
Renesas Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled
substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in
compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses
occurring as a result of your noncompliance with applicable laws and regulations.

Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use,
or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products or
technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction,
such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for
delivering such weapons, (2) any purpose relating to the development, design, manufacture, or use of conventional weapons, or (3) any
other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics
products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any
other party will engage in the activities described above. When exporting, selling, transferring, etc., Renesas Electronics products or
technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments
of the countries asserting jurisdiction over the parties or transactions.

Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms
and conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or violation results
from your resale or making Renesas Electronics products available any third party.

This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or
Renesas Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned

subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.3.0-1 November 2016)




General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.
For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well
as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the

manual.

%, The input pins of CMOS products are generally in the high-impedance state. In operation with an
unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

%, The states of internal circuits in the LSI are indeterminate and the states of register settings and
pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.
3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.

%. The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals
After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.

% When the clock signal is generated with an external resonator (or from an external oscillator)
during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm

that the change will not lead to problems.

% The characteristics of Microprocessing unit or Microcontroller unit products in the same group but
having a different part number may differ in terms of the internal memory capacity, layout pattern,
and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a
product with a different part number, implement a system-evaluation test for the given product.




Disclaimer

By using this Renesas Starter Kit (RSK), the user accepts the following terms:

The RSK is not guaranteed to be error free, and the entire risk as to the results and performance of the RSK is
assumed by the User. The RSK is provided by Renesas on an “as is” basis without warranty of any kind whether
express or implied, including but not limited to the implied warranties of satisfactory quality, fitness for a particular
purpose, title and non-infringement of intellectual property rights with regard to the RSK. Renesas expressly
disclaims all such warranties. Renesas or its affiliates shall in no event be liable for any loss of profit, loss of data,
loss of contract, loss of business, damage to reputation or goodwill, any economic loss, any reprogramming or recall
costs (whether the foregoing losses are direct or indirect) nor shall Renesas or its affiliates be liable for any other
direct or indirect special, incidental or consequential damages arising out of or in relation to the use of this RSK, even
if Renesas or its affiliates have been advised of the possibility of such damages.

Precautions

The following precautions should be observed when operating any RSK product:

This Renesas Starter Kit is only intended for use in a laboratory environment under ambient temperature and humidity
conditions. A safe separation distance should be used between this and any sensitive equipment. Its use outside the
laboratory, classroom, study area or similar such area invalidates conformity with the protection requirements of the
Electromagnetic Compatibility Directive and could lead to prosecution.

The product generates, uses, and can radiate radio frequency energy and may cause harmful interference to radio
communications. However, there is no guarantee that interference will not occur in a particular installation. If this
equipment causes harmful interference to radio or television reception, which can be determined by turning the
equipment off or on, you are encouraged to try to correct the interference by one or more of the following measures;

e ensure attached cables do not lie across the equipment

e reorient the receiving antenna

e increase the distance between the equipment and the receiver

e connect the equipment into an outlet on a circuit different from that which the receiver is connected
e power down the equipment when not in use

e consult the dealer or an experienced radio/TV technician for help NOTE: It is recommended that wherever
possible shielded interface cables are used.

The product is potentially susceptible to certain EMC phenomena. To mitigate against them it is recommended that the
following measures be undertaken;

e The user is advised that mobile phones should not be used within 20m of the product when in use.
e The user is advised to take ESD precautions when handling the equipment.

The Renesas Starter Kit does not represent an ideal reference design for an end product and does not fulfil the
regulatory standards for an end product.




How to Use This Manual

1. Purpose and Target Readers

This manual is designed to provide the user with an understanding of how to use Application Leading Tool
(Smart Configurator) for RX together with the CS+ IDE to create a working project for the RSK platform. It is
intended for users designing sample code on the RSK platform, using the many different incorporated
peripheral devices.

The manual comprises of step-by-step instructions to generate code and import it into CS+, but does not
intend to be a complete guide to software development on the RSK platform. Further details regarding
operating the RX130 microcontroller may be found in the Hardware Manual and within the provided sample
code.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within the body
of the text, at the end of each section, and in the Usage Notes section.

In this manual, the display may differ slightly from screen shots. There is no problem in reading this manual.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of
the manual for details.

The following documents apply to the RX130 Group. Make sure to refer to the latest versions of these
documents. The newest versions of the documents listed may be obtained from the Renesas Electronics Web
site.

Document Description Document Title Document No.
Type

User’s Manual Describes the technical details of the RSKRX130-512KB User’s R20UT3921EG
RSK hardware. Manual

Tutorial Manual Provides a guide to setting up RSK RSKRX130-512KB Tutorial R20UT3922EG
environment, running sample code and Manual
debugging programs.

Quick Start Provides simple instructions to setup the RSKRX130-512KB Quick Start R20UT3923EG

Guide RSK and run the first sample. Guide

Smart Provides a guide to code generation RSKRX130-512KB Smart R20UT3924EG

Configurator and importing into the CS+ IDE. Configurator Tutorial Manual

Tutorial Manual

Schematics Full detail circuit schematics of the RSK. RSKRX130-512KB Schematics | R20UT3920EG

Hardware Provides technical details of the RX130 RX130 Group Hardware RO1UHO0560EJ

Manual microcontroller. Manual




2. List of Abbreviations and Acronyms

Abbreviation Full Form
ADC Analog-to-Digital Converter
API Application Programming Interface
bps bits per second
CMT Compare Match Timer
COM COMmunications port referring to PC serial port
CPU Central Processing Unit
DVD Digital Versatile Disc
E1/E2 Lite Renesas On-chip Debugging Emulator
GUI Graphical User Interface
IDE Integrated Development Environment
IRQ Interrupt Request
LCD Liquid Crystal Display
LED Light Emitting Diode
LSB Least Significant Bit
LVD Low Voltage Detect
MCU Micro-controller Unit
MSB Most Significant Bit
PC Personal Computer
PLL Phase-locked Loop
Pmod™ Thi_s is a Digilent Pmod™ (_Zc_)mpatible connector. Pmod™ s registered to Digilent Inc.
Digilent-Pmod_Interface_Specification
RAM Random Access Memory
ROM Read Only Memory
RSK Renesas Starter Kit
RTC Real Time Clock
SAU Serial Array Unit
SCI Serial Communications Interface
SPI Serial Peripheral Interface
TAU Timer Array Unit
TFT Thin Film Transistor
TPU Timer Pulse Unit
UART Universal Asynchronous Receiver/Transmitter
USB Universal Serial Bus
WDT Watchdog Timer

All trademarks and registered trademarks are the property of their respective owners.


http://www.digilentinc.com/index.cfm

Table of Contents

I @Y= V1 PSPPSR P PPPPPPPPPP 8
L1 PUIPOSE ... 8
1.2 FALUIES ... 8
P2 1 1 (0T [3Tox o] o PRSPPI 9
3. Project Creation WIth CS..... .o et e e e e eeannees 10
R 0 A Vo1 1o T 1o 1o o I TP PRP 10
I I O (-7 1] o R € L= 1T o O EER 10
4. Smart Configurator USING the CS+ ... e e e e e eeanaees 12
o R 1o o To [F od 1T o PRI 12
4.2 Project Configuration using Smart Configurator - OVErVIEW PAJE......ccceeeiiuririiiiaaeaaiiiiieeeee e e aiiieeeeeaaeas 13
0 T O o o] Qoo g ¥ilo U1 7= 11T I = o - SRR 14
431 (@ loTed S olo] 0110 U] = 11T o HA PP PURPPRP 14
N 070 ] o] oTo 1= o1 S o F= Yo 15
44.1 Add a software component into the ProjJECt.........ceuveeii i e 15
442 S =T I 1 1= S ST 16
4.4.3 (@] 04 o T= T LTV F= L (o T T3 17
4.4.4 INEEITUPL CONTFOIIT ..ttt et e e e e s st et e e e e e e s e ean bt e e e e e e e e e s nnbbeeeaaaeeas 19
4.45 [0 4 £ TP PP PP PPPPPPPUPPPPPPPPIRE 21
4.4.6 SCI/SCIF ASYNCNIONOUS IMOGE .....eeiiiiiiiiiitiiie ettt e e et e e e e e e e ibb e e e e e e e e s snnaeeeeas 25
4.4.7 SPI CloCK SYNCHIONOUS MOUE ....oeeiiieeiiiiiiiiiiee e e st e e st e e e e e e st e e e e e e s st n e e e e e e e e e snnnnneees 28
4.4.8 SiNGIe SCAN MOUE SL2AD.... ... eieieiie e e e e r e e e e e s e e e e aeessa st eeeeeeesanststeeeeeeeessnnnrnneees 31
4.5  PiNS CONfIQUIALION PAYE ..eeeeiiiiiiiiiiiiiie ettt oottt e e e e ek b bttt e e e e e e s bt e e e e e e e e e s e aanbbeeeeaaeesaannbbeeeaaaaeas 34
45.1 Change pin assignment of a software COMPONENt...........cooiiiiiiiiiiiie e 34
5. Completing the TULONal PrOJECT. .......cooeiiiieiiee e 38
LT R o o] [Tt GRS =Y 1] o TP PUUUPPPRRPT 38
L2 Vo (o 11 i o] g T T o] (o L= U PRP 40
5.3  Precautions on using Smart CONfIgUIALON.........iciiiiiiiiiiiie e e s s e e e e e s s e e e e e s s ssrnreeeeeeeseannes 41
Lo @1 B I @ o [N 1] (== L1 T} o IO EER 42
5.4.1 LY o I o o PSPPSR 45
5.4.2 LI o o RSP RR 46
LI T 111 (od T @Yo [N 1 (= = L1 o] o O EER a7
55.1 [a1=T g U] o] A e Lo [T PP EUTT TP 47
5.5.2 DE-DOUNCE TIMEI COUE ....ceiiiiiie ettt ettt e et e e e sab e e s sabe e e e s sabe e e e s sabeeeesanbeeeennes 49
55.3 Main SWItCh @Nd ADC COUE.....ccoiiiiiiie ittt ettt e et e e st e e s st e e e s sebe e e e s sabeeeessareeeennes 50
SN I D= o 18 o @ o [N [ 01 (=To | = L1 o] o DT U PRRPP 55
T A U 7Y = g I OTe o [ [ a1 1=To ] =1 1 o] o HO TR UUUPPURPT 55
57.1 1101 [ @7 To = PR PPRTP 55
5.7.2 MEAIN UART COUC .....eiiiiiiieie ittt ettt ettt ettt e e st e e e s e bt e e e shbe e e e s sabe e e e s sbbeeeesabbeeeesanbeeeeane 57
Lo T I 1 I o o L= [ o1 (Yo - 1o o SR 59
R BT=T o0 To o[ To IR 1 U= = (0] [T o 62
7. Running the Smart Configurator TULOTAl ...........cooiiiiiiiiiii e 63
7.1 RUNNING the TULOTIAL....ciiie it s e e e s e e e e e s st ae e e e e e e s s sanbeeeeeeeesansnseneneeeessannnnnneees 63

Ao o [1nTo ot M T a) {0110 4 T=1 1 o] o [T 64



ENESANS

RSKRX130-512KB

RENESAS STARTER KIT

R20UT3924EG0100
Rev. 1.00
Jun 30, 2017

1. Overview

1.1  Purpose

This RSK is an evaluation tool for Renesas microcontrollers. This manual describes how to use the CS+ IDE

Smart Configurator to create a working project for the RSK platform.

1.2 Features

This RSK provides an evaluation of the following features:
« Project Creation with CS+

« Code Generation using the Smart Configurator.
« User circuitry such as switches, LEDs and a potentiometer

The RSK board contains all the circuitry required for microcontroller operation.

R20UT3924EG0100 Rev. 1.00 nNS
Jun 30, 2017 RENES

Page 8 of 68



RSKRX130-512KB 2. Introduction

2. Introduction

This manual is designed to answer, in tutorial form, how to use the Smart Configurator for the RX family
together with the CS+ IDE to create a working project for the RSK platform. The tutorials help explain the
following:

e Project generation using the CS+

e Detailed use of the Smart Configurator in for CS+
e Integration with custom code

e Building the project CS+

The project generator will create a tutorial project with three selectable build configurations:
e ‘DefaultBuild’ is a project with debug support and optimisation level set to two.
e ‘Debug’is a project built with the debugger support included. Optimisation is set to zero.

e ‘Release’is a project with optimised compile options (level two) and ‘Outputs debugging information’
options not selected, producing code suitable for release in a product.

The tutorial examples in this manual assume that installation procedures described in the RSK Quick Start
Guide have been completed. Please refer to the Quick Start Guide for details of preparing the configuration.

These tutorials are designed to show you how to use the RSK and are not intended as a comprehensive introduction to
the CS+ debugger, compiler toolchains or the E2 emulator Lite. Please refer to the relevant user manuals for more in-
depth information.

R20UT3924EG0100 Rev. 1.00 nNS Page 9 of 68
Jun 30, 2017 RENES




RSKRX130-512KB 3. Project Creation with CS+

3. Project Creation with CS+

3.1 Introduction

In this section the user will be guided through the steps required to create a new C project for the RX130 MCU,
ready to generate peripheral driver code using Smart Configurator. This project generation step is necessary
to create the MCU-specific project and debug files.

3.2 Creating the Project

To use the program, start CS+:

Windows™ 7: Start Menu > All Programs > Renesas Electronics CS+ > CS+ for CC (RL78,RX,RH850)

Windows™ 8.1 & 8: From Apps View @ click ‘CS+ for CC (RL78,RX,RH850)’ icon
Windows™ 10: Start Menu > All Apps > Renesas Electronics CS+ > CS+ for CC (RL78,RX,RH850)

e CS+ will show the Start Page. Use the
‘GO’ button to Create a New Project.

Create New Project

A new project can be created.
A new project can also be created by reusing the file configuration registered to an existing project.

e In the ‘Create Project’ dialog, select

‘RX’ from the ‘Microcontroller’ pull-
down.
e In the ‘Using Microcontroller’ list

control, scroll down to ‘RX130' and
expand the tree control by clicking ‘+'.
Select ‘R5F51308AxFP(100pin)’.

e Ensure that in the ‘Kind of project’ pull-
down, ‘Application(CC-RX)’ is selected.

e Choose an appropriate name and
location for the project, then click
‘Create’.

Note: this tutorial assumes the project
is named and located at the place
shown opposite.

e |[f the folder entered cannot be found a
‘Question’ dialog will be displayed;
click 'Yes'.

Create Project x

Microcaontroller: R ~
Using microcontreller:

. (Search microcontroller) Update...

Product Name:RSF51308A«FP
On-chip ROM size[KBytes]. 512
On-chip RAM size[Bytes]: 45152
Additional Information:Package=PLQOPD100KB-B

W REF512074¢FP{100pin) -
R5F513074<HE(48pin)
R5F513084:FK(64pin)

R5F513084xFL(48pin)

REF51308:FM{64pin)
R5F513084¢FN(20pin)
R5F513084xFP{100pin)
3 R5F513084h E{4Bpin)

o fi msec

W

Kind of project: Application[CC-RX) w
Project name: SC_Tutorial
Place: Chworkspace v Browse...

Make the project folder

C:orkspace\SCTutorial\SCTutorial mipj

[] Pass the file composition of an existing project to the new project

Project to be passed: Browse...
Copy composition files in the diverted project folder to a new project folder.

R20UT3924EG0100 Rev. 1.00
Jun 30, 2017



RSKRX130-512KB 3. Project Creation with CS+

e CS+ will create the blank project with @3 sCTutorial - C5+ for CC - [Property]
the standard prOJeCt tree. A ‘Smart File Edit View Project Build Debug Tecl Window Help

Configurator’ node may also be — :
shown, if previously enabled. oot Jdd X DB 9 HE R T
S R & B G G| 5 g Solution List
(3| Project Tree o X |
oD
g, 5 @ 3 @ B:.J Smart Configurator Property
% B[_IG; SC Tutorial (Project’ v Product Information
E £ R5F513082:FP (Microcontroller) \ersi

.“iiSmart Configurator (Design Tool) |
- 4‘ (ZC-RX (Build Tool) Smart Configurator executable file path

- RX Simulator (Debug Toal)

..... ] sbrih
----- i'J stacksct.h
----- i'J typedefine.h
..... ilJ vect.h
R20UT3924EG0100 Rev. 1.00 RENESAS Page 11 of 68

Jun 30, 2017



RSKRX130-512KB 4. Smart Configurator Using the CS+

4. Smart Configurator Using the CS+

4.1 Introduction

The Smart Configurator for the RX130 has been used to generate the sample code discussed in this
document. Smart Configurator for CS+ is a tool for generating template ‘C’ source code and project settings
for the RX130. When using Smart Configurator, it supports user with a visual way of configuring the target
device, clocks, software components, hardware resources and interrupts for the project. Thereby bypassing
the need in most cases to refer to sections of the Hardware Manual.

