Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Renesas Starter Kit Ethernet & USB Application Board User's Manual RENESAS STARTER KIT

Table of Contents

Chapter 1. Preface
Chapter 2. Purpose
Chapter 3. Board Layout
3.1. Component References5
3.2. Board Component functions
3.3. Board Dimensions7
Chapter 4. User Circuitry
4.1. Fitting the Target RSK to the RSK application board8
4.2. Network Controller
4.3. USB Controller9
4.4. SRAM
4.5. Option Links12
Chapter 5. Headers
5.1. Application Headers13
Chapter 6. Code Development
Chapter 7. Additional Information

Chapter 1. Preface

Cautions

This document may be, wholly or partially, subject to change without notice.

All rights reserved. Duplication of this document, either in whole or part is prohibited without the written permission of Renesas Technology Europe Limited.

Trademarks

All brand or product names used in this manual are trademarks or registered trademarks of their respective companies or organisations.

Copyright

© Renesas Technology Europe Ltd. 2007. All rights reserved.

Website: <u>http://www.eu.renesas.com/</u>

Glossary

CPU	Central Processing Unit	RTE	Renesas Technology Europe Ltd.
HEW	High-performance Embedded Workshop	RSO	Renesas Solutions Organisation.
USB	Universal Serial Bus	RSK	Renesas Starter Kit
PC	Program Counter	NIC	Network Interface Controller
E10A	'E10A for Starter Kits' Emulator		

Chapter 2.Purpose

This RSK Application Board is an evaluation tool for using Renesas microcontrollers with Ethernet and USB interfaces. It is used in conjunction with the RSK for the microcontroller to be evaluated.

Features include:

- Mounting connections to allow RSK to be added to top of board.
- Interface to standard RSK 'Application Interface' connectors.
- Interface to Memory Expansion connectors.
- Power connector for +5V (reverse polarity protected), with on-board regulated 3.3V conversion and level translation to allow operation with RSK boards working at either +5V or +3.3V.
- LAN9118-MT NIC and RJ45 Ethernet connector with integral status LEDs.
- ISP1761BE USB Hi-Speed 2.0 Host Controller with:
 - o 1 Host/Slave USB (Mini AB) connector and
 - o 2 Host USB (Standard A) connectors.
- 512 kByte Static Ram arranged as 256k x 16 bit words.

Chapter 3.Board Layout

3.1.Component References

The following diagram shows the component references for the board.

Figure 3-1: Component References

3.2.Board Component functions

The following diagram the shows the functions of the components on the board.

Application Board Interface

Memory Extension Interface

Figure 3-2: Board Layout

3.3.Board Dimensions

The following diagram gives the board dimensions and connector positions. All through hole connectors are on a common 0.1" grid for easy interfacing.

Figure 3-3 : Board Dimensions

Chapter 4.User Circuitry

4.1. Fitting the Target RSK to the RSK application board

The board is supplied with 2x 24 way sockets, 2x 26 way sockets and 1 x 50 way socket.

These should be soldered on the underside of the host RSK in JA1, JA2, JA5, JA6 and JA3 positions.

The RSK should be plugged into the equivalent connectors on the RSK LCD application board.

A separate application note is available to explain how to configure the host RSK to enable it to connect to this application board.

The board is designed to be 5V I/O tolerant. Therefore this board can be connected to an RSK with 5V I/O.

4.2.Network Controller

The network functionality is provided by the SMCS LAN9118-MT non-PCI Ethernet controller.

Refer to the manufacturer's datasheet for more information on this peripheral.

The Ethernet controller is configured to use a 16 bit data bus. It uses single 16 bit read and write strobes.

Byte or long word accesses are not available for this device.

The chip select used for the network controller is CS1 which is on JA3 pin 27.

Please note the timing. This will require programming the bus controller for the Host RSK.

Figure 4-1: Ethernet controller read timing

Figure 4-2: Ethernet controller write timing

The Ethernet controller can drive two interrupts.

IRQ0 is the IRQ from the Ethernet controller.

IRQ2 is the PME output from the Ethernet controller. PME interrupts can be enabled on the IRQ pin, so this can be disabled for host RSKs with fewer interrupt lines, if the PME interrupt is required.

Both interrupts are pulled high to 3.3V by 1K resistors.

4.3.USB Controller

The Universal Serial Bus functionality is provided by the Philips ISP1761 controller.

Refer to the manufacturer's datasheet for more information on this peripheral.

This peripheral provides 2 Host type A and one On the Go Host/Peripheral mini AB type USB controller.