By following the steps detailed in this tutorial, the user will generate a CS+ project called SC_Tutorial. A fully
completed Tutorial project is contained on the DVD and may be imported into CS+ by following the steps in
the Quick Start Guide. This tutorial is intended as a learning exercise for users who wish to use the Smart
Configurator to generate their own custom projects for CS+.

Once the user has configured the project, the ‘Smart Configrator’ function is used to generate code modules
for each specific MCU feature selected, general folder, r_bsp folder, r_config folder and r_pincfg folder. These
code modules are name ‘Config_xxx.h’, ‘Config_xxx.c’, and ‘Config_xxx_user.c’, where ‘xxx’ is an acronym for
the relevant MCU feature, for example ‘S12AD’. Within these code modules, the user is then free to add
custom code to meet their specific requirement. Custom code should be added, whenever possible, in
between the following comment delimiters:

/* Start user code for adding. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */

Smart Configurator will locate these comment delimiters, and preserve any custom code inside the delimiters
on subsequent code generation operations. This is useful if, after adding custom code, the user needs to re-
visit Smart Configurator to change any MCU operating parameters.

The SC_Tutorial project uses interrupts for switch inputs, the ADC module, the 8-Bit Timer, the Compare
Match Timer (CMT), the Serial Communications Interface (SCI) and uses these modules to perform A/D
conversion and display the results via the Virtual COM port to a terminal program and also on the LCD display
on the RSK.

Following a tour of the key user interface features of Smart Configurator in and the reader is guided through
each of the peripheral function configuration dialogs in 84.2. In 85, the reader is familiarised with the structure
of the template code, as well as how to add their own code to the user code areas provided by the code
generator.

R20UT3924EG0100 Rev. 1.00 RENESAS Page 12 of 68
Jun 30, 2017



RSKRX130-512KB 4. Smart Configurator Using the CS+

4.2 Project Configuration using Smart Configurator - Overview page

In this section, a brief tour of Smart Configurator is presented. For further details of the Smart Configurator
paradigm and reference, refer to the Smart Configurator User Guide.

You can download the latest document from: https://www.renesas.com/smart-configurator.

Smart Configurator will start up by double clicking on “Smart Configurator (Design Tool)” on the project tree.
The Smart Configurator initial view is displayed as illustrated in Figure 4-1.

Smart Configurator
File Window Help
Jull~] -
b SCTutorial.scfg 2 = O ||## McU Package 2

ICEENIE -V EN PR PR IR e

o5

Overview information

~ General Information

This editer allows you to medify the settings stored in configuration file (:scfg)

Board

Allow board and device selection

Clocks Application under

development
Allow clock configuration

~ = Companents
I Middleware ]
Components

Device - ‘ RTOS ‘ el
Allow software component selection and configuration driver Bl

LENESAS

R NCEEEE —— Pins
RX130
Pins

RSF51308AxFP
Allow general pin configuration and pin cenfiguration for selected software compenent

Interrupt

Allow general interrupt configuration and interrupt configuration for selected software component

~ Current Configuration

Selected board/device: RSF51308AxFP
Selected components:

v
Overview | Board | Clocks| Camponents | Pins| Interrupts
& Console 2 % b | o B~ 9~ = 8 ||[Z Configuration Problems 3
Smart Configurator Qutput

0Oitems
M@56@0081: Pin 13 is assigned to EXTAL A || Deseription
M@5800001: Pin 11 is assigned to XTAL

Type
v

Figure 4-1 Overview page

Smart Configurator provides GUI features for configuration of MCU sub systems. Once the user has

configured all required MCU sub systems and peripherals, the user can click the ‘Generate Code’ button,
resulting in a fully configured CS+ project that builds and runs without error.

R20UT3924EG0100 Rev. 1.00 RENESAS Page 13 of 68
Jun 30, 2017


https://www.renesas.com/smart-configurator

RSKRX130-512KB 4. Smart Configurator Using the CS+

4.3 Clock configuration page

Clocks configuration page configures clocks of the device selected. Clock source, frequency, PLL settings and
clock divider settings can be configured for the output clocks.

4.3.1  Clocks configuration

Figure 4-2 shows a screenshot of Smart Configurator with the Clocks tab. Click on the ‘Clocks’ tab.
Configure the system clocks as shown in the figure. In this tutorial, we are using the on-board 8 MHz crystal
resonator for our main clock oscillation source and the PLL circuit is in operation. The PLL output is used as

the main system clock and the divisors should be set as shown in Figure 4-2.

5 sCTuterial.scfg 22

Clocks configuration

& ¢

IWDT-dedicated low-speed clock

VCC: | 3.3 v
¥ | Main dock PLL circuit
Oscillation source: | Resonatar - Frequency Division: SCKCR. (FCLK[3:00
- 1 -
Frequency: 8 {MHz) x1/2 x
Frequency Multiplication: r 3.
Wait time: | 32768 <+ || 512 (ug) B SCKCR (ICLEE:0]
xg - o— xi -
Sub-clock SCKCR (PCLKB([3:0)
----- —e—— x1 =
SCKCR. (PCLKD[3:01)
x1 =
HOCO clack
LOCO clock
S~

FlashiF clock (FCLK)
320 (MHz)

Systern clack {ICLK)
320 MHz)

Peripheral medule clock {PCLKE)
320 MHz)

Peripheral medule clock {PCLKD)

320 MHz)
CACMCLK
8 [MHzZ)

Overview | Board Components | Pins | Interrupts
Figure 4-2 Clocks Configuration page

R20UT3924EG0100 Rev. 1.00
Jun 30, 2017

RENESAS

Page 14 of 68



RSKRX130-512KB 4. Smart Configurator Using the CS+

4.4  Components page

Drivers and middleware are handled as software components in Smart Configurator. Components page allows

user to select and configure software components.
o] *SC_Tutorial.scfg &2

Software component configuration
Components = :%> -

&

type filker text

v [= Startup
~ [= Generic
& rbsp

= Drivers
= Middleware
= Application

Overview | Board C\ocksPins Interrupts
Figure 4-3 Components page
441  Add asoftware component into the project
Smart Configurator supports two types of software components: Code Generator and Firmware Integration

Technology. In the following sub-sections, the reader is guided through the steps to configure the MCU for a
simple project containing interrupts for switch inputs, timers, ADC and a SCI by component of Code Generator.

Click ‘Add component’ & icon.

i.,g,} *SC_Tutorial.scfg &2
Software component configuration
Components = :’.f:p -

type filter text

v (= Startup
W [= Generic

& rbsp
Figure 4-4 Add a Code Generator component (1)

In ‘Software Component Selection’ dialog -> Type, select ‘Code Generator’.

Mew Component

Software Component Selection -|:I:|-

Select component from those available in list

Function |All

Type All -
. All

Liltey Firmware Integration Technolo

Version

Components Type

FH 8-Bit Timer Code Generator 1.0.0
B Buses Code Generator 1.0.0
B Clock Frequency Accuracy Me...  Code Generator 1.0.0
B Comparator Code Generator 1.0.0

Figure 4-5 Add a Code Generator component (2)

R20UT3924EG0100 Rev. 1.00 RENESAS Page 15 of 68
Jun 30, 2017



RSKRX130-512KB

4. Smart Configurator Using the CS+

4.4.2 8-Bit Timer

TMRO will be used as an interval timer for generation of accurate delays. Select ‘8-Bit Timer’ as shown in

Figure 4-6 below then click ‘Next'.

MNew Component

Software Component Selection

Select component from those available in list

Function All

Type o Code Generator

Filter |

Components

Type

Version 2

4 8-Bit Timer

Code Generator

1.00 |

B Buses

## Comparator
=} Compare Match Timer

L4

# Clock Frequency Accuracy Me...

#® Complementary PWM Mode Ti...

Code Generator
Code Generator
Code Generator
Code Generator
Code Generator

1.0.0
1.0.0
1.00
1.20
110 v

Show only last version

Description

channels.

This software component generates two units (unit 0, unit 1) of an en-chip 8-bit
timer (TMR) module that comprise twe 8-bit counter channels, totaling four

Configure general settings...

Download mere software components

()

< Back

Mext > I

| Finish | Cancel

Figure 4-6 Select 8-Bit Timer

In ‘Add new configuration for selected component’ dialog -> Resource, select ‘TMRO’ as shown in Figure 4-7

below then click ‘Finish’.

MNew Component

Add new configuration for selected component

8-Bit Timer
Configuration name: Config_TMRD
Count mode: 8 bit

Resource:

)

< Back

Mext »

Cancel

Figure 4-7 Select Resource - TMRO

R20UT3924EG0100 Rev. 1.00
Jun 30, 2017

RENESAS

Page 16 of 68



RSKRX130-512KB 4. Smart Configurator Using the CS+

In the ‘Config_ TMRO’ configure TMRO as shown in Figure 4-8. This timer is configured to generate a high
priority interrupt every 1ms. We will use this interrupt later in the tutorial to provide an API for generating high

accuracy delays required in our application.
45 *SCTutorialscfg 52

Software component configuration

Components B - Configure
% = Count setting
type filter 1o Clock source |PcLksinas ~  [312s | wHD
Y
v (= Startup Counter clear ICIEared by compare match A VI
v = G_enE';( Compare match A value (TCORA) I 1 I Im; VI (Actual value: 0.992000)
& rbsp
~ (= Drivers Compare match B value (TCORB) I 1 I | ms | (Actual value: 0.952000)
T
e B*I..mér; fia TMRO TMOD output setting
onfi
& Middleware = [ Enable TMOD output
(= Application Mo change
No change
Interrupt setting
Enah\eTCORA compare match interrupt (CMIAD)
[JEnable TCORE compare match interrupt (CMIBD)
Enable TCNT overflow interrupt (OVIC]
P
Priarity |Level 10 ~|

Figure 4-8 Config_TMRO setting

4.4.3 Compare Match Timer

CMTO0 and CMT1 will be used as timers in de-bouncing of switch interrupts.

’

Click ‘Add component’ % icon. In ‘Software Component Selection’ dialog -> Type, select ‘Code Generator’.
Select ‘Compare Match Timer’ as shown in Figure 4-9 then click ‘Next'.

MNew Component

Software Component Selection |

Select component from those available in list

Function All ~
Type l1Code Generator VI
Filter | |
~
Components Type Version 2
# Clock Frequency Accuracy Me...  Code Generator 1.00
H Comparator Code Generator 1.0.0
H} Compare Match Timer Code Generator 1.2.0 I
## Complementary PWM Mode Ti... Code Generator 110
B Continuous Scan Mode 5124D Code Generator 1.0.0
## CRC Calculator Code Generator 1.0.0 4
< >

Show only last version

Description

This software component generates two units (unit 0, unit 1) of an on-chip 8-bit
timer (TMR) module that comprise two 8-bit counter channels, totaling four
channels.

Download more software components

Configure general settings...

@ <gack [ nets  |[ Finsh || Concel

Figure 4-9 Select Compare Match timer

R20UT3924EG0100 Rev. 1.00 RENESAS Page 17 of 68
Jun 30, 2017



RSKRX130-512KB 4. Smart Configurator Using the CS+

In ‘Add new configuration for selected component’ dialog -> Resource, select ‘CMTOQ’ as shown in Figure 4-10
below then click ‘Finish’.

MNew Component

Compare Match Timer
Configuration name: | Config_CMTD |
Resource: CMTO -
CMT1
® < Back Mext » Cancel

Figure 4-10 Select Resource — CMTO

In the ‘Config_CMTO’ configures CMTO as shown in Figure 4-11. This timer is configured to generate a high
riority interrupt after 20ms. This timer is used as our short switch de-bounce timer later in this tutorial.

5 *SCTutorial.scfg 52 l
Software component configuration
Components L= 2. Configure
% % Count clock setting
O PCLK/E ® PCLK/32 O PCLK/128 O PCLK/512
T
v & Startup Compare match setting
v [= Generic Interval value IZO I Ims VI (Actual value: 20.000000)
& rbsp Register value (CMCOR) [ 19999 |
w [ Drivers
w [= Timers B Enable compare match interrupt (CMI0)
& Config_CMTO . =
* Config_TMRO Priority ILe\.reI 10 I

Figure 4-11 Config_CMTO setting

Click ‘Add component’ & icon. In ‘Software Component Selection’ dialog -> Type, select ‘Code Generator’.
Select ‘Compare Match Timer’ then click ‘Next'. In ‘Add new configuration for selected component’ dialog ->
Resource, select ‘CMT1’ as shown in Figure 4-12 below then click ‘Finish’.

MNew Component

Add new configuration for selected component

Compare Match Timer

Configuration name: | Config_CMTO1 |

Resource: | CMTO ~ |

CMTO '

® < Back Mext = Cancel
Figure 4-12 Select Resource — CMT1

R20UT3924EG0100 Rev. 1.00 RENESANAS Page 18 of 68
Jun 30, 2017



RSKRX130-512KB 4. Smart Configurator Using the CS+

Navigate to the ‘Config_ CMT1’" and configure CMT1 as shown in Figure 4-13. This timer is configured to
generate a high priority interrupt after 200ms. This timer is used as our short switch de-bounce timer later in
this tutorial.

{5 *SCTutorial.scfg &2

Software component configuration

Components = v Configure
% = Count clock setting
P O PCLK/E O PCLK/32 O PCLK/128 @ PCLK/512
ype filter
v = Startup Compare match setting
w [ Generic Interval value I 200 I Ims VI (Actual value: 200.000000)
.- & rbsp Register value (CMCOR) [ 12400 |
v rivers
v = Timers [~] Enable compare match interrupt (CMIT)
& Config_CMTD .
P Level 10 ~
& Config_CMT riority [Love |
& Config_TMRO

Figure 4-13 Config_CMT1 setting

4.4.4 Interrupt Controller

Referring to the RSK schematic, SW1 is connected to IRQ1(P31) and SW2 is connected to IRQ2 (P32). SW3
is connected IRQ6(P16) and the ADTRGON. Tutorial used ADTRGON and will be configured later in §4.4.8.

Click ‘Add component’ % icon. In ‘Software Component Selection’ dialog -> Type, select ‘Code Generator’.
Select ‘Interrupt Controller’ as shown in Figure 4-14 then click ‘Next'.

MNew Component

Software Component Selection |

Select component from those available in list

Function All ~
Type l1Code Generator VI
Filter | |
~

Components Type Version 2

H# 12C Master Mode Code Generator 1.00

B 12C Slave Mode Code Generator 1.0.0

H Interrupt Controller Code Generator 1.2.0 I

## Low Power Consumption Code Generator 120

B Low Power Timer Code Generator 1.0.0

H Normal Mode Timer Code Generator 1.00 v

L4 >
Show only last version
Description

This software component generates two units (unit 0, unit 1) of an en-chip 8-bit

timer (TMR) module that comprise twe 8-bit counter channels, totaling four

channels.

Download mere software components

Configure general settings...

@ cgack [ Nee> [ Fnsh || Concal

Figure 4-14 Select Interrupt Controller

R20UT3924EG0100 Rev. 1.00 RENESAS Page 19 of 68
Jun 30, 2017



RSKRX130-512KB

4. Smart Configurator Using the CS+

In ‘Add new configuration for selected component’ dialog -> Resource, select ‘ICU’ as shown in Figure 4-15

below then click ‘Finish’.

MNew Component

Add new configuration for selected component |
Interrupt Controller
Configuration name: Config_ICU |
Resource: 1cy w
® < Back Mext > Cancel

Figure 4-15 Select resource — ICU

Navigate to the ‘Config_ICU’, configure these two interrupts as falling edge triggered as shown in Figure 4-16

below.

{5 *SCTutorial.scfg 52
Software component configuration
Components B :%:9 ~  Configure
%= Software interrupt setting
type filter text [ Software interrupt Level 15 (highest)
v [= Startup MM pin interrupt setting
v & G?nenc [T NMI pin interrupt Falling edge Mo filter 0
& rbsp
v (= Drivers IRQO setting
v [ Interrupt = =
*_\ Canfig_ICU Oirco Low level Mo filter 0
v (& Timers Level 15 (highest)
o Config_CMTO
f_' Config_CMT1 IRQ1 setting
" Config_TMRD
- Mid‘jlew:l'g- Elra Detection type [Falling edge ~| Digital fitter | Nofilter v 0
(= Application Pricrity | Level 15 (highest) -
IRQ2 setting
IRQE Detection type |Falling edge ~ Digital filter Mo filter ~ | 0
Priority | Level 15 (highest) ~
IRQ3 setting
Oira3 Low level No filter 0
Level 15 (highest)
IRO4 setting
Iro4a Low level Mo filter 0
Level 15 (highest)
IRQ5 setting
[JIras Low level Mo filter 0
Level 15 (highest)
IRQE setting
Ciros Low level Mo filter 0
Level 15 (highest)
IRQ7 setting
Oirar Low level Mo filter 0
Level 15 (highest)

Figure 4-16 Config_ICU setting

R20UT3924EG0100 Rev. 1.00
Jun 30, 2017

RENESAS

Page 20 of 68



RSKRX130-512KB

4. Smart Configurator Using the CS+

4.4.5 Ports

Referring to the RSK schematic, LEDO is connected to PD3, LED1 is connected to PD4, LED2 is connected to
PE6 and LED3 is connected to PE7. P17 is used as one of the LCD control lines, together with PB2, PC2 and

PC3.

Click ‘Add component’ & icon. In ‘Software Component Selection’ dialog -> Type, select ‘Code Generator’.
Select ‘Ports’ as shown in Figure 4-17 then click ‘Next'.

MNew Component

Software Component Selection tlj-

Select compenent from those available in list

Function | All ~
Type '1Code Generator VI
Filter | |
Components Type Version 2
## Phase Counting Mode Timer Code Generator 120
## Port OQutput Enable Code Generator 1.0.0
H Ports Code Generator 1.20 I
HE PWM Mode Timer Code Generator 1.0.0
# Real Time Clock Code Generator 1.00
## Remote Control Signal Receiver ~ Code Generator 1.00 v
< >

Show only last version

Description

This software component provides configurations for General Purpose Input/Output.
Commaen features such as reading, writing, and setting the direction of ports and
pins can be cenfigured. Enabling features such as open-drain cutputs and internal
pull-ups are also supported.

Download more software components

Configure general settings...

@ <gack [ nets  |[ Finsh || Concel

Figure 4-17 Select Ports

In ‘Add new configuration for selected component’ dialog -> Resource, select ‘PORT’ as shown in Figure 4-18

below then click ‘Finish’.

MNew Component

Add new configuration for selected p t |
Ports
Configuration name: Config_PORT |
Resource: PORT ~

® < Back Mext » Cancel

Figure 4-18 Select resource — PORT

R20UT3924EG0100 Rev. 1.00
Jun 30, 2017

RENESAS

Page 21 of 68



RSKRX130-512KB 4. Smart Configurator Using the CS+

‘PORTL’, ‘PORTB’, ‘PORTC’, ‘PORTD’ and ‘PORTE’ tick box is checked as shown in Figure 4-19 below.

5% *SCTutorial.scfg 52
Software component configuration
e BE®- Port selection PORT1 PORTE PORTC PORTD PORTE
W
type filter text []rorTo
v [= Startup
[ Generic [JrorT2 [JroRT2
& rbsp
v [ Drivers [JroRT4 [JroRTS
~ [ Interrupt
& Config_ICU C]roRTA
v [= /O Ports
& Config PORT |E41 PoRTC] [ETporTo]
w [= Timers
& Config_CMTO []PORTH
& Config_CMT1
& Config_TMRO [JPORT
(= Middleware
(= Application

Figure 4-19 Select resource — PORT

Navigate to the ‘Ports’ configure these four 1/O lines and LCD control lines as shown in, Figure 4-20, Figure
4-21, Figure 4-22, Figure 4-23 and Figure 4-24 below. Ensure that the ‘Output 1’ tick box is checked, except
PC3. Select ‘PORT1 tab.

ﬁ? *SCTutorial.scfg &1
Software component configuration
C t: 2 - .
e SR Port selection | PORT1 | PORTE PORTC PORTD PORTE
.
type filter text [ apply to all
v [ Startup Unused In Out Pull-up CMOS output Output 1 High-drive sutput
v = Generic
& rbsp P12
v (= Drivers @ Unused Olin (O0ut Pull-up CMOS output Output 1 High-drive sutput
v (= Interrupt
& Config_ICU P13
v [= /0 Ports
& Config_PORT @ Unused Olin O0ut Pull-up CMOS output Output 1 High-drive sutput
v [= Timers
& Config_CMTO P14
f’_. Config CMT1 @ Unused Olin O0ut Pull-up CMOS output Output 1 High-drive output
& Config_TMRO
== Middleware p15
== Application
i @®Unused Oin (C0ut Pull-up  |CMOS output Output 1 High-drive output
P16
@®Unused Oin CO0ut Pull-up | CMOS output Output 1 High-drive output
P17
O Unused  Oin Pull-up CMOS output v [l 0utput 1] [ High-drive output

Figure 4-20 Select PORT1 tab

R20UT3924EG0100 Rev. 1.00 RENESAS Page 22 of 68
Jun 30, 2017



RSKRX130-512KB

4. Smart Configurator Using the CS+

Select ‘PORTB’ tab.

’é‘} *SCTutorial.scfg & 1

Components

Software component configuration

a =+, - .
EER® Port sclection PORT1 | PORTE | pORTC PORTD PORTE
W
type filter text [ apply to all
v [ Startup Unused In Out Pull-up CMOS output Output 1 High-drive sutput
v = Generic
& rbsp PBO
v = Drivers @ Unused Oin (O 0ut Pull-up CMOS output Output 1 High-drive output
v [= Interrupt
& Config_ICU PB1
v = /O Ports
& Config_PORT @ Unused Olin O0ut Pull-up CMOS output Output 1 High-drive output
v = Timers
& Config_CMTO PB2
@ Config CMTI Ounused  Oin [@0ut] | Fulup |CMOS output v [ High-drive output
& Config_TMRO
== Middleware pE2
= Application
i @ Unused Oin (C0ut Pull-up | CMOS output Output 1 High-drive output
PB4
®Unused Olin O0ut Pull-up | CMOS output Output 1 High-drive output
PB3
@®Unused Oin (O 0ut Pull-up CMOS output Output 1 High-drive sutput
PBE
@ Unused Olin (O0ut Pull-up CMOS output Output 1 High-drive sutput
PBT
@ Unused Olin O0ut Pull-up CMOS output Output 1 High-drive sutput
Figure 4-21 Select PORTB tab
Select 'PORTC' tab.
{5 *sCTutorial.scfg 4 1
Software component configuration
Components laz =] :%:b ~  Configure
T = Port selection PORT1 PORTB | PORTC | PORTD PORTE
type filter text
v (= Startup I Apply to all
vE aneric Unused In Out Pull-up CMOS output Output 1 High-drive output
& rbsp
~ [= Drivers
PCO
v = Interrupt
& Config_ICU @Unused  Olin O0ut Pull-up | CMOS output Output 1 High-drive output
v [= /O Ports
& Config_PORT PC1
v = T.\_rners @®Unused Oin (O 0ut Pull-up CMOS output Output 1 High-drive output
@ Config_CMTO
& Config_CMT1 P2
@& Config_TMRO o
= Middleware OUnused  Oln - Pull-up CMOS output ~ [JHigh-drive output
= Application
PC3
OUnused  Oln Pull-up CMOS output ~| Ooutput1 [JHigh-drive output
PC4
OUnused  Oln O 0ut Pull-up CMOS output Output 1 High-drive output
PC5
@ Unused Oin (C0ut Pull-up | CMOS output Output 1 High-drive output
PCe
®Unused Olin O0ut Pull-up | CMOS output Output 1 High-drive output
PC7
@®Unused Oin (O 0ut Pull-up CMOS output Output 1 High-drive sutput

Figure 4-22 Select PORTC tab

R20UT3924EG0100 Rev. 1.00

Jun 30, 2017

RENESAS

Page 23 of 68



RSKRX130-512KB

4. Smart Configurator Using the CS+

Select ‘PORTD’ tab.

8 *sCTutorialscfg 52 l

Software component configuration

Components laz =] :%;) ~  Configure
. Port selection  PORT1 PORTB PORTC | PORTD | pORTE
type filter text
~ = Startup [Japply to all
v & aneric Unused In Out Pull-up Qutput 1 High-drive output
W rbsp
~ [ Drivers OO
v = Interrupt
& Config_ICU @Unused  Oln O0ut Pull-up | CMOS output Qutput 1 High-drive output
v [= /O Ports
& Config_PORT PO
v Ti_mers @ Unused COln (O 0ut Pull-up CMOS output Output 1 High-drive output
& Config_CMTO
& Config_CMT1 PD2
& Config_TMRO S
(= Middleware @Unused  Oln O Out Pull-up CMOS output Qutput 1 High-drive output
(= Application
PD3
OUnused  ODln Pull-up EA Output 1| [JHigh-drive output
PD4
OUnused  Oln Pull-up [ High-drive output
PD3
@ Unused COln (O 0ut Pull-up Cutput 1 High-drive output
PD6
@Unused Oin O 0ut Pull-up Qutput 1 High-drive output
PD7
@ Unused Oln O Out Pull-up Output 1 High-drive cutput
Figure 4-23 Select PORTD tab
Select ‘PORTE’ tab.
8 *SCTutorialscfg &2 l
Software component configuration
Components = 2 Configure
= = Port selection  PORT1 PORTB PORTC PORTD | PORTE
type filter text
v tartup pply to a
[E=g O appl I
v aneric Unused In Qut Pull-up Qutput 1 High-drive output
& rbsp
w [2= Drivers PED
v [= Interrupt
& Config_ICU @ Unused  Olin O Out Pull-up | CMOS output Output 1 High-drive output
w [= /O Ports
& Config_PORT PE1
v e Tl_mers @ Unused  Oln O Out Pull-up CMOS output Output 1 High-drive output
& Config_CMTO
& Config_CMT1 PE2
& Config_TMRD -
= Middleware @ Unused  Oln O Out Pull-up CMOS output Output 1 High-drive output
= Application
PE3
®Unused Olin O 0ut Pull-up CMOS output Qutput 1 High-drive output
PE4
®Unused Olin O 0ut Pull-up Output 1 High-drive output
PES
@ Unused (CJIn O Out Pull-up Output 1 High-drive output
PEB
() Unused Pull-y; utput 1] ] High-drive output
P 9 P
PE7
OUnused  Oln Pull-up [JHigh-drive output
Figure 4-24 Select PORTE tab

R20UT3924EG0100 Rev. 1.00

Jun 30, 2017

RENESAS

Page 24 of 68



RSKRX130-512KB

4. Smart Configurator Using the CS+

4.4.6

SCI/SCIF Asynchronous Mode

In the RSKRX130-512KB SCI1 is connected via a Renesas RL78/G1C to provide a USB virtual COM port as

shown in the schematic.

Click ‘Add component’ & icon. In ‘Software Component Selection’ dialog -> Type, select ‘Code Generator’.
Select ‘SCI/SCIF Asynchronous Mode’ as shown in Figure 4-25 then click ‘Next'.

MNew Component

Software Component Selection

Select compenent from those available in list

Function All ~
Type '1Code Generator VI
Filter | |
Components Type Version =
B Real Time Clock Code Generator 1.0.0
# Remote Control Signal Receiver  Code Generator 1.0.0
1 SCI/SCIF Asynchronous Mode Code Generator 1.0.0 |
B 5CI/SCIF Clock Synchronous M. Code Generator 1.00
ESmgIe Scan Mode 512AD Code Generator 1.20
B Smart Card Interface Mode Code Generator 1.0.0 R
< >
Show only last version
Description
This software component provides configurations for SCI{SCIF) single{multi-
processor) asynchronous mode,
Download mere software components
Configure general settings...
@ <gack | Nea> |[ Fnish || Cancel

Figure 4-25 Select SCI/SCIF Asynchronous Mode

In ‘Add new configuration for selected component’ dialog -> Work mode, select ‘Transmission/Reception’ as

shown in Figure 4-26 below.

MNew Component

Add new configuration for selected component

SCI/SCIF Asynchronous Mode

Configuration name: Config_SCID

Work mode: Transmission

Transmission
Resource:

on/Reception
Multi-processor Transrission
Multi-processor Reception
Multi-processor Transmission/Reception

)

< Back Mext »

Cancel

Figure 4-26 Select Work mode — Transmission/Reception

R20UT3924EG0100 Rev. 1.00
Jun 30, 2017

RENESAS

Page 25 of 68



RSKRX130-512KB

4. Smart Configurator Using the CS+

In ‘Resource’, select ‘SCI1’ as shown in Figure 4-27 below.

MNew Component

SCI/SCIF Asynchronous Mode

Configuration name: | Config_SCI0

Work mode: Transmission/Reception

Resource: | SCI0

sChn2

® T

Cancel

Ensure that the ‘Configuration

Figure 4-27 Select Resource — SCI1

name’ is set to ‘Config SCI1’ as shown in Figure 4-28 below then click ‘Finish’.

MNew Component

Add new configuration for selected component

SCI/SCIF Asynchronous Mode

Configuration name: I Config_SCI1 I
Work mode: Transmission/Reception ~
Resource: scn ~
® < Back Mext > Cancel

Figure 4-28 SCI1 Setting tab

R20UT3924EG0100 Rev. 1.00
Jun 30, 2017

RENESAS

Page 26 of 68



RSKRX130-512KB 4. Smart Configurator Using the CS+

Configure SCI1 as shown in Figure 4-29. Ensure the ‘Start bit edge detection’ is set as ‘Falling edge on
RXD1 pin’ and the ‘Bit rate’ is set to 19200 bps. All other settings remain at their defaults.

L‘D",,’ *$CTuterial.scfg £
Software component configuration
Components =] e Configure
% = Start bit edge detection setting
(O Low level on RXD1 pin (®) Falling edge on RXD1 pin
type filter text
v & Statup Data length setting
v (= Generic ()9 bits (®) 8 bits ()7 bits
@ rbsp Parity setting
v (& Drivers (® None () Even (D) 0dd
w [ Interrupt
& Config_ICU Stop bit length setting
v (& /0 Ports @ 1bit O 2bits
& Config PORT
v [= Communications Transfer direction setting
& Config_SCI (®) LSB-first () MSB-first
v e T.|Vlj'ner5 Transfer rate setting
& Config_CMT1
& Config CMTD Transfer clock Interal clock ~
@& Config TMRO 16 cycles for 1-bit period
= Middleware
= Application Bit rate |19200 v| (bps) (Actual value: 19230.769, Error. 0.160%)
[JEnable medulation duty correction
5CK1 pin function SCKis not used ~
Moise filter setting
] Enable noise filter
Clock signal divided by 1 32000000
Hardware flow control setting
(®) None Oz (ORTS1#
Data handling setting
Transmit data handling Data handled in interrupt service routine ~
Receive data handling Data handled in interrupt service routine ~
Interrupt setting
Enable reception error interrupt (ERIT)
TXI1, RXI1, TEN, ERIT priority Level 15 (highest) v
Callback function setting
[ Transmission end Reception end Reception error
Figure 4-29 Config_SCI1 setting
R20UT3924EG0100 Rev. 1.00 RENESANAS Page 27 of 68

Jun 30, 2017



RSKRX130-512KB 4. Smart Configurator Using the CS+

4.4.7  SPI Clock Synchronous Mode

In the RSKRX130-512KB SCI6 is used as an SPI master for the Pmod LCD on the PMOD1 connector as

shown in the schematic. Click ‘Add component’ & icon. In ‘Software Component Selection’ dialog -> Type,
select ‘Code Generator’. Select ‘SPI Clock Synchronous Mode’ as shown in Figure 4-30 then click ‘Next’.

MNew Component

Software Component Selection -Ha-

Select compenent from those available in list

Function | All ~
Type '1Code Generator VI
Filter | |
Components Type Version 2
H# Single Scan Mode S12AD Code Generator 120
H# Smart Card Interface Mode Code Generator 1.0.0
2 SPI Clock Synchronous Mode Code Generator 1.0.0 I
HE sl Operation Mode Code Generator 1.0.0
#® Voltage Detection Circuit Code Generator 1.00
## Watchdog Timer Code Generator 1.00 v
< >

Show only last version

Description

This component provides clock synchronous operation of RSPI or 5CI (Simple 5P
bus). It includes 4 transfer medes: Slave transmit/receive, Slave transmit, Master
transmit/receive and Master transmit.

Download more software components

Configure general settings...

® < Back I Mext = I | Finish | Cancel

Figure 4-30 Select SPI Clock Synchronous Mode

Ensure ‘Operation’ is set to ‘Master transmit only’ as shown in Figure 4-31 below.

New Component [m]

Add new configuration for selected component -E-

5PI Clock Synchronous Mode

Configuration name: | Config_RSPID |

Operation: Slave transmit/receive ~

Slave transmit/receive
Resource:

Slave transmit only

Master transmit/receive

® < Back Next > Cancel

Figure 4-31 Select Operation — Master Transmit

R20UT3924EG0100 Rev. 1.00 RENESAS
Jun 30, 2017

Page 28 of 68



RSKRX130-512KB 4. Smart Configurator Using the CS+

In ‘Resource’, select ‘SCI6’ as shown in Figure 4-32 below.

MNew Component

Add new configuration for selected comp EE

5PI Clock Synchronous Mode

Configuration name: Config_RSPID |

Operation: Master transmit only ~

Resource: RSPID ~

RSPID
sClo
scn
SCI5
sClg
sClg
sChnz2

® < Back Mest = Cancel
Figure 4-32 Select Resource — SCI6

Ensure that the ‘Configuration name’ update to ‘Config_SCI6’ as shown in Figure 4-33 below then click
‘Finish’.

MNew Component

Add new configuration for selected component -E-
5PI Clock Synchronous Mode
Configuration name: I Config_SCI6 I
Operation: Master transmit only ~
Resource: SCle ~
® < Back Next > Cancel

Figure 4-33 Ensure Configuration name - Config_SCI6

R20UT3924EG0100 Rev. 1.00 RENESANAS Page 29 of 68
Jun 30, 2017



RSKRX130-512KB

4. Smart Configurator Using the CS+

Configure SCI6 as shown in Figure 4-34. Ensure the ‘Transfer direction’ is set as ‘MSB-first’ and the ‘Bit rate’

is set to 8000 kbps. All other settings remain at their defaults.

5k *5CTutorialscfg &2

Software component configuration

Components =] g Configure
% = Transfer direction setting
type filter text O LsB-first
W [= Startup Data inversion setting
v = aneric @ Normal
& rbsp
¥ & Drivers Transfer speed setting
v [= Interrupt
@ Config_ICU Transfer clock
v = I/O Ports .
& Config PORT Bit rate
v [= Communications [J Enable modulation duty correction
& Config_5CI6
@ Config_SCI1 Clock setting
v (= Timers []Enable clock delay

& Config CMT1
& Config_CMTO
& Config_TMRO
= Middleware
= Application

Data handling setting

Transmit data handling

Interrupt setting

TXI6, TEIG priority

Callback function setting

Transmission end

() Inwerted

Internal clock (SCKE pin functions as clock output pin) v

2000 (kbps)

(Actual value: 8000, Error: 0%)

[JEnable clock polarity inversion

Data handled in interrupt service routine ~

Level 15 (highest) ~

Figure 4-34 Config_SCI6 setting

R20UT3924EG0100 Rev. 1.00

LENESAS
Jun 30, 2017 -2

Page 30 of 68



RSKRX130-512KB

4. Smart Configurator Using the CS+

448  Single Scan Mode S12AD

We will be using the S12AD on Single Scan Mode on the ANOOO input, which is connected to the RV1
potentiometer output on the RSK. The conversion start trigger will be via the pin connected to SW3. Click

‘Add component’ & icon. In ‘Software Component Selection’ dialog -> Type, select ‘Code Generator’. Select
‘Single Scan Mode S12AD’ as shown in Figure 4-35 then click ‘Next'.

MNew Component

Software Component Selection |

Select compenent from those available in list

Function |All ~
Type '1Code Generator VI
Filter | |
Components Type Version ol
$SC\.-"SCIFAsynchronous Mode Code Generator 1.0.0
1 5CI/SCIF Clock Synchronous M... Code Generator 1.00
£ Single Scan Mode 512AD Code Generator 1.2.0 I
3 Smart Card Interface Mode Code Generator 1.0.0
## 5PI Clock Synchronous Mode Code Generator 1.00
7 5PI Operation Mode Code Generator 1.0.0 v
< >

Show only last version

Description

This software component generates two units (unit 0, unit 1) of an on-chip 8-bit
timer (TMR) module that comprise two 8-bit counter channels, totaling four
channels.

Download more software components

Configure general settings...

@ <gack [ nets |[ Finsh || Concel

Figure 4-35 Select Single Scan Mode S12AD

In ‘Add new configuration for selected component’ dialog -> Resource, select ‘S12AD0’ as shown in Figure

4-36 below then click ‘Finish’.

MNew Component

Single Scan Mode S$12AD
Configuration name: Config_S12AD0 |

Resource: 512400 ~

® < Back Mext » Cancel

Figure 4-36 Select resource — S12ADO0

R20UT3924EG0100 Rev. 1.00
Jun 30, 2017

RENESAS

Page 31 of 68



RSKRX130-512KB 4. Smart Configurator Using the CS+

Configure S12ADO0 as shown in Figure 4-37and Figure 4-38. Ensure the ‘Analog input channel’ tick box for
ANOO0O is checked and the ‘Start trigger source’ is set to ‘A/D conversion start trigger pin’. All other settings
remain at their defaults.

{5 *SCTutorial.scfg 2
Software component configuration
Components =] - Configure
. = Basic setting
type filter text Analog input mode setting
v [ Startup [ Double trigger mode
w [= Generic
& rbsp Analog input channel setting
v = Drivers [CJaNo0 [ amonz []Aan003 [T ano04
¥ & Interrupt [ Anoos [ AND0E ] ANODT [ anD16 a7
- .\fo EDTQ-‘CU EETE [JAND1 [ AN020 [ Anp21 [JAND22
w / orts
& Config_PORT [Jan023 [Jan024 [ amM025 [Jan026 [Jamno0z7
viE Communications [ an02s [ ano2g [Janozo [Jan031
& Config_SCI6 [] Temperature sensor output [1internal reference voltage
& Config 5CI1
v [= A/D Converter Conversion start trigger setting
w Config_S12AD0 Start trigger source
w [= Timers
& Config_CMT1 IND conversion start trigger pin VI
& Config CMTO ]
& Config_ TMRD Interrupt setting
(= Middleware Enable AD conversion end interrupt (S12AD10) Priority Level 15 (highest) -~
== Application
= Advance setting
Add/Average AD value setting
] an00D ANDO1 ANOD2 ANDOZ ANDO4
ANDDS ANDOE ANODT AND1E ANDTT
AND13 AND19 ANO20 AND2 AND22
AND23 AND2 AMO025 AND2B ANDZT
AND2E AND29 AMD3D AND31
Temperature sensor output Internal reference voltage
A/D conversion select
(@) High-speed (O Low-current
High-Potential reference voltage setting
® Avcco (O VREFHD
Low-Potential reference voltage setting
(® AVSSD () VREFLO
Self diagnesis setting
Mode Unused ~
ov
Disconnection detection assist setting
Charge setting Unused ~
2 ADCLK
Data registers setting
Data placement Right-alignment ~
Automatic clearing Disable autematic cleaning ~
Addition/Average mode select Addition mode ~
Addition count 1-time ~
Data storage buffer setting
(® Disable () Enable
‘Window function setting
(®) Disable () Enable
Figure 4-37 Config_S12ADO setting (1)
R20UT3924EG0100 Rev. 1.00 RENESANAS Page 32 of 68

Jun 30, 2017



RSKRX130-512KB

4. Smart Configurator Using the CS+

Window A/B operation setting
[ Enable comparison window &

Wéindow A/B cormplex condition

(STRADMAUMELT is output in other cases)

A/D comparison A setting

Reference data O for comparison

Reference data 1 for comparison
Use comparator for ANODD
Use comparator for ANOO1
Use comparator for AN0D2
Use comparator for AM003
Use comparator for AM0O04
Use comparator for ANODS
Use comparator for AMODG
Use comparator for ANOD7
Use comparator for AMO16
Use comparator for ANO17
Use comparator for ANO18
Use comparator for AN019
Use comparator for AN020
Use comparator for AMO21
Use comparator for AM022
Use comparator for AM023
Use comparator for AN024
Use comparator for AM025
Use comparator for AN026
Use comparator for AM027
Use comparator for AN028
Use comparator for AN029
Use comparator for AM030
Use comparator for AN031
Use comparator for Temperature sensor output

Use comparator for Internal reference voltage

A/D comparison B setting
Reference data 0 for comparison
Reference data 1 for comparison

Comparison B channel

Input sampling time setting
AMODD/Self-diagnosis
ANOM

ANO0Z

AN003

AN

ANO05

AN00E

AM00T

AMNOTE-AM03T
Temperature sensor output

Internal reference woltage

Event link control setting

ELC scan end event generation condition

[ Enable comparison window B

§12ADWMELC output when window A comparison conditions OR window B comparison conditions are met

0

0

Reference data 0 > A/D-converted value
Reference data 0 = A/D-converted value
Reference data 0 > A/D-converted value
Reference data 0 > A/D-converted value
Reference data 0 > A/D-converted value
Reference data 0 > A/D-converted value
Reference data 0 > A/D-converted value
Reference data 0 > A/D-converted value
Reference data 0 = A/D-converted value
Reference data 0 > A/D-converted value
Reference data 0 = A/D-converted value
Reference data 0 > A/D-converted value
Reference data 0 > A/D-converted value
Reference data 0 > A/D-converted value
Reference data 0 > A/D-converted value
Reference data 0 > A/D-converted value
Reference data 0 > A/D-converted value
Reference data 0 > A/D-converted value
Reference data 0 > A/D-converted value
Reference data 0 = A/D-converted value
Reference data 0 > A/D-converted value
Reference data 0 = A/D-converted value
Reference data 0 > A/D-converted value
Reference data 0 > A/D-converted value
Reference data 0 > A/D-converted value

Reference data 0 > A/D-converted value

0
0
Unused

Reference data 0 > A/D-converted value

0.183 | {us) (Actual value: 0.188)
0.183 fus) {fctual value: 0,188
0.183 fus)  (Actual value: 0188
0.183 fus) fActual value: 0.185)
0.183 fus) (Actual value: 0785
0.183 fus) (Actual value: 0.188)
0.183 us) (Actual value: 0.188)
0.183 us) (Actual value: 0.188)
0.183 us) (ctual value: 0,188
0.183 us) (Actual value: 0,188
0.183 fus) (Actual value: 0,188

(Total conversion time: 1.362us)

On completion of all scans

Figure 4-38 Config_S12AD0 setting (2)

R20UT3924EG0100 Rev. 1.00
Jun 30, 2017

RENESAS

Page 33 of 68



RSKRX130-512KB

4. Smart Configurator Using the CS+

4.5

Pins configuration page

Smart Configurator assigns pins to the software components that are added to the project. Assignment of the
pins can be changed using the Pins page.

45.1

{5 *sCTutorialscfg 52

Pin configuration
Hardware Resource

Type filter text

M B

Al
,‘;E Clock generator
v ‘-4'; Voltage detection circuit
e LVD2
ia“_ Clock frequency accuracy measurement circuit
,‘;E Interrupt controller unit
v i Multi-function timer pulse unit 2
n MTUD
w MTUT
w MTU2
w MTU3
n MTU4
w MTUS
i, Port output enable 2
v r'ﬁr 2-bit timer
w' TMRO
w TMR1
n TMR2
w' TMR3
v ﬁ-[g Serial communications interface
i SCI0
& 5CH

Pin Function Pin Number
Owverview | Board | Clocks Componentslnterrupts

Figure 4-39 Pin configuration page

Change pin assignment of a software component

To change the pin assignment of a software component in Pin Function list, click

by Software Components.

I

to change view to show

5% *SC_Tutori alscfg &2

Pin configuration
Software Components

Type filter text

= 1%

a5

Figure 4-40 Change view to show by Software Components

R20UT3924EG0100 Rev. 1.00
Jun 30, 2017

RENESAS

Page 34 of 68



RSKRX130-512KB

4. Smart Configurator Using the CS+

Select the Config_ICU of software component. In the Pin Function list -> Assignment column, change the pin
assignment IRQ1 to P31, IRQ2 to P32. Ensure the ‘Enable’ tick box of IRQ1 and IRQ2 are checked, as shown

in Figure 4-41.

i,?,,? *SCTutorial.scfg &2

Pin configuration
Software Components =S

Type filter text

v ‘,!: r_bsp
w' r_bsp
v S 8-Bit Timer
w' Config_TMRO
v ;”; Compare Match Timer
w' Config_CMTO
w' Config_CMT1
v ;”; Interrupt Controller
W Config_ICU
W ‘-5': PEr‘ts
@ Config_PORT
W ‘-5': SCI/SCIF Asynchrenous Made
& Config_5CI1
W ‘-!; 5PI Clock Synchronous Mede
& Config_5CI6
v ﬁ; Single 5can Mode 512AD
& Config_5124D0

Pin Function  Pin Number

Overview | Board | Clocks | Compoenents | Pins | Interrupts

Pin Function

Type pin function

Enabled  Function

IRCO
IRQ1
IRQ2
IRG3
IRC4
IRQS
IRQE
IRQT
NMI

OoooooEEO

Assignment Pin Mumber

Mot assigned Mot assigned

IPE'Ir’MTIOC4Da'TMC\gr’CTS1#a’RTS'I#a’SS'I-.‘*r’Tﬂ /RO | 19

P32/MTIOCOC/ TMO3/ TXD6/SMOSI6/SSDABTSO/IRG... | 18
Mot assigned Mot assigned

Mot assigned Mot assigned

Mot assigned Mot assigned
Mot assigned Mot assigned
Mot assigned Mot assigned

Mot assigned Mot assigned

Direction

Mone
|

|

Mone
Mone
Mone
Mone
Mone
Mone

= 8
& &

PO =]

Remarks

Figure 4-41 Configure pin assighment - Config_ICU

Select the Config_SCI1 of software component. In the Pin Function list -> Assignment column, Ensure the
‘Enable’ tick box of RXD1 and TXD1 are checked and Assignment column of RXD1 is P30 and TXD1 is P26

as shown in Figure 4-42.

8 *sCTutorialscfg &2

Pin configuration
Software Components B 1% o

Type filter text

v .,rl. r_bsp
w r_bsp

v % 8-Bit Timer
w' Config_TMRD

v _,#-_ Compare Match Timer
w Config_CMTO
' Config_CMT1

v s Interrupt Controller

@ Config_ICU

Ports

& Config_PORT

W _,#-_ SCI/SCIF Asynchronous Mode
i Config_5CI1

W _,#-_ 5P Clock Synchrenous Mode
& Config_5CI6

v 7 Single Scan Mode 512AD

& Config_512AD0

v

B
u

Pin Function Pin Number

Overview | Board | Clocks | Components | Pins | Interrupts

Pin Function

Type pin function

Enabled  Function
1 CTS1%
O RTS12
RXD1
[l SCK1
THD1

<

Assignment Pin Mumber

Mot assigned Mot assigned

Mot assigned

Mot assigned
P30/MTIOCAB/POESS/ TMRIZ/RHDT/SMISOT/SSCLT/T...| 20
Mot assigned Mot assigned
LP26/MTIOC2ATMOT/TAD/SMOSI1/SSDAT/TSA |22

Direction
None
Mone

|

MNone

o

= 0
& &

DR eeea

Remarks

Figure 4-42 Configure pin assighment - Config_SCI1

R20UT3924EG0100 Rev. 1.00
Jun 30, 2017

RENESAS

Page 35 of 68



RSKRX130-512KB

4. Smart Configurator Using the CS+

Select the Config_SCI6 of software component. In the Pin Function list -> Assignment column, Ensure the
‘Enable’ tick box of SCK6 and SMOSI6 are checked and Assignment column of SCK6 is PB3, SMOSI6 is PB1
as shown in Figure 4-43.

5 *sCTutorial.scfg 52

Pin configuration
Software Components

Type filter text

Pin Function

B 1% e

Type pin function

v -4': r_bsp
W rbsp
v % B-Bit Timer
' Config_TMRO
v ﬁ; Compare Match Timer
W' Config_CMTO
w' Config_CMT1
v -4’: Interrupt Controller
& Config_ICU
o Ports
& Config_PORT
e

& Config_5CI1

EL

v % SCI/SCIF Asynchronous Mode

v % 5Pl Clock Synchronous Mode

Enabled  Function
SCKB
SMISO6
SMOSIE

S56#

ORIOR

i Config_5CI6

& Config_$124D0

~ o= Single Scan Mode 5124D

Pin Function Pin Number

Overview |Board | Clocks | Compenents | Pins | Interrupts

Assignment

Pin Murmnber

[FEE/MTI0 COA/VTIOCAA TMO0/ POEZ/5CRE/ 1522 ] 57

Mot assigned

Mot assigned

PE1/MTIOCOC/ MTIOCAC/ TMCIO/ TXDE/SMOSIE/55D.., | 59

Not assigned

Not assigned

[CN=

2| 5| e ed

Direction Remarks
[}

MNene

[}

MNene

Figure 4-43 Configure pin assignment - Config_SCI6

Select the Config_S12ADO0 of software component. In the Pin Function list -> Assignment column, Ensure the
‘Enable’ tick box of ANOOO, AVCCO, AVSS0 and ADTRGO# are checked and Assignment column of ANOQO is
P40, ADTRGO# is P16 as shown in Figure 4-44.

{8 *sCTutorislscfg 51
Pin configuration
Software Components £ 1% g% FinFunction
Type filker text Type pin function
v & rbsp Enabled  Function
w rbsp ADTRGD#
v ‘,!: 8-Bit Timer AMNODD
' Config_TMRD [l ANODT
v 2 Compare Match Timer O ANooz
W' Config_CMTO O AMN003
wm Config_CMT1 O ANOD4
v ‘,!: Interrupt Controller O ANODS
& Config_ICU 0] ANDOs
v 3 Ports 0O anco?
@ Config_PORT O AMOTE
v ‘,!: SE\_«'SCIFAsynchmnous Mode O AMNOTT
W& Config_SCI O ANO1IZ
Vo SEIC\n(kSyn(hrnnnusMnde 0 AMNOTS
W Config_5CI6 O AMNO20
v % Single Scan Mode $12AD 0O ancel
W Config_512AD0 O AN0Z2
| AN023
O AN024
O AMN023
O  ANOE
O AN02T
| ANO028
O AN02S
O ANO30
[l ANO31
AVCCO
VS50
O VREFHO
O VREFLO
<
Pin Function Pin Number
Overview | Board | Clocks | Components | Pins | Interrupts

Assignment

Pin Nurnber

LP16/MTIOC3C/MTIOC3D TMO2/TXD1/SMOSI1/SSDAL..| 30
[Pan7ANG00 ] o5

Mot assigned
Mot assigned
Mot assigned
Mot assigned
Not assigned
Not assigned
Mot assigned
Mot assigned
Mot assigned
Not assigned
Mot assigned
Mot assigned
Mot assigned
Not assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Not assigned
Not assigned
Mot assigned

Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Not assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned

Mot assigned Mot assigned
Not assigned Not assigned
LAVCCO ] 97
[Ass ] %0
Mot assigned Mot assigned
Mot assigned Mot assigned

= 0
(SRS

2| R e

Direction Rernarks
I

I
Mone
Mene
Mene
None
Mone
Nene
Mene
Mene
MNone
Mone
Mene
Mene
Mene
MNone
Mone
Mene
Mene
MNone
Mone
Nene
Mene
Mene
MNone

Mene
None

Figure 4-44 Configure pin assignment - Config_S12ADO0

R20UT3924EG0100 Rev. 1.00

Jun 30, 2017

RENESAS

Page 36 of 68



RSKRX130-512KB 4. Smart Configurator Using the CS+

Peripheral function configuration is now complete.
‘felGenerate Code’ at location of Figure 4-45.

Save the project using the File -> Save, then click

{84 5C_Tutorial.scfg 52 = (m]

Pin configuration

Figure 4-45 Generate Code Button

The Console pane should report ‘Code generation is successful’, as shown Figure 4-46 below.
El Console 2 2 BB E | =

Smart Configurator Qutput

Madoeoeal
Ma4ppaaal .
Madoeoeal
Ma4ppaaal .
Madoeoeal
Ma4ppaaal .
Madoeoeal
Madoeoeal
Ma4ppaaal .
Madoeoeal
Maseeaal .
Maseeeel2
Macoeaeaz
Macoeaea2
MappeoRa
Masoeoead .

File
File
File
File
File
File
File
File
File
File
File
File
File
File
Code
File

generated:
generated:
generated:
generated:
generated:
generated:
generated:
generated:
generated:
generated:
generated:
generated:
generated:
generated:

srchsme_genhgeneral\r_cg_cmt.h
srchsmc_gen\general\r_cg_riic.h
srchsme_genhgeneral\r_cg_doc.h
srchsmc_gen\general\r_cg_tmr.h
srchsme_genhgeneral\r_cg_crc.h
srchsmc_gen\general\r_cg lvd.h
srchsme_genhgeneral\r_cg_cmpb.h
src\smc_genl\general\r_cg_elc.h
srchsmc_gen\general\r_cg lpt.h
srchsme_genhgeneral\r_cg_bsc.h
srchsme_gen\r_pincfghiPin.h
srchsme_genir_pincfgiPin.c
srchsmc_gen\general\r_smc_interrupt.c
srchsme_genhgenerallr_smc_interrupt.h

generation is successful
modified:srchsmc_gentr_confighr_bsp_config.h

Figure 4-46 Smart Configurator console

When code generation is executed, the startup files generated at the time of CS+ project creation are replaced
with those generated by Smart Configurator. Figure 4-47 the project tree after code generation. In the next
chapter, user code is added to these files, and SC_Tutorial is completed by adding a new source file to the

project.

Project Tree ax
! @ 8|E
=] ﬁ SC Tutorial (Project)”
R3F313084xFP (Microcontroller)
4 Smart Configurater (Design Tool)
4, CC-RX (Build Tool)
=% RX Simulator (Debug Tool)
ram Analyzer (Analyze Tool)

f_ﬁ Build toel generated files
£| 5CTutorial.c
-1 L) Smart Cenfigurator

-l Config_CMTOD
- Config_CMT1
-l Config_ICU
||y Config_PORT
@#-|_l) Config_S12AD0
-l Config_SCI
-l Config_SCI6
-l Config_TMRD
- general

[l r_bsp

Ll r_config
-l r_pincfg

Figure 4-47 Smart Configurator folder structure

R20UT3924EG0100 Rev. 1.00
Jun 30, 2017

RENESAS

Page 37 of 68



RSKRX130-512KB 5. Completing the Tutorial Project

5. Completing the Tutorial Project

5.1 Project Settings

In the ‘Project Tree’ pane, select
‘CC-RX (Build Tool). The build
properties will appear in the main
window.

CS+ creates a single build
configuration called ‘Default Build’ for
the project. This has standard code
optimisation turned on by default.

4\ CC-RX Property

~ Build Mode

Build mode

Change property value for all build modes at once
CPU

Instruction set architecture

Uses floating-point operation instructions

Endian type for data

Rounding method for floating-point constant operations

Handling of denormalized numbers in floating-point constants
Precision of the double type and long double type

Replaces the int type with the short type

Sign of the char type

Sign of the bit-field type

Selects the enumeration type size automatically

Order of bit-field members

Assumes the boundary alignment value for structure members is 1
Enables C++ exceptional handling function (try, catch and throw)
Enables the C++ exceptional handling function (dynamic_cast and typeid)
General registers used only in fast interrupt functions

Branch width size

Base register for ROM

Base register for RAM

Address value of base register that sets the address value

Build mode
Selects the build mode name to be used during build.

Default Build
No

RXw2 architecture(isa=ncv2)

Yes(fpu)

Little-endian data{-endian=little)

round to nearest{tound=nearest)
Handles as zeros{-denomalize=cff)
Handles in single precision{-dbl_size=4)
No

Handles as unsigned char(-unsigned_char)
Handles as unsignedi-unsigned_bitfield)
No

Allocates from right(bit_order=rght)
MNo{-unpack)

No{-noexception)

No{-tti=off)

Mone{fint_register=0}

Compiles within 24 bits{-branch=24)
None

None

00000000

Select the ‘Compile Options’ tab at
the bottom of the properties window
pane. Under ‘Language of the C
source file’ select ‘C99(-lang=c99)’
as shown opposite.

Property

4, CC-RX Froperty
~ Source
Language of the C source file
Language of the C++ source file
Additional include paths
System include paths
Include files at the head of compiling units
Macro definition
Invalidates the predefined macro
Enables information-level message output
Suppresses the number of information-level messages
Changes the warning-level m ges to information-level m 0
Changes the information-level messages to warning-level messages

Permits comment (i */) nesting

++{{ang=cpp,
Additional include paths[16]
System include paths[0]
Include files at the head of compiling units[0]
Macro defintion[0]

Mol-nomessage)

Mo
No

Changes the information-level and warning-level messages to error-level mess: No

MNo{-comment=nonest)

Select the ‘Link Options’ tab at the
bottom of the properties window

v Section
Section start address
The specified section that outputs externally defined symbols to the file
Section alignment

B_1.R_1B_2R_2B.R.5U.5//04 PResetPRG/OFFED0000.C_1C_2.C.CS
The specified section that outputs extemally defined symbols to the file[0]
Section alignment[0]

pane. Under ‘Section -> ROM to ROM'DRAMmappedsedmnB] [
RAM mapped section’, add the three o
mappings as shown opposite.
These settings are easily added by Text Edit x
clicking the button ‘..." and pasting -
the following text into the dialog: ;_R
D:1=R_‘I
D_2=R_2
D=R
D 1=R 1
D 2=R 2

e This ensures that the linker assigns
RAM rather than ROM addresses to
C variables. Click ‘OK’

Cancel Help

R20UT3924EG0100 Rev. 1.00 Page 38 of 68

LENESAS
Jun 30, 2017 -2



RSKRX130-512KB 5. Completing the Tutorial Project

° From the ‘Build' menu, Select ‘BUIld G SCTutorial - C5+ for CC - [Property]
Mode Settings...". Click ‘Duplicate’
and in the resulting ‘Character String

File Edit View Project |Build | Debug Tool Window Help

i - 3 Start I Gl & Build Project F7
Input’ dialog, enter ‘Debug’ for the @ e Rebuild Fro ShifeET
. . Qﬂ(ﬂ@@@ ebui roject ift+

name of the duplicate Build Mode. PRI AR e .

[} | Project Tree ean Project

g’}

ig' m P Update Dependencies

% .. 3% RSF513084 ] Build SCTutorial

smart Conl £3 pepuild SCTutorial

@
&
' @ 8 @ Rapid Build
“3
2!
o
4 Clean SCTuterial
:’3’ Update Dependencies of SCTutorial
% Set Link Order of SCTutorial...
1| Open the Optimization Performance Comparison Tool for SCTutorial...

Stop Build Ctrl+F7

Build Mode Settings...
Batch Build...

T4 Build Option List

|_-|!| Co

Build Mode Settings

Selected build mode:

Build mode list:

Duplicate...

e The new ‘Debug’ Build Mode will be | Ef Property

added to the Build Mode list. Click | |4, ccrepropery
‘Close’. - Now, in the Main CC-RX | | o — 5.
Property W|nd0W, Under the Change property value for all build modes at once Default Build
‘ H ) H CPU
Common Options’ tab, click on the | |7 /7 i set srchitosmure

line containing ‘Build Mode’, click the
pull-down arrow and select ‘Debug’
from the pull-down’.

e In the ‘Frequently Used Options (for Property
Compile)’ group, select the | |4, ccRxFrpety
‘Optimization Level’ option and select | | > PIC/PID.
(s ~ Qutput File Type and Path
0’ from the pull—down. We have now Output file type Execute Module(Load Module File)
Created a ‘Debug’ BUIld Mode W|th Intermediate file cutput folder %:BuildModeMame %
” i A 3 ~ Freguently Used Options(for Compile)
no code optimisation and will be > Additional include paths Additional include paths[16]
. . System include paths System include paths[0]
USIng the BU|Id MOde tO Create and ; Macro definition Macro definition[0]
i Outputs debugging information Yes(-debug)
debug the project.
Optimization level 2l-optimize=2)
Outputs additional information for inter-module optimization Di-optimize=0)
Optimization type 1({-optimize=1)
Outputs a source list file 2-optimize=2)
~ F Iy Used Oy {for A ble) Max{-optimize=max)
R20UT3924EG0100 Rev. 1.00 RENESAS Page 39 of 68

Jun 30, 2017




RSKRX130-512KB

5. Completing the Tutorial Project

All of the sample code projects
contained in this RSK are configured
with three Build Modes;
‘DefaultBuild’, ‘Debug’ and ‘Release’.
‘Release’ is created in the same way
as above; by duplicating ‘Default
Build’. ‘Release’ Build Mode leaves
code optimisation turned on and
removes debug information from the
output file.

To remove debug information from
the ‘Release’ Build Mode, in the ‘CC-
RX Property’ window, select the
‘Common Options’ tab at the bottom
of the window pane. For the
‘Outputs  debugging information’
option, select ‘No(-nodebug).

Reset the Build Mode back to
‘Debug’ using the ‘Build Mode’ pull-
down control.

From the menus, select ‘File -> Save
All' to save all project settings.

A, CC-RX Property

~ Build Mode
Build mode
Change property value for all build modes at once
CPU

PIC/PID
w Output File Type and Path
Output file type
Intermediate file output folder
w Frequently Used Options(for Compile)
Ldditional include paths
System include paths
Macro definition
Outputs debugging information
Optimization level
Outputs additional information for inter-module optimization
Optimization type
Outputs a source list file
Frequently Used Options(for Assemble)
+ Frequently Used Options(for Link)
Using libraries

Optimization type
Section start address
w Frequently Used Opiions{for Hex Output)

Release
No

Execute Module{Load Module File)
%BuildMode Name %

Additional include paths[16]

System include paths (0]

Macro definition[0]

Yes{debug)

2(-optimize=2)

No

Optimizes with emphasis on code size(-size)
No{nolistfile)

Using libraries[0]

Yes [Outputs to the outout file) DEBug)

Yes (Outputs to the output file)-DEBug)
‘Yes (Qutputs to <output file name: db

file)-5Debug

Additional Folders

Before new source files are added
to the project, we will create two
additional folders in the CS+
Project Tree.

In the Project Tree pane, right-click
the SC_Tutorial project and select
‘Add -> Add New Category’.

-
L
m
o
=
L=]
[==]
om
E
&
1%a)
Iﬁ
i
[ =
g
g8
s

Project Tree 1 X

2 © 3@

]ﬂ Rebuild SC_Tutorial
_& Clean SC_Tutorial
. \‘) Program g} Cpen Folder with Explorer
-3 File El Windows Explorer Menu
Add P |[F Add Subproject.

{4 Set SC_Tutorial as Active Project

|+E Add MNew Subproject...

Save Project and Development Tools as Package... [} AddFile..

Paste Chrl+V 9 Add New File..
Rename F2 [} Add New Category
Property

Rename the newly-created ‘New
Category’ folder to ‘C Source Files'.
Repeat these steps to create a new
category folder for ‘Dependencies’.

Elq_% SC Tutorial (Project)*

..... 4, CC-RX (Build Toal)

----- 3‘&, R3F531308AxFP (Microcontroller)
----- ':;\I Smart Configurator (Design Tool)

----- g, R Simulator (Debug Tool)
----- T:' Program Analyzer (Analyze Tool)
=) File

ﬂ Build tocl generated files
L1 smart Configurator

|_]_ C Source Files

R20UT3924EG0100 Rev. 1.00
Jun 30, 2017

RENESAS Page 40 of 68




RSKRX130-512KB

5. Completing the Tutorial Project

5.3 Precautions on using Smart Configurator

When executing the build using Smart Configurator, the warning message shown in Figure 5-1 may be

displayed.

WO5E1100: Cannot find
WO5E1100: Cannot find
WO561100: Cannot find
WO5E1100: Cannot find

“PResetPRG" specified in option “start™

“CRINIT® specified in option “start™
“GEVTBLY specified in option “start”
“PIntPRG" specified in option “start™J

Renesaz Optimizing Linker Completed.

Figure 5-1: CS+ output window

It is a warning sentence that is displayed because there are unused sections, and there is no problem in

operation in SC_Tutorial created in this manual.

procedure below to make the setting.

If, do not want to display a warning message, follow the

« Double-click
display the build tool properties.

‘CC-RX(Build  Tool)’

to

Project Tree o x
? @ 8| [E
=- 1% SC Tutorial (Project)*

3:% R5F51308AxFP (Microcantroller)

o B Smart Configurator (Design Tool)

Y CC-Ri (Build Tool)

i, RX Simulator (Debug Tool)

: ’3‘ Program Analyzer (Analyze Tool)

&L File
« Select the 'Link Options' tab at the bottom || Freee - %
of the Properties screen. ‘\ICC'IT‘P"’PE“ d| |2 Ell=
> Inpi
« Section is set to the start address' of the ||’ Dot
. i
section. e
e TR B 2R 2B R.SU.SL 04, PReset PRA/OF FEOD ..

>
>
>
>

>

The specified section that cutputs externzlly defined symbels to the file  The specified section that outputs extemally defined symby
Section alignment

ROM to RAM mapped section
Verify

Others

Section alignment[0]
ROM to RAM mapped section[3]

« Overwrite the start address of the section

below.

B 1,R 1,B 2,R 2,B,R,SU,SI/04,C_1,C 2
,C,C$*,D*,W*,L,P*/OFFF80000,FIXEDVE

CT/OFFFFFF80

Property - X

#¢ CC-RX Property

a2 |2 |+

>

»
»
3

v

>
>
>
>
>

Section
B 1R 1.8 2R 2BR.SU.SL/MC 1.C 2.C.

Verify
Others

Input
Output

List
Oplimization

The specified section that cutputs externally defined symbels to the file  The specified section that outputs extemally defined symb]
Section alignment
ROM to RAM mapped section

Section alignmert[0]
ROM to RAM mapped section[3]

R20UT3924EG0100 Rev. 1.00
Jun 30, 2017

RENESAS

Page 41 of 68



RSKRX130-512KB 5. Completing the Tutorial Project

5.4 LCD Code Integration

API functions for the Okaya LCD display are provided with the RSK. Refer to the Tutorial project folder
created according to the Quick Start Guide procedure. Locate the files ascii.h, r_okaya_lcd.h, ascii.c, and
r_okaya_lcd.c in this folder. Copy these files into the C:\Workspace\SC_Tutorial\src folder.

e Move the ‘SC_Tutorial.c’ file from [ ] B - | sCutorial
‘C:\Workspace\SC_Tutorial’ to UL Home | Share  View
‘C-\Workspace\sc Tutorial\src' &« v A » ThisPC » Local Disk (C:) » Workspace » SC_Tutorial
MName ) - Daten
7+ Quick access g

Debug
3 This PC DefaultBuild
[ Desktop Release
|£:-‘] Documents | ZUE -
‘ Downloads Nﬂdbsct.c
. || hwsetup.c
f MUSIC j intprg.c
&= Pictures j iodefine.h
B videos |:] lowlvl.src
%o Local Disk (C:) “lowsre.c
=¥ Network g lowsrc.h
- | resetprg.c
j shrk.c
" sbrkh
| | SC_Tutorial. &%= mtud
(3 SC_Tutorial.mtpj
e Right-click on the ‘C Source Files’ folder and P""’“ - —

select ‘Add’ -> ‘Add File...".

=% SC Tutorial (Project)”
i% R3F31308AxFP (Micrecontroller)
“;4 Smart Configurator (Design Tool)
- #g, CC-RX (Build Tool)
g5, RX Simulator (Debug Teol)
’\3 Program Analyzer (Analyze Tool)
Bj! File
ﬂ Build tool generated files
\_ﬂ Smart Configurator

O e
Add H|) Add File...
Bl| Open Folder with Explorer | Add New File...
El| Windows Explorer Menu )| Add New Category
Bl Remove from Project Shift=Del
23 Copy Ctrl+C
i3 Paste Ctrl+V
g Rename F2
Property
« Select the files to be added (ascii.c, R ArETsTp s
I’_Okaya_|CdC, SC_TUtOI’IaD from C “— e <« Workspace » SC_Tutorial » src » ~ O Search src R
\Workspace\SC_Tutorial\src. JoTER TR = o e
Name
# Quick access
smc_gen
& ThispC ) asciic
[ Desktop ‘j r_okaya_lcd.c
[ Documents ] sCTutorial.c
4 Downloads
B Music
=] Pictures
B Videos
i Local Disk (C)
¥ Network
< >
File name: | "SC_Tuterial.c" "ascii.c" "r_okaya_lcd.c" V‘ C source file (".c) ~
R20UT3924EG0100 Rev. 1.00 RENESAS Page 42 of 68

Jun 30, 2017



RSKRX130-512KB

5. Completing the Tutorial Project

- Similarly, add ‘ascii.h’ and ‘r_okaya_lcd.h’ to the
'DependenCIeS' folder “ v A <« Workspace » SC_Tutorial » src » v O Search src »
Organize *  New folder > @ ©
Name h
Note: Choose ‘Header file (*.h; *.hpp; *.inc)’  Quick access ame.gen
58 This PC " asciih
[ Desktop " r_okaya_lcd.h
[ Documents
& Downloads
D Music
=] Pictures
B Videos
‘i Local Disk (C:)
¥ Metwork
< >
File name: | 'r_okaya_lcd h" "asciih’ | [Headerfile b ~hpp: =inc) ]
Make sure the project tree is the same as the FizEei i i £
screen shot. ¢ @ 32 &
=-|_f} SC Tutorial (Project)”
B R5F513088:FP (Microcontroller)
Smart Configurator (Design Toel)
4, CC-RX (Build Teol)
£ RX E2 Lite (Debug Tool)
? Program Analyzer (Analyze Tool)
: 'ﬁE Build tool generated files
: L[] smart Configurator
: E C Source Files
2| ascii.c
-&| SC_Tutorial.c
BIE Dependencies
U ascii.h
il !J r_ckaya_lcd.h
R20UT3924EG0100 Rev. 1.00 RENESANAS
Jun 30, 2017

Page 43 of 68



RSKRX130-512KB 5. Completing the Tutorial Project

Code must be inserted in to the user code area in many files in this project, in the areas delimited by
comments as follows:

/* Start user code for _xxxxx_. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */

Where _xxxx_ depends on the particular area of code, i.e. ‘function’ for insertion of user functions and
prototypes, ‘global’ for insertion of user global variable declarations, or ‘include’ for insertion of pre-processor
include directives. User code inserted inside these comment delimiters is protected from being overwritten by
Smart Configurator, if the user needs to subsequently change any of the Smart Configurator-generated code.

In the CS+ Project Tree, expand the ‘Smart Configurator/general’ folder and open the file ‘r_cg_userdefine.h’
by double-clicking on it. Insert the following #defines in between the user code delimiter comments as shown
below.

/* Start user code for function. Do not edit comment generated here */

#define TRUE (¢H)
#define FALSE ()

/* End user code. Do not edit comment generated here */

In the CS+ Project Tree, expand the ‘C Source Files’ folder and open the file ‘'SC_Tutorial.c’ by double-clicking
on it. Add header files above the ‘main’ function as shown below.

#include "r_smc_entry.h"

#include "r_okaya_lcd.h"
#include "r_cg userdefine.h"

Scroll down to the ‘main’ function and insert the highlighted code as shown below into the beginning of the
user code area of the ‘main’ function:

void main(void)

{
/* Initialize the debug LCD */
R_LCD_InitQ);
/* Displays the application name on the debug LCD */
R_LCD_Display(0, (uint8_t *)" RSKRX130-512KB ");
R_LCD_Display(1l, (uint8_t *)" Tutorial ");
R_LCD Display(2, (uint8_t *)" Press Any Switch ");
while (1U)
{ -
}

¥

R20UT3924EG0100 Rev. 1.00 .zEN ESNS Page 44 of 68

Jun 30, 2017



RSKRX130-512KB 5. Completing the Tutorial Project

5.4.1  SPI Code

The Okaya LCD display is driven by the SPI Master that was configured using Smart Configurator in 84.4.7 In
the CS+ Project Tree, expand the ‘Smart Configurator/Config_SCI6’ and open the file ‘Config_SCI6.h’ by
double-clicking on it. Insert the following code in the user code area at the end of the file:

/* Start user code for function. Do not edit comment generated here */

/* Exported functions used to transmit a number of bytes and wait for completion */
MD_STATUS R_SCI6_SPIMasterTransmit(uint8_t * const tx_buf, const uintl6_t tx_num);

/* End user code. Do not edit comment generated here */

Now, open the Config_SCI6_user.c file and insert the following code in the user area for global:

/* Start user code for global. Do not edit comment generated here */

/* Flag used locally to detect transmission complete */
static volatile uint8_t sci6_txdone;

/* End user code. Do not edit comment generated here */

Insert the following code in the transmit end call-back function for SCI6:

static void r_Config_SCI16_callback_transmitend(void)

{
/* Start user code for r_Config_SCI6_callback_transmitend. Do not edit comment generated here */
sci6_txdone = TRUE;
/* End user code. Do not edit comment generated here */

¥

Now insert the following function in the user code area at the end of the file:

/* Start user code for adding. Do not edit comment generated here */

Function Name: R_SCI16_SPIMasterTransmit
Description : This function sends SPI6 data to slave device.
Arguments - tx_buf -

transfer buffer pointer

t>x_num -

buffer size
Return Value : status -

MD_OK or MD_ARGERROR

o X Ok X Ok X XN\

MD_STATUS R_SCI6_SPIMasterTransmit (uint8_t * const tx_buf,
const uintl6_t tx_num)
{

MD_STATUS status = MD_OK;

/* Clear the flag before initiating a new transmission */
sci6_txdone = FALSE;

/* Send the data using the APl */
status = R_Config_SCI6_SPIl_Master_Send(tx_buf, tx_num);

/* Wait for the transmit end flag */
while (FALSE == sci6_txdone)
{

}

return (status);

/* Wait */

}

/
* End of function R_SCI6_SPIMasterTransmit

/

This function uses the transmit end callback function to perform flow control on the SPI transmission to the
LCD, and is used as the main API call in the LCD code module.

R20UT3924EG0100 Rev. 1.00 RENESAS Page 45 of 68
Jun 30, 2017



RSKRX130-512KB 5. Completing the Tutorial Project

542 TMR Code

The LCD code needs to insert delays to meet the timing requirements of the display module. This is achieved
using the dedicated timer which was configured using Smart Configurator in 84.4.2. In the CS+ Project Tree,
expand the ‘Smart Configurator\Config_TMRO\Config_TMRO0.h’ and insert the following code in the user area
for function at the end of the file:

/* Start user code for function. Do not edit comment generated here */

void R_TMR_MsDelay(const uintl6_t millisec);

/* End user code. Do not edit comment generated here */

Open the file ‘Config_ TMRO_user.c’ and insert the following code in the user area for global at the beginning
of the file:

/* Start user code for global. Do not edit comment generated here */

static volatile uint8_t one_ms_delay complete = FALSE;

/* End user code. Do not edit comment generated here */

Scroll down to the r_Config_ TMRO_cmiaO_interrupt function and insert the following line in the user code
area:

static void r_Config_TMRO_cmiaO_interrupt(void)

/* Start user code for r_Config_TMRO_cmiaO_interrupt. Do not edit comment generated here */
one_ms_delay complete = TRUE;

/* End user code. Do not edit comment generated here */

}

Then insert the following function in the user code area at the end of the file:

/* Start user code for adding. Do not edit comment generated here */

Function Name: R_TMR_MsDelay

Description : Uses TMRO to wait for a specified number of milliseconds
Arguments : uintlé_t millisecs, number of milliseconds to wait
Return Value : None

LR R B N

void R_TMR_MsDelay (const uintl6_t millisec)
{

uintlé_t ms_count = O;

do
{
R_Config_TMRO_Start();
while (FALSE == one_ms_delay_complete)

{
/* Wait */

-

R_Config_TMRO_Stop Q;
one_ms_delay complete = FALSE;
ms_count++;

} while (ms_count < millisec);

ks
/
End of function R_TMR_MsDelay

/

Select ‘Build Project’ from the ‘Build’ menu, or press F7. CS+ will build the project with no errors.

The project may now be run using the debugger as described in 86. The program will display ‘RSKRX130-
512KB Tutorial Press Any Switch’ on three lines in the LCD display.

R20UT3924EG0100 Rev. 1.00 RENESAS Page 46 of 68
Jun 30, 2017



RSKRX130-512KB 5. Completing the Tutorial Project

5.5 Switch Code Integration

API functions for user switch control are provided with the RSK. Refer to the Tutorial project folder created
according to the Quick Start Guide procedure. Locate the files rskrx130_512kbdef.h, r_rsk_switch.h and
r_rsk_switch.c in this folder. Copy these files into the C:\Workspace\SC_Tutorial\src folder. Add these three
files into the project in the same way as the LCD files.

The switch code uses interrupt code in the files Config_ICU.c, Config_ICU_user.c and Config_ICU.h and timer
code in the files Config_ICU.c, Config ICU_user.c, Config CMTO0.h, Config_ CMTO0.c, Config_ CMTO_user.c,
Config_CMT1.h, Config CMT1.c, and Config CMT1 user.c, as described in 84.4.3 and 84.44. 1t is
necessary to provide additional user code in these files to implement the switch press/release detection and
de-bouncing required by the API functions in r_rsk_switch.c.

55.1 Interrupt Code

In the CS+ Project Tree, expand the ‘Smart Configurator/Config_ICU’ folder and open the file ‘Config_ICU.h’
by double-clicking on it. Insert the following code in the user code area at the end of the file:

/* Start user code for function. Do not edit comment generated here */

/* Function prototypes for detecting and setting the edge trigger of ICU_IRQ */
uint8_t R_ICU_IRQIsFallingEdge(const uint8_t irg_no);

void R_ICU_IRQSetFallingEdge(const uint8_t irg_no, const uint8_t set_f_edge);
void R_ICU_IRQSetRisingEdge(const uint8_t irg_no, const uint8_t set_r_edge);

/* End user code. Do not edit comment generated here */

Now, open the Config_ICU.c file and insert the following code in the user code area at the end of the file:

/* Start user code for adding. Do not edit comment generated here */

/
* Function Name: R_ICU_IRQIsFallingEdge
* Description : This function returns 1 if the specified ICU_IRQ is set to
* falling edge triggered, otherwise 0.
* Arguments : uint8_t irg_no
* Return Value : 1 if falling edge triggered, O if not
/
uint8_t R_ICU_IRQIsFallingEdge (const uint8_t irqg_no)
{
uint8_t falling_edge trig = 0x0;
if (ICU.IRQCR[Lirg_no]-BYTE & _04_ICU_IRQ_EDGE_FALLING)
falling_edge_trig = 1;
3
return (falling_edge_trig);
3
/
* End of function R_ICU_IRQIsFallingEdge
/
R20UT3924EG0100 Rev. 1.00 .zEN ESNS Page 47 of 68

Jun 30, 2017



RSKRX130-512KB 5. Completing the Tutorial Project

/

* Function Name: R_ICU_IRQSetFallingEdge

* Description : This function sets/clears the falling edge trigger for the

* specified ICU_IRQ.

* Arguments  uint8_t irg_no

* uint8_t set_T _edge, 1 if setting falling edge triggered, O if
* clearing

Return Value : None

void R_ICU_IRQSetFallingEdge (const uint8_t irg_no, const uint8_t set_f_edge)
if (1 == set_fT_edge)
ICU. IRQCR[irg_no].BYTE |= _04 ICU_IRQ EDGE_FALLING;
3

else

ICU. IRQCR[irg_no].BYTE &= (uint8_t) ~ 04 ICU_IRQ EDGE_FALLING;

* N\

End of function R_ICU_IRQSetFallingEdge

/

* Function Name: R_ICU_IRQSetRisingEdge

* Description : This function sets/clear the rising edge trigger for the

* specified ICU_IRQ.

* Arguments : uint8_t irg_no

* uint8_t set_r_edge, 1 if setting rising edge triggered, O if
* clearing

Return Value : None

void R_ICU_IRQSetRisingEdge (const uint8_t irg_no, const uint8_t set_r_edge)
ifT (1 == set_r_edge)

ICU. IRQCRirg_no].BYTE |= _08_ICU_IRQ_EDGE_RISING;

H
else
ICU. IRQCR[irg_no].BYTE &= (uint8 t) ~ 08 ICU_IRQ EDGE_RISING;
H
3
/

* End of function R_ICU_IRQSetRisingEdge

/* End user code. Do not edit comment generated here */

Open the Config_ICU_user.c file and insert the following code in the user code area for include near the top of

the file:

/* Start user code for include. Do not edit comment generated here */

/* Defines switch callback functions required by interrupt handlers */
#include "'r_rsk switch.h"

/* End user code. Do not edit comment generated here */

In the same file insert the following code in the user code area inside the function
r_Config_ICU_irgl_interrupt:

/* Start user code for r_Config_ICU_ irqgl_interrupt. Do not edit comment generated here */

/* Switch 1 callback handler */
R_SWITCH_IsrCallbackl();

/* End user code. Do not edit comment generated here */

R20UT3924EG0100 Rev. 1.00 RENESAS
Jun 30, 2017

Page 48 of 68



RSKRX130-512KB 5. Completing the Tutorial Project

In the same file insert the following code in the user code area inside the function
r_Config_ICU_irg2_interrupt:
/* Start user code for r_Config_ICU_irg2_interrupt. Do not edit comment generated here */

/* Switch 2 callback handler */
R_SWITCH_IsrCallback2();

/* End user code. Do not edit comment generated here */

55.2 De-bounce Timer Code

In the Project Tree, expand the ‘Smart Configurator\Config_ CMTOQ’ folder and open the ‘Config_ CMTO_user.c’
file and insert the following code in the user code area for include near the top of the file:
/* Start user code for include. Do not edit comment generated here */

/* Defines switch callback functions required by interrupt handlers */
#include "'r_rsk switch.h"

/* End user code. Do not edit comment generated here */

In the ‘Config_CMTO_user.c’ file, insert the following code in the user code area inside the function
r_Config_ CMTO_cmiQ_interrupt:
/* Start user code for r_Config_CMTO_cmiO_interrupt. Do not edit comment generated here */

/* Stop this timer - we start it again in the de-bounce routines */
R_Config_CMTO_Stop();

/* Call the de-bounce call back routine */
R_SWITCH_DebouncelsrCal lback();

/* End user code. Do not edit comment generated here */
In the Project Tree, expand the ‘Smart Configurator\Config_ CMT1’ folder and open the ‘Config_ CMT1_user.c’
file and insert the following code in the user code area for include near the top of the file:

/* Start user code for include. Do not edit comment generated here */

/* Defines switch callback functions required by interrupt handlers */
#include "'r_rsk switch.h"

/* End user code. Do not edit comment generated here */

Open the ‘Config_ CMT1_user.c’ file and insert the following code in the user code area inside the function
r_Config_ CMT1_cmil_interrupt:
/* Start user code for r_Config_CMT1 cmil_interrupt. Do not edit comment generated here */

/* Stop this timer - we start it again in the de-bounce routines */
R_Config_CMT1_Stop();

/* Call the de-bounce call back routine */
R_SWITCH_DebouncelsrCal lback();

/* End user code. Do not edit comment generated here */

R20UT3924EG0100 Rev. 1.00 RENESAS Page 49 of 68
Jun 30, 2017



RSKRX130-512KB 5. Completing the Tutorial Project

553 Main Switch and ADC Code

In this part of the tutorial we add the code to act on the switch presses to activate A/D conversions and display
the result on the LCD. In §84.4.8, we configured the ADC to be triggered from the ADTRGO# pin, SW3. In this
code, we also perform software triggered A/D conversion from the user switches SW1 and SW2, by
reconfiguring the ADC trigger source on-the-fly once an SW1 or SW2 press is detected.

In the CS+ Project Tree, expand the ‘Smart Configurator\general’ folder and open the file ‘r_cg_userdefine.h’
by double-clicking on it. Insert the following code the user code area, resulting in the code shown below

/* Start user code for function. Do not edit comment generated here */

#define TRUE (¢D)
#define FALSE )

extern volatile uint8_t g_adc_trigger;

/* End user code. Do not edit comment generated here */

Open the file ‘'SC_Tutorial.c’ and insert #include "r_rsk_switch.h" in the user code area for include, resulting in
the code shown below:

#include "r_smc_entry.h"
#include "r_okaya lcd.h"
#include "'r_rsk switch.h"
#include "Config_S12ADO.h"
#include "r_cg userdefine.h"

/* Variable for flagging user requested ADC conversion */
volatile uint8_t g_adc_trigger = FALSE;

/* Prototype declaration for cb_switch_press */
static void cb_switch_press (void);

/* Prototype declaration for get adc */
static uintl6_t get_adc(void);

/* Prototype declaration for lcd_display_adc */
static void lcd_display adc (const uintl6_t adc_result);

R20UT3924EG0100 Rev. 1.00 RENESAS Page 50 of 68
Jun 30, 2017



RSKRX130-512KB 5. Completing the Tutorial Project

Next add the highlighted code below in the main function and the code inside the while loop, resulting in the
code shown below:

void main(void)

{
/* Initialize the switch module */
R_SWITCH_InitQ);
/* Set the call back function when SW1 or SW2 is pressed */
R_SWITCH_SetPressCal lback(cb_switch_press);
/* Initialize the debug LCD */
R_LCD_InitQ);
/* Displays the application name on the debug LCD */
R_LCD_Display(0, (uint8_t *)" RSKRX130-512KB "");
R_LCD_Display(1, (uint8_t *)" Tutorial ");
R_LCD Display(2, (uint8_t *)" Press Any Switch ");
/* Start the A/D converter */
R_Config_S12AD0_Start();
while (1U)
uintlé_t adc_result;
/* Wait for user requested A/D conversion flag to be set (SW1 or SW2) */
if (TRUE == g_adc_trigger)
{
/* Call the function to perform an A/D conversion */
adc_result = get_adc();
/* Display the result on the LCD */
Icd_display_adc(adc_result);
/* Reset the flag */
g_adc_trigger = FALSE;
by
/* SW3 is directly wired into the ADTRGOn pin so will
cause the interrupt to fire */
else if (TRUE == g_adc_complete)
{
/* Get the result of the A/D conversion */
R_Config_S12AD0_Get_ValueResult(ADCHANNELO, &adc_result);
/* Display the result on the LCD */
Icd_display_adc(adc_result);
/* Reset the flag */
g_adc_complete = FALSE;
by
else
/* do nothing */
by
3
3

Then add the definition for the switch call-back, get_adc and Icd_display_adc functions in the user code area
for adding at the end of the file, as shown below:

/
* Function Name : cb_switch_press
* Description : Switch press callback function. Sets g_adc_trigger flag.
* Argument > none
* Return value : none
/
static void cb_switch_press (void)
{
/* Check if switch 1 or 2 was pressed */
ifT (g_switch_flag & (SWITCHPRESS_ 1 | SWITCHPRESS_2))
{
/* Set the flag indicating a user requested A/D conversion is required */
g_adc_trigger = TRUE;
/* Clear flag */
g_switch_flag = 0x0;
R20UT3924EG0100 Rev. 1.00 IQEN ESNS Page 51 of 68

Jun 30, 2017



RSKRX130-512KB 5. Completing the Tutorial Project

¥

N

End of function cb_switch_press

Function Name : get_adc

Description : Reads the ADC result, converts it to a string and displays
it on the LCD panel.

Argument > none

Return value : uintl6_t adc value

O OX R XN

static uintl6_t get_adc (void)
{

/* A variable to retrieve the adc result */
uintl6_t adc_result;

/* Stop the A/D converter being triggered from the pin ADTRGOn */
R_Config_S12AD0_Stop();

/* Start a conversion */
R_S12ADO_SWTriggerStart();

/* Wait for the A/D conversion to complete */
while (FALSE == g_adc_complete)

/* Wait */
}

/* Stop conversion */
R_S12ADO_SWTriggerStop();

/* Clear ADC flag */
g_adc_complete = FALSE;

R_Config_S12AD0_Get_ValueResult(ADCHANNELO, &adc_result);
/* Set AD conversion start trigger source back to ADTRGOn pin */
R_Config_S12AD0_Start();

return (adc_result);

*

End of function get_adc

Function Name : lcd_display_adc

Description : Converts adc result to a string and displays
it on the LCD panel.

Argument : uintl6é_t adc result

Return value : none

O OX R XN

static void lcd_display_adc (const uintl6_t adc_result)
{

/* Declare a temporary variable */

uint8_t a;

/* Declare temporary character string */
char lcd_buffer[11] = " ADC: XXXH";

/* Convert ADC result into a character string, and store in the local.
Casting to ensure use of correct data type. */

a = (uint8_t)((adc_result & OxOF00) >> 8);

Icd_buffer[6] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));

a = (uint8_t)((adc_result & Ox00F0) >> 4);

lcd_buffer[7] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));

a = (uint8_t)(adc_result & 0x000F);

Icd_buffer[8] = (char)((a < Ox0A) ? (a + 0x30) : (a + 0x37));

/* Display the contents of the local string lcd_buffer */
R_LCD_Display(3, (uint8_t *)lcd_buffer);

N

End of function lcd_display_adc

R20UT3924EG0100 Rev. 1.00 RENESANAS Page 52 of 68
Jun 30, 2017



RSKRX130-512KB 5. Completing the Tutorial Project

In the Project Tree, expand the ‘Smart Configurator\Config_S12ADO0’ folder and open the file
‘Config_S12ADO0.h’ by double-clicking on it. Insert the following code in the user code area for function,

resulting in the code shown below:
/* Start user code for function. Do not edit comment generated here */

/* Flag indicates when A/D conversion is complete */
extern volatile uint8_t g_adc_complete;

/* Functions for starting and stopping software triggered A/D conversion */
void R_S12ADO_SWTriggerStart(void);
void R_S12AD0O_SWTriggerStop(void);

/* End user code. Do not edit comment generated here */

Open the file ‘Config_S12ADO0.c’ by double-clicking on it. Insert the following code in the user code area for
adding at the end of the file, resulting in the code shown below:

/* Start user code for adding. Do not edit comment generated here */

/
* Function Name: R_S12ADO_SWTriggerStart

* Description : This function starts the AD converter.
* Arguments : None

* Return Value : None

void R_S12ADO_SWTriggerStart(void)
{
IR(S12AD, S12ADIO) = OU;
IEN(S12AD, S12ADIO) = 1U;
S12AD.ADCSR.BIT.ADST = 1U;
3
/
End of function R_S12AD0O_SWTriggerStart

/
* Function Name: R_S12ADO_SWTriggerStop

* Description : This function stops the AD converter.
Arguments : None

Return Value : None

X *

void R_S12ADO_SWTriggerStop(void)
{

S12AD.ADCSR.BIT.ADST = 0U;
IEN(S12AD, S12ADIO) = OU;
IR(S12AD, S12ADIO) = 0OU;
3
/
End of function R_S12ADO_SWTriggerStop

/* End user code. Do not edit comment generated here */

Open the file Config_S12AD0_user.c and insert the following code in the user code area for global, resulting in
the code shown below:
/* Start user code for global. Do not edit comment generated here */

/* Flag indicates when A/D conversion is complete */
volatile uint8_t g_adc_complete;

/* End user code. Do not edit comment generated here */

Insert the following code in the user code area of the r_Config_S12ADO0 _interrupt function, resulting in the
code shown below:

static void r_Config_S12ADO_interrupt(void)

{
/* Start user code. Do not edit comment generated here */
g_adc_complete = TRUE;
/* End user code. Do not edit comment generated here */
3
R20UT3924EG0100 Rev. 1.00 .zEN ESNS Page 53 of 68

Jun 30, 2017



RSKRX130-512KB 5. Completing the Tutorial Project

Select ‘Build Project’ from the ‘Build’ menu, or press F7. CS+ will build the project with no errors.

The project may now be run using the debugger as described in 86. When any switch is pressed, the
program will perform an A/D conversion of the voltage level on the ADPOT line and display the result on the
LCD panel. Return to this point in the SC_Tutorial to add the UART user code.

R20UT3924EG0100 Rev. 1.00 RENESAS Page 54 of 68
Jun 30, 2017



RSKRX130-512KB 5. Completing the Tutorial Project

5.6 Debug Code Integration

API functions for trace debugging via the RSK serial port are provided with the RSK. Refer to the Tutorial
project folder created according to the Quick Start Guide procedure. Locate the files r_rsk_debug.h and
r_rsk_debug.c in this folder. Copy these files into the C:\Workspace\SC_Tutorial\src folder. Add these two files
into the project in the same way as the LCD files.

In the r_rsk_debug.h file, ensure the following macro definition is included:

/* Macro for definition of serial debug transmit function - user edits this */
#define SERIAL_DEBUG_WRITE (R_SCI1_AsyncTransmit)

This macro is referenced in the r_rsk_debug.c file and allows easy re-direction of debug output if a different
debug interface is used.

5.7 UART Code Integration

5.7.1  SCI Code
In the CS+ Project Tree, expand the ‘Smart Configurator\Config_SCI1’ folder and open the file ‘Config_SCI1.h’
by double-clicking on it. Insert the following code in the user code area at the end of the file:

/* Start user code for function. Do not edit comment generated here */

/* Exported functions used to transmit a number of bytes and wait for completion */
MD_STATUS R_SCI1_AsyncTransmit(uint8_t * const tx_buf, const uintl6_t tx_num);

/* Character is used to receive key presses from PC terminal */
extern uint8_t g_rx_char;

/* End user code. Do not edit comment generated here */

Open the file ‘Config_SCI1_user.c’. Insert the following code in the user area for global near the beginning of
the file:

/* Start user code for global. Do not edit comment generated here */

/* Global used to receive a character from the PC terminal */
uint8_t g_rx_char;

/* Flag used locally to detect transmission complete */
static volatile uint8_t scil_txdone;

/* End user code. Do not edit comment generated here */

In the same file, insert the following code in the user code area inside the
r_Config_SCI1_callback_transmitend function:

static void r_scil_callback_transmitend(void)
/* Start user code for r_Config_SCIl1_callback_transmitend. Do not edit comment generated here */
scil_txdone = TRUE;

/* End user code. Do not edit comment generated here */

}

R20UT3924EG0100 Rev. 1.00 RENESAS Page 55 of 68
Jun 30, 2017



RSKRX130-512KB 5. Completing the Tutorial Project

In the same file, insert the following code in the user code area inside the r_Config_SCI1_callback_receiveend

function:

void r_Config_SCI1_callback_receiveend(void)

{
/* Start user code for r_Config_SCIl1_callback_receiveend. Do not edit comment generated here */
/* Check the contents of g_rx _char */
ifT (("c” == g_rx_char) || (°C" == g_rx_char))
{
g_adc_trigger = TRUE;
by
/* Set up SCI1 receive buffer and callback function again */
R_Config_SCl1_Serial_Receive((uint8_t *)&g_rx_char, 1);
/* End user code. Do not edit comment generated here */
}

At the end of the file, in the user code area for adding, add the following function definition:

Function Name: R_SCI1_AsyncTransmit
Description : This function sends SCI1 data and waits for the transmit end flag.
Arguments - tx_buf -

transfer buffer pointer

t>x_num -

buffer size
Return Value : status -

MD_OK or MD_ARGERROR

o X Ok X F X XN\

/
MD_STATUS R_SCI1_AsyncTransmit (uint8_t * const tx_buf, const uintl6_t tx_num)

{
MD_STATUS status = MD_OK;

/* clear the flag before initiating a new transmission */
scil_txdone = FALSE;

/* Send the data using the APlI */
status = R_Config_SCI1_Serial_Send(tx_buf, tx_num);

/* Wait for the transmit end flag */
while (FALSE == scil_txdone)

/* Wait */

return (status);

}

/
* End of function R_SCI1_AsyncTransmit

R20UT3924EG0100 Rev. 1.00 RENESAS
Jun 30, 2017

Page 56 of 68



RSKRX130-512KB 5. Completing the Tutorial Project

5.7.2 Main UART code

In the Project Tree, expand the ‘C Source Files’ folder and open the file ‘SC_Tutorial.c’. Add the following
declaration to above the ‘main’ function:

#include "r_smc_entry._h"
#include "r_okaya_lcd._h"
#include "'r_rsk switch.h"
#include "r_rsk_debug.h"
#include "Config_S12ADO.h"
#include "Config_SCI1._h"
#include "r_cg userdefine._h"

/* Variable for flagging user requested ADC conversion */
volatile uint8_t g_adc_trigger = FALSE;

/* Prototype declaration for cb_switch_press */
static void cb_switch_press (void);

/* Prototype declaration for get _adc */
static uintl6_t get_adc(void);

/* Prototype declaration for lcd_display_adc */
static void lcd_display_adc (const uintl6_t adc_result);

/* Prototype declaration for uart_display_adc */
static void uart_display_adc(const uint8_t adc_count, const uintl6_t adc_result);

/* Variable to store the A/D conversion count for user display */
static uint8_t adc_count = 0;

Add the following highlighted code to the main function:

void main(void)

{
/* Initialize the switch module */
R_SWITCH_InitQ);
/* Set the call back function when SW1 or SW2 is pressed */
R_SWITCH_SetPressCal lback(cb_switch_press);
/* Initialize the debug LCD */
R_LCD_InitQ);
/* Displays the application name on the debug LCD */
R_LCD_Display(0, (uint8_t *)" RSKRX130-512KB "");
R_LCD_Display(1, (uint8_t *)" Tutorial ");
R_LCD Display(2, (uint8_t *)" Press Any Switch ");
/* Start the A/D converter */
R_Config_S12AD0_Start();
/* Set up SCI1 receive buffer and callback function */
R_Config_SCl1_Serial_Receive((uint8_t *)&g_rx_char, 1);
/* Enable SCI1 operations */
R_Config_SCl1_Start();
while (1U)
{
uintl6é_t adc_result;
/* Wait for user requested A/D conversion flag to be set (SW1 or SW2) */
if (TRUE == g_adc_trigger)
{
/* Call the function to perform an A/D conversion */
adc_result = get_adc();
/* Display the result on the LCD */
Icd_display_adc(adc_result);
/* Increment the adc_count */
iT (16 == (++adc_count))
adc_count = 0;
by
R20UT3924EG0100 Rev. 1.00 .{EN ESNS Page 57 of 68

Jun 30, 2017



RSKRX130-512KB 5. Completing the Tutorial Project

/* Send the result to the UART */
uart_display_adc(adc_count, adc_result);

/* Reset the flag */
g_adc_trigger = FALSE;
3

/* SW3 is directly wired into the ADTRGOn pin so will
cause the interrupt to fire */

else if (TRUE == g_adc_complete)

{
/* Get the result of the A/D conversion */
R_Config_S12AD0_Get_ValueResult(ADCHANNELO, &adc_result);

/* Display the result on the LCD */
Icd_display_adc(adc_result);

/* Increment the adc_count */
iT (16 == (++adc_count))

adc_count = 0;

}

/* Send the result to the UART */
uart_display_adc(adc_count, adc_result);
/* Reset the flag */
g_adc_complete = FALSE;

3

else

/* do nothing */
¥
}
}

Then, add the following function definition at the end of the file:

/

* Function Name : uart_display_adc

* Description : Converts adc result to a string and sends it to the UARTL.
* Argument : uint8_t : adc_count

* uintl6_t: adc result

* Return value : none

/
static void uart_display_adc (const uint8_t adc_count, const uintl6_t adc_result)

/* Declare a temporary variable */
char a;

/* Declare temporary character string */
static char uart_buffer[] = "ADC xH Value: xxxH\r\n';

/* Convert ADC result into a character string, and store in the local.
Casting to ensure use of correct data type. */

a = (char)(adc_count & 0x000F);

uart_buffer[4] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));

a = (char)((adc_result & 0x0F00) >> 8);

uart_buffer[14] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));

a = (char)((adc_result & 0Ox00F0) >> 4);

uart_buffer[15] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));

a = (char)(adc_result & 0x000F);

uart_buffer[16] = (char)((a < Ox0A) ? (a + 0x30) : (a + 0x37));

/* Send the string to the UART */
R_DEBUG_Print(uart_buffer);

}

/
* End of function uart_display_adc

/

Select ‘Build Project’ from the ‘Build’ menu, or press F7. CS+ will build the project with no errors.

R20UT3924EG0100 Rev. 1.00 RENESAS Page 58 of 68
Jun 30, 2017



RSKRX130-512KB 5. Completing the Tutorial Project

The project may now be run using the debugger as described in 86. Connect the RSK G1CUSBO port to a
USB port on a PC. If this is the first time the RSK has been connected to the PC then a device driver will be
installed automatically. Open Device Manager, the virtual COM port will now appears under 'Port (COM &
LPT)' as 'RSK USB Serial Port (COMX)', where x is a number.

Open a terminal program, such as HyperTerminal, on the PC with the same settings as for SCI1 (see §4.4.6).
When any switch is pressed, or when ‘c’ is sent via the COM port, the program will perform an A/D conversion
of the voltage level on the ADPOT line and display the result on the LCD panel and send the result to the PC
terminal program via the SCI1. Return to this point in the SC_Tutorial to add the LED user code.

5.8 LED Code Integration

Open the file ‘'SC_Tutorial.c’. Add the following declaration to the user code area for include near the top of
the file:

#include "r_smc_entry.h"
#include "r_okaya_lcd._h"
#include "'r_rsk switch.h"
#include "r_rsk debug.h™
#include "'rskrx130_512kbdef.h"
#include "Config_S12ADO.h"
#include "Config_SCI1_h"
#include "r_cg userdefine._h"

/* Variable for flagging user requested ADC conversion */
volatile uint8_t g_adc_trigger = FALSE;

/* Prototype declaration for cb_switch_press */
static void cb_switch_press (void);

/* Prototype declaration for get _adc */
static uintl6_t get_adc(void);

/* Prototype declaration for lcd_display_adc */
static void lcd_display_adc (const uintl6_t adc_result);

/* Prototype declaration for uart_display_adc */
static void uart_display_adc(const uint8_t adc_count, const uintl6_t adc_result);

/* Variable to store the A/D conversion count for user display */
static uint8_t adc_count = 0;

/* Prototype declaration for led_display_count */
static void led_display_count(const uint8_t count);

Add the following highlighted code to the user code area in the main function:

void main(void)

{
/* Initialize the switch module */
R_SWITCH_Init(Q);
/* Set the call back function when SW1 or SW2 is pressed */
R_SWITCH_SetPressCal lback(cb_switch_press);
/* Initialize the debug LCD */
R_LCD_Init(Q);
/* Displays the application name on the debug LCD */
R_LCD Display(0, (uint8_t *)" RSKRX130-512KB ");
R_LCD_Display(1, (uint8_t *)" Tutorial ");
R_LCD Display(2, (uint8_t *)" Press Any Switch ");
/* Start the A/D converter */
R_Config_S12AD0_Start();
/* Set up SCI1 receive buffer and callback function */
R_Config_SCIl1_Serial_Receive((uint8_t *)&g_rx_char, 1);
/* Enable SCI1 operations */
R_Config_SCIl1_Start();
while (1U)
uintl6é_t adc_result;
R20UT3924EG0100 Rev. 1.00 .zEN ESNS Page 59 of 68

Jun 30, 2017



RSKRX130-512KB

5. Completing the Tutorial Project

/* Wait for user requested A/D conversion flag to be set (SW1 or Sw2) */
if (TRUE == g_adc_trigger)

{

}

/* Call the function to perform an A/D conversion */
adc_result = get_adc();

/* Display the result on the LCD */
Icd_display_adc(adc_result);

/* Increment the adc_count and display using the LEDs */
if (16 == (++adc_count))
{

adc_count = 0;
¥

led_display_count(adc_count);

/* Send the result to the UART */
uart_display_adc(adc_count, adc_result);
/* Reset the flag */

g_adc_trigger = FALSE;

/* SW3 is directly wired into the ADTRGOn pin so will

cause the interrupt to fire */

else if (TRUE == g_adc_complete)

{
/* Get the result of the A/D conversion */
R_Config_S12AD0_Get_ValueResult(ADCHANNELO, &adc_result);
/* Display the result on the LCD */
Icd_display_adc(adc_result);
/* Increment the adc_count and display using the LEDs */
if (16 == (++adc_count))

adc_count = 0;

3
led_display_count(adc_count);
/* Send the result to the UART */
uart_display_adc(adc_count, adc_result);
/* Reset the flag */
g_adc_complete = FALSE;

¥

else

{
/* do nothing */

3

3
3
R20UT3924EG0100 Rev. 1.00 .{EN ESNS Page 60 of 68

Jun 30, 2017



RSKRX130-512KB 5. Completing the Tutorial Project

Then, add the following function definition in the user code area at the end of the file:

/
* Function Name : led_display_count
* Description : Converts count to binary and displays on 4 LEDSO-3
* Argument I uint8_t count
* Return value : none
/
static void led_display_count (const uint8_t count)
{
/* Set LEDs according to lower nibble of count parameter */
LEDO = (uint8_t)((count & 0x01) ? LED_ON : LED_OFF);
LED1 = (uint8_t)((count & 0x02) ? LED_ON : LED_OFF);
LED2 = (uint8_t)((count & 0x04) ? LED_ON : LED_OFF);
LED3 = (uint8_t)((count & 0x08) ? LED_ON : LED_OFF);
ks
/
* End of function led_display_count
/

/* End user code. Do not edit comment generated here */
Select ‘Build Project’ from the ‘Build’ menu, or press F7. CS+ will build the project with no errors.

The project may now be run using the debugger as described in 86. The code will perform the same but now
the LEDs will display the adc_count in binary form.

R20UT3924EG0100 Rev. 1.00 RENESAS Page 61 of 68
Jun 30, 2017



RSKRX130-512KB 6. Debugging the Project

6. Debugging the Project

e In the ‘Project Tree’ pane, right-click the ‘RX | LS s
Simulator (Debug Tool)'. Select ‘Using Debug : @ 8 |E
Tool -> RX E2 Lite’'. &} SC Tutorial (Project)”

5‘,% R5F51308AxFP (Microcontroller)
| Smart Configurator (Design Teol)
4, CC-RX (Build Tool)

or (Debug Too

: \‘) Program Analyzer (Analy Using Debug Tool  » RX E2 Lite
- File

B Property RX E1(Serial)
RX E20(Serial)

RX Simulator

e Double-click ‘RX E2 Lite (Debug Tool) to | |& rxezLie Property
display the debugger tool properties. Under | |v Internal ROMRAM

‘ ' i | Size of internal ROM[KBytes) ¥
Clock’, change the main clock frequency to 8 e o
MHz and operating frequency to 32MHz.’ &z o patafizsh memen/IByes] g
A
e Under ‘Connection with Target Board’, change mﬂinc:octfouroe o ?CFD;DLO
. ain clock trequency Z A
Power target from the emulator. (MAX 200mA) Opersting remuencylMHa] 20000
to ‘Yes’ Allow changing of the clock source on writing internal flash memory No
' ~ Connection with Emulator
i i i Emulater serial No.
e All other settings can remain at their defaults. o e
Power target from the emulator.(M2AX 200md) Yes
- 3.3

method FINE
FIME baud rate[bps] 1500000
e Connect the E2 Lite to the PC and the RSK
E1/E2 Lite connector. Connect the Pmod LCD
to the PMOD1 connector.
e From the ‘Debug’ menu select ‘Download’ to
start the debug session and download code to
the target.
R20UT3924EG0100 Rev. 1.00 RENESAS Page 62 of 68

Jun 30, 2017



RSKRX130-512KB 7. Running the Smart Configurator Tutorial

7. Running the Smart Configurator Tutorial

7.1 Running the Tutorial

Once the program has been downloaded onto the RSK device, the program can be executed.
Click the ‘Go’ button or press F5 to begin the program from the current program counter
position. It is recommended that you run through the program once first, and then continue to
the Tutorial manual to review the code.

®

R20UT3924EG0100 Rev. 1.00 RENESAS
Jun 30, 2017

Page 63 of 68




RSKRX130-512KB 8. Additional Information

8. Additional Information

Technical Support

For details on how to use CS+, refer to the help
file by opening CS+, then selecting Help > Help Tool Window | Help
Contents from the menu bar. P~ é‘F&|@ Help
] = R % Ila,ﬁ Cpen Help for Start Panel F1
= How to Access Help 3
Start d
@q Cne Point Advice...
Learn B Tutcrial
@] Browse Renesas Electronics Microcontrollers Web
2@ Privacy Settings..
Creat (& Detail Version Infermaticn...
,'Jé;'s About...

For information about the RX130 group microcontroller refer to the RX130 Group Hardware Manual.
For information about the RX assembly language, refer to the RX Family Software Manual.
Technical Contact Details

Please refer to the contact details listed in section 9 of the “Quick Start Guide”.

General information on Renesas microcontrollers can be found on the Renesas website at:
https://lwww.renesas.com/

Trademarks

All brand or product names used in this manual are trademarks or registered trademarks of their respective
companies or organisations.

Copyright
This document may be, wholly or partially, subject to change without notice. All rights reserved. Duplication of

this document, either in whole or part is prohibited without the written permission of Renesas Electronics
Europe Limited.

© 2017 Renesas Electronics Europe Limited. All rights reserved.
© 2017 Renesas Electronics Corporation. All rights reserved.
© 2017 Renesas System Design Co., Ltd. All rights reserved.

R20UT3924EG0100 Rev. 1.00 RENESAS Page 64 of 68
Jun 30, 2017


https://www.renesas.com/

REVISION HISTORY

RSKRX130-512KB Smart Configurator Tutorial Manual

Rev.

Date

Description

Page

Summary

1.00

Jun 30, 2017

First Edition issued

C-1




Renesas Starter Kit Manual: Smart Configurator Tutorial Manual

Publication Date: Rev. 1.00 Jun 30, 2017

Published by: Renesas Electronics Corporation




ENESANS

SALES OFFICES Renesas Electronics Corporation http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Dusseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, JIn Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.

No.777C, 100 Feet Road, HAL Il Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.

12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea

Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2017 Renesas Electronics Corporation. All rights reserved.
Colophon 4.1



RX130 Group

LENESNS

Renesas Electronics Corporation

R20UT3924EG0100



	1.    Overview
	1.1 Purpose
	1.2 Features

	2.    Introduction
	3.    Project Creation with CS+
	3.1 Introduction
	3.2 Creating the Project

	4.    Smart Configurator Using the CS+
	4.1 Introduction
	4.2 Project Configuration using Smart Configurator - Overview page
	4.3 Clock configuration page
	4.3.1 Clocks configuration

	4.4  Components page
	4.4.1 Add a software component into the project
	4.4.2 8-Bit Timer
	4.4.3 Compare Match Timer
	4.4.4 Interrupt Controller
	4.4.5 Ports
	4.4.6 SCI/SCIF Asynchronous Mode
	4.4.7 SPI Clock Synchronous Mode
	4.4.8 Single Scan Mode S12AD

	4.5 Pins configuration page
	4.5.1 Change pin assignment of a software component


	5.    Completing the Tutorial Project
	5.1 Project Settings
	5.2 Additional Folders
	5.3  Precautions on using Smart Configurator
	5.4 LCD Code Integration
	5.4.1  SPI Code
	5.4.2  TMR Code

	5.5  Switch Code Integration
	5.5.1 Interrupt Code
	5.5.2 De-bounce Timer Code
	5.5.3 Main Switch and ADC Code

	5.6  Debug Code Integration
	5.7 UART Code Integration
	5.7.1 SCI Code
	5.7.2  Main UART code

	5.8 LED Code Integration

	6.    Debugging the Project
	7.    Running the Smart Configurator Tutorial
	7.1 Running the Tutorial

	8.    Additional Information