The ISP1761 controller is configured to use a 16 bit data bus. It uses single 16 bit read and write strobes.

Byte or long word accesses are not available for this device.

The chip select used for the USB controller is CS2 which is on JA3 pin 28.

Please note the timing. This will require programming the bus controller for the Host RSK.

Figure 4-4: USB controller write timing

The ISP1761 controller can drive two interrupts.

IRQ1 is the HC_IRQ from the ISP1761 controller.

IRQ3 is the DC_IRQ output from the ISP1761 controller. DC_IRQ interrupts can be enabled on the HC_IRQ pin, so this can be disabled for host RSKs with fewer interrupt lines, if the DC_IRQ interrupt is required. Both interrupts are pulled high to 3.3V by 1K resistors.

4.4.SRAM

The board is provided with 512 kilobytes of static RAM arranged as 256k x 16 bit words.

This RAM is byte addressable, provided the host RSK supports this.

The chip select used for the RAM is CS3 which is on JA3 pin 45.

Please note the timing. This will require programming the bus controller for the Host RSK.

4.5.Option Links

Table 4-1 below describes the function of the option links contained on this CPU board. The default configuration is indicated by **BOLD** text.

Option Link Settings								
Reference	Function	Fitted	Alternative (Removed)	Related To				
R2	3V power select	Regulator drives Board_3V3	Board_3V from RSK					
R7	Write Strobe Select	High Byte writes from WR1n	WR1n not connected	R8, R9, R10				
R8	Write Strobe Select	High Byte writes from WR1n	WR1n not connected	R7, R9, R10				
R9	Write Strobe Select	Low Byte writes from WR0n	WR0n not connected	R7, R8, R10				
R10	Write Strobe Select	Low Byte writes from WR0n	WR0n not connected	R7, R8, R9				

Table 4-1: JA1 Option Link Settings

Chapter 5.Headers

5.1.Application Headers

This information is supplied for reference. Only pins marked are connected on this board.

These connections are not level translated.

Table 5-1 and Table 5-2 below show the standard application header connections.

	JA1								
Pin	Generic Header Name		CPU board	Pin	Header N	lame	CPU board		
			Signal Name				Signal Name		
1	Regulated Su	ipply 1	5V	2	Regulated Supp	bly 1	GROUND		
3	Regulated Su	ipply 2	3V3	4	Regulated Supp	bly 2	GROUND		
5	Analogue Su	pply	AVcc	6	Analogue Suppl	у	AVss		
7	Analogue Re	ference	AVref	8	ADTRG		ADTRG		
9	ADC0	10	AD0	10	ADC1	11	AD1		
11	ADC2	12	AD2	12	ADC3	13	AD3		
13	DAC0		DAC0	14	DAC1		DAC1		
15	IOPort		IO_0	16	IOPort		10_1		
17	IOPort		IO_2	18	IOPort		IO_3		
19	IOPort		IO_4	20	IOPort		IO_5		
21	IOPort		10_6	22	IOPort		10_7		
23	Open drain	IRQAEC	IRQ3	24	I ² C Bus - (3rd pin)		IIC_EX		
25	I ² C Bus		IIC_SDA	26	I ² C Bus		IIC_SCL		

Table 5-1: JA1 Standard Generic Header

	JA2							
Pin	Generic Header Name		CPU board Signal Name	Pin	Header Name	CPU board Signal Name		
1	Open drain		RESn	2	External Clock Input	EXTAL		
3	Open drain		NMIn	4	Regulated Supply 1	Vss1		
5	Open drain output		WDT_OVF	6	Serial Port	SCIaTX		
7	Open drain WUP		IRQ0	8	Serial Port	SCIaRX		
9	Open drain		IRQ1	10	Serial Port	SCIaCK		
11	Up/down		MO_UD	12	Serial Port Handshake	CTS/RTS		
13	Motor control		MO_Up	14	Motor control	MO_Un		
15	Motor control		MO_Vp	16	Motor control	MO_Vn		
17	Motor control		MO_Wp	18	Motor control	MO_Wn		
19	Output		TMR0	20	Output	TMR1		
21	Input		TRIGa	22	Input	TRIGb		
23	Open drain		IRQ2	24	Tristate Control	TRSTn		
25	SPARE		-	26	SPARE	-		

Table 5-2: JA2 Standard Generic Header

	JA5								
Pin	Generic Header Name		CPU board	Pin	Header Name		CPU board		
			Signal Name				Signal Name		
1	ADC4	14	AD4	2	ADC5	15	AD5		
3	ADC6	16	AD6	4	ADC7	17	AD7		
5	CAN		CAN1TX	6	CAN		CAN1RX		
7	CAN		CAN2TX	8	CAN		CAN2RX		
9	Reserved			10	Rese	erved			
11	Rese	erved		12	Rese	erved			
13	Rese	erved		14	Rese	erved			
15	Rese	erved		16	Rese	erved			
17	Reserved			18	Rese	erved			
19	Reserved			20	Rese	erved			
21	Rese	erved		22	Reserved				
23	Rese	erved		24	Rese	erved			

Table 5-3: JA5 Optional Generic Header

	JA6								
Pin	Generic	Header Name	CPU board	Pin	Head	er Name	CPU board		
			Signal				Signal Name		
			Name						
1	DMA		DREQ	2	DMA		DACK		
3	DMA		TEND	4	Standby (Ope	en drain)	STBYn		
5	Host Serial	SCIdTX	RS232TX	6	Host Serial	SCIdRX	RS232RX		
7	Serial Port		SCIbRX	8	Serial Port		SCIbTX		
9	Serial Port	Synchronous	SCIcTX	10	Serial Port		SCIbCK		
11	Serial Port	Synchronous	SCIcCK	12	Serial Port	Synchronous	SCIcRX		
13	Reserved			14	Reserved	·			
15	Reserved			16	Reserved				
17	Reserved			18	Reserved				
19	Reserved			20	Reserved				
21	Reserved			22	Reserved				
23	Reserved			24	Reserved				

Table 5-4: JA6 Optional Generic Header

Table 5-5 below shows the Memory Expansion connections

These connections support 5 to 3.3V level translation.

	JA3							
Pin	Generic Header Name	Signal Name	Pin	Header Name	Signal Name			
1	A(0)	A(0)	2	A(1)	A(1)			
3	A(2)	A(2)	4	A(3)	A(3)			
5	A(4)	A(4)	6	A(5)	A(5)			
7	A(6)	A(6)	8	A(7)	A(7)			
9	A(8)	A(8)	10	A(9)	A(9)			
11	A(10)	A(10)	12	A(11)	A(11)			
13	A(12)	A(12)	14	A(13)	A(13)			
15	A(14)	A(14)	16	A(15)	A(15)			
17	D(0)	D(0)	18	D(1)	D(1)			
19	D(2)	D(2)	20	D(3)	D(3)			
21	D(4)	D(4)	22	D(5)	D(5)			
23	D(6)	D(6)	24	D(7)	D(7)			
25	RDn	RDn	26	WRn	WRn			
27	CS1n	CS1n	28	CS2n	CS2n			
29	D(8)	D(8)	30	D(9)	D(9)			
31	D(10)	D(10)	32	D(11)	D(11)			
33	D(12)	D(12)	34	D(13)	D(13)			
35	D(14)	D(14)	36	D(15)	D(15)			
37	A(16)	A(16)	38	A(17)	A(17)			
39	A(18)	A(18)	40	A(19)	A(19)			
41	A(20)	A(20)	42	A(21)	A(21)			
43	A(22)	A(22)	44	SDCLK	SDCLK			
45	CS3n	CS3n	46	ALE	ALE			
47	WR1n	WR1n	48	WR0n	WR0n			
49	CASn	CASn	50	RASn	RASn			

Table 5-5: JA3 Memory Expansion connector

Chapter 6.Code Development

RSKs with appropriate connections will include suitable sample software to drive the interfaces on this board.

Chapter 7.Additional Information

For details on how to use High-performance Embedded Workshop (HEW), refer to the HEW manual available on the CD or from the web site.

Online technical support and information is available at: http://www.renesas.com/renesas_starter_kits

Technical Contact Details

America: <u>techsupport.rta@renesas.com</u>

Europe: <u>tools.support.eu@renesas.com</u>

Japan: <u>csc@renesas.com</u>

General information on Renesas Microcontrollers can be found on the Renesas website at: <u>http://www.renesas.com/</u>

 Renesas Starter Kit Ethernet & USB Application Board

 User's Manual

 Publication Date
 Rev.2.00
 17.Jan.2008

 Published by:
 Renesas Technology Europe Ltd.

 Duke's Meadow, Millboard Road, Bourne End

 Buckinghamshire SL8 5FH, United Kingdom

©2007 Renesas Technology Europe and Renesas Solutions Corp., All Rights Reserved.

Renesas Starter Ethernet & USB Application Board User's Manual

Renesas Electronics Corporation 1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan