To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESANS

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sal es office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. 'Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as“ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home el ectronic appliances, machine tools; persona electronic equipment; and industria robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific™: Aircraft; agrospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

LENESAS

-
»
)
ﬁ\
»
<
)
>
-
=

Renesas Starter Kit for R8C/2F

Tutorial Manual
RENESAS SINGLE-CHIP MICROCOMPUTER

Renesas Electronics
WWW.renesas.com ReV. 1.00 2008.04

Table of Contents

08T o) (=] O 7 o -SSP 1
(O3 g o) (=] 7 1oL To [0 o (o SRR 2
Chapter 3. TULOTIAl PTOJECE WOTKSPACEcvuiueviiriiicietstsete s et sttt bbb bbbt b bbb s st e et e b b s bbbt a s s e b s 3
Chapter 4. PrOJECE WOTKSPACE.......uvueviviescieisiieteierets it ssse e ss et esse s s bbb s et b s et e b e bbbt s bbb e R bbb b en st s s b et bbb s e bt nas 4
AL INEFOTUCTION vttt bbb 4
4.2. Creating @ NEW PrOJECE WOTKSPACEceuiuereicreis ettt et ssse bt st bbb s st bbbt n s bbb bbb s bbbt s bt s e bbb n e 4
4.3. Build Configurations and DEDUQY SESSIONSccriieeiriireiieieiisseieissse s sssse s ssbe b ss bbbt s bbbt b s et b s s b s st s an s senas 5
4.3.1. BUIIA CONTIGUIALIONvuvvivviecieiiet et ssse s et bbb s st s sttt et et s b b st s s b b s s b b st b en st b st bbb en et b nais 5
e B 1= o100 T 1=y TSRO 5
Chapter 5. BUIldiNg the TULOMAI PTOJECE......c..veueiiieiriiieisice sttt st bbbt b bbb s bbb bbb s s b st b s st b s 6
oSN 2101 Fo 13T O o[- TSRO 6
5.2. CONNECHNG the GEDUGGETvcviieeeiiitcieiiets ettt et s ettt bbb bR bbb bbb E s st et b s bbb s en st nes 6
5.3. Connecting to the target With the EBA..........ccicer ettt bbb bbbt aes 7
Chapter 6. Downloading and RUNNING the TULOMAL........c.cuceiiiiiceieses s ettt ens e s bbb s s pnnaes 9
(O3 0= A (0] ot RPN 14
A U410 Vo I o o] T=To LTSS 14
7.1.1. Initialisation code (reSEtPrg.C/ FESEIPIT.N) .o e 14
7.1.2. Board initialisation code (NWSELUP.C / hWSBLUD.N)vvuiieiic e e nae 15
7.1.3. Main tutorial code (MAIN.C / MAIN.N)........cociiiiiccece e b e a bbb s b s bt s b s s b s enas 16
Chapter 8. AAAItIONal INFOMMALIONcvivcieiicieeece bbb s bbb st s bbb s R bbb b e bbbt b s nes 17

Chapter 1. Preface

Cautions

This document may be, wholly or partially, subject to change without notice.

All rights reserved. Duplication of this document, either in whole or part is prohibited without the written permission of Renesas

Technology Europe Limited.

Trademarks

All brand or product names used in this manual are trademarks or registered trademarks of their respective companies or

organisations.

Copyright
© Renesas Technology Europe Ltd. 2008. All rights reserved.
© Renesas Technology Corporation. 2008. All rights reserved.
© Renesas Solutions Corporation. 2008. All rights reserved.

Website: http://www.renesas.com/

Glossary
CPU Central Processing Unit LCD
HEW High-performance Embedded Workshop ADC
LED Light Emitting Diode ESA
PC Program Counter RSK

Liquid Crystal Display
Analog to Digital Converter
On-chip debugger module

Renesas Starter Kit

http://www.renesas.com/

Chapter 2. Introduction

This manual is designed to answer, in tutorial form, the most common questions asked about using a Renesas Starter Kit (RSK): The
tutorials help explain the following:

e How do | compile, link, download, and run a simple program on the RSK?
e How do | build an embedded application?
e How do | use Renesas’ tools?

The project generator will create a tutorial project with two selectable build configurations

e ‘Debug’ is a project built with the debugger support included.
o 'Release’ build demonstrating code suitable for release in a product.

Files referred to in this manual are installed using the project generator as you work through the tutorials. The tutorial examples in this
manual assume that installation procedures described in the RSK Quick Start Guide have been completed. Please refer to the Quick

Start Guide for details of preparing the configuration.

NOTE: These tutorials are designed to show you how to use the RSK and are not intended as a comprehensive introduction to
the High-performance Embedded Workshop (HEW) debugger, the compiler tool-chains or the ESA Emulator - please consult the

relevant user manuals for more in-depth information.

Chapter 3. Tutorial Project Workspace

The workspace includes all of the files for two build configurations. The tutorial code is common to both the Debug and the Release build
configurations. The tutorial is designed to show how code can be written, debugged then downloaded in a ‘Release’ situation.

The build configuration menu in High-performance Embedded Workshop (HEW) allows the project to be configured such that certain
files may be excluded from each of the build configurations. This allows the inclusion of the debug monitor within the Debug build, and its
exclusion in the Release build. Contents of common C files are controlled with defines set up in the build configuration options and #ifdef
statements within the same files.

Maintaining only one set of project files means that projects are more controllable.

Chapter 4. Project Workspace

4.1. Introduction

HEW is an integrated development tool that allows the user to write, compile, program and debug a software project on any of the Renesas
Microcontrollers. HEW will have been installed during the installation of the software support for the RSK product. This manual will describe

the stages required to create and debug the supplied tutorial code.

4.2. Creating a new Project Workspace

To look at the program, start High performance Embedded Workshop (“HEW”) from the Windows Start Menu.

Open a new tutorial workspace from the [File -> New Workspace...] menu or select ‘Create a new project workspace’ when presented with

the ‘Welcome!" dialog.

The example above shows the New Project Workspace dialog with the ‘RSKR8C2F' selected.

e Selectthe ‘M16C’' CPU family and [St e LU e PIx
‘Renesas M16C Standard’ Projects |
tool-chain for the RSK. Proiect Topes orkspace Name:
5 Application |REC2F_tutorial
[Select the ‘RSKR8C2F Project @ C source stattup Application Broject Marnne:
(& Empty Applcation [RECZF_tutorial
type for the RSK from the project & Import Makefile -
. G Library Drirectony:
st 5'- sLzr NASS— |C¥w/orkSpaceVREC2F_tuorial e
ebugger only - Imuial

A Debugger only - BBC ESaSye| CPU family:
t1EC

e Enter a name for the workspace;

all your files will be stored under a .
Tool chairn:

directory with this name. Renesas M16LC Standard |

e The project name field will be . .

. Properties...
name above; this name may be Q

Changed. ak. | Cancel |

Note: HEW allows you to add multiple projects to a workspace. You may add the sample code projects later so you may

pre-filled to match the workspace

wish to choose a suitable name for the Tutorial project now.
e Click <OK> to start the RSK Project Generator wizard.

The next dialog presents the example projects available. Choose the Tutorial code which will be explained later in this manual. There is
also an option for Sample code which provides examples for using various peripherals. This will open a new dialog allowing the selection
of many code examples for the peripheral modules of the device. The final option is for an application build where the debugger is
configured but there is no program code. This project is suitable for the user to add code without having to configure the debugger.

e Select "Tutorial’ as the type of project to generate and then click 'Next'.
o Click 'Finish’ to create the project
The project generator wizard will display a confirmation dialog. Press ‘OK’ to create the project and insert the necessary files.

A tree showing all the files in this project will appear in HEW.

e To view the file ‘main.c’, double click on the file in the Workspace window. A new window will open showing the code.

4.3. Build Configurations and Debug Sessions

The workspace that has been created contains two build configurations and two debug sessions. The Build Configuration allows the same
project to be built but with different compiler options. The options available to the user are described fully in the HEW Users Manual.
4.3.1. Build Configuration

The build configurations are selected from the left hand drop down list on the tool bar. The options available are Debug and Release. The

debug build is configured for use with the debugger. The Release build is configured for final ROM-able code.

A common difference between the two builds may be the optimisation settings. With Optimisation turned on the Debugger may seem to

execute code in an unexpected order. To assist in debugging it is often helpful to turn off optimisation on the code being debugged.

e Select the ‘Debug Build" Configuration.

| | |SessionRAC_Efa_ 55T +|

4.3.2. Debug Session

The debug sessions are selected from the right hand drop down list on the tool bar. The options vary between RSK however one will always
start Debug and include the type of debug interface. The alternate selection will be ‘SessionR8C_E8a_SYSTEM'. The purpose of the

debug sessions is to allow the use of different debugger tools or different debugger settings on the same project.

e Select ‘SessionR8C_E8a_SYSTEM' debug session.

DE':ILIQ Ce 1il:lr'|F||:|_.E i --:

Chapter 5. Building the Tutorial Project

The tutorial project build settings have been pre-configured in the tool-chain options. To view the tool chain options select the ‘Build’ Menu

item and the relevant tool-chain. This should be the first option(s) on the drop down menu.

The dialog that is displayed will be specific to the tool-chain selected.

The configuration pane on the left hand side will exist on all

the tool-chain options. It is important when changing any | Cenfiguation: C | ssembly| Link | Librarian | Lme | RTOS | c« [
) |Debug j Categary : |Source j
setting to be aware of the current configuration that is being Al P o Enis For.
modified. If you wish to modify multiple or all build - @D T source fie [Include file directories =]
" +- () Assembly source fil [] Specifies the directary containing the file(z) specified in
configurations this is possible by selecting ‘All' or ‘Multiple’ Hinclude. YYou can specify up ta 8 directaries :
X . . Add...
from the ‘Configuration’ drop down list. s
e Review the options on each of the tabs and BT
2=

‘Category’ dropdown lists to be aware of the

options available. Options C:
- -finfo -dir "${CONFIGDIR)" -REC

When complete close the dialog box by clicking <OK>. < s

Ok Cancel

5.1. Building Code

There are three short cuts available for building the project.
1. Select the ‘Build All tool bar button.

This will build everything in the project that has not been excluded from the build. This includes the standard library.

2. Select the ‘Build’ tool bar button.

This will build all files that have changed since the last build. The standard library will not be built unless an option has been

changed.

3. Press‘F7

This is equivalent to pressing the ‘Build’ button described above.
Build the project now by pressing ‘F7’ or pressing one of the build icons as shown above.

During the build each stage will be reported in the Output Window.

The build will complete with an indication of errors and warnings encountered during the build.

5.2. Connecting the debugger

For this tutorial it is not necessary to provide an external power supply to the board. The power will be obtained from the USB port. Please
be aware that if you have too many devices connected to your USB port it may be shut down by Windows. If this happens remove some

devices and try again. Alternatively provide an external power source taking care to ensure the correct polarity and voltage.

The Quick Start Guide provided with the RSK board gives detailed instructions on how to connect the E8A to the host computer. The

6

following assumes that the steps in the Quick Start Guide have been followed and the E8A drivers have been installed.

e Fit the LCD module to LCD on the RSK, so it lies between J1 and JAL. Ensure all the pins of the connector are correctly

inserted in the socket.

e Connect the E8A debugger to the USB port on your computer.

e Connect the E8A debugger to the target hardware ensuring that it is plugged into the connector marked E8A.

o If supplying external power to the board this can be turned on now.

5.3. Connecting to the target with the ESA

This section will take you through the process of connecting to the device, programming the Flash and executing the code.

e Select the ‘SessionR8C_E8a_SYSTEM' debug session.
o Click the <Connect> button on the debug toolbar E

Please note that the “Emulator mode” wizard
shown here will only appear the FIRST time you
connect to the target within a project. On
subsequent connections the “Emulator setting”
dialog will appear, please choose the same
options to connect.

e Select the correct Microcontroller type (R8C/2F illustrated)
e Select the correct device type (R5F212F4 illustrated)
e Select ‘Erase Flash and Connect’

e If the E8A is to provide power to the CPU board, select

‘Power Target from Emulator’ and choose 5.0V’ option.

e Choose ‘User Flash Area’ in ‘Firmware Location’ tab

Emulator mode] Firrnweare Location] Communication Baud Rate]

MCU Group [REC/2F Group =l

Device |REF212F4 |

Mode | Erase Flash and Connect
" K.eep Flash and Connect
" Pragramn Flazh
" Debugging of CPU rewrite mode

Emulator Setting E

-
Power supply
Iv Powuer Target frorn Erulatar, (A 300mAF
33 v 50Y
0K | Cancel
[Do nat show this dialog box again,
Emulator Setting E|

Ermulator mode Firmware Location l Communication Baud Rate]

Flease select firmware lacation.

(" DataFlash Area

[~ Enable advanced setting

0K | Cancel

[Do nat show this dialog box again,

e Choose communication baud rate “500000bps”and press

Ernulator made] Firmwware Location Communication Baud Rate]
<OK>

Flease select communication baud rate between Emulator and kCL.

ak | Cancel

I~ Do not show this dialog box again.

e The Flash Memory write program is downloaded.
Connecting

o The Output window in HEW will state ‘Connected’

Diownloading Flazh mermory write program
Flazh memnary erazing ...
Flash mermary erasing ... OF,

Now is a good time to save the HEW session.
e Select ‘File’ | ‘Save Session'.
If you have changed any workspace settings now is a good time to save the workspace.

e Select ‘File’ | ‘Save Workspace'.

Chapter 6. Downloading and Running the Tutorial

Once the code has been built in HEW it needs to be downloaded to the RSK.

There will now be an additional category in the workspace view for ‘Download Modules’

e Right click on the download module listed and select TimetDC a4
‘Download’. -5 Testfiles 74
[=] RSK_Header tst 75
-5 Download modules Th
] FoCoF tutonal »30_0000AD i
-5 Dependencies Download
cstartdef.h Download (Debug Data Cnly
FlashLED = h
=] hwsetuph
On completion the debugger and code are ready to be executed.
To start debugging we need to reset the debugger and target.
e Press ‘Reset CPU’ on the Debug Tool Bar. =TI[EL z

The File window should open the Tutorial code at the entry point. An arrow marks the current position of the program counter.

#* resetprg.c E”E] El

2&@

Lite Source... | Event | 5. Source
Ll Feturn wvalue: None zl
SD *ﬂ'ﬂ‘*ﬂ‘**ﬂ‘*ﬂ‘**ﬂ‘ﬂ'ﬂ‘*ﬂ'#****#*ﬁ*ﬂ'ffﬂ'ﬂ‘**#*ﬂ‘**#ﬂ'ﬂ‘*ﬂ'#****#*ﬁ*ﬂ'**ﬂ‘****ﬂ‘**************ﬁ********f’
51 woid start (wvoid)
52 |0CDEL {
5] S % Z3et interrupt stack pointer */
54 |OCDEL 5 _isp| = & istack top:
55 /% Change protect mode register */
56 |0DCDEE protect = 0Ox0Z;
S /% et processor mode register ¥/
58 |0cCDcz pwoded = 0x00;
59 /% Change protect mode register */
60 |OCDCSE protect = Ox00;
61 /% Ser flag register */
62 |0CDCS _flg = 0Ox0050;
63 S % Z3et user stack pointer ¥/
64 |0CDCC _Ep_ = & stack top;
65 /% 400H fixation (Do not change) #/
66 |DCDDO _sh_ = 0x400;
67 /% Ser variable wector's address %/
65 |0CDD4 _inthh = 0x00;
59
70 |0CDDE _asm(" 1lde #(topof wvector) &0FFFFh, INTEL") ;
71
72 /% Initlalize each sections %/
T3 |0CDDC initsct ()
T4
75 #if _ HEAPRETIZE != O
76 f* Initialize heap */
T heap_init(];

78 Hendif =z
< | v

We will now skip over the initialisation code and proceed to the main tutorial.

e Open the file called resetprg.c’ by double clicking it in the project navigator.

e Place a breakpoint at the call to ‘main();’

Breakpoints can be set by double clicking in the column containing the PC arrow next to the line to break at; or selecting the

line and pressing F9; or right click on the line and select ‘Toggle breakpoint’. Alternatively set an eventpoint, by clicking in

the column to the left of the breakpoint column. . Four eventpoints can be set. Eventpoints do not require programming the

flash memory, and thus are faster to use.

e Press ‘Reset Go’ on the Debug Tool Bar. 1#

The code will execute to the breakpoint. At this point all the device initialisation will have been completed.

e Press 'Step In’ on the Debug Tool Bar. TR

The code window will open ‘main.c’ and show the new position of the program counter.

“* main.c
|z &@
Lire Source.., | Event | 5. Source
63 l,."1?1?1?3‘ﬂ‘ﬁﬂ'ﬂ'ﬂ‘ﬁ1?1?ﬂ‘ﬁﬁ??ﬁﬁﬁ?ﬁﬁﬁﬂ‘ﬂ‘ﬂ‘ﬁﬁﬂ‘ﬂ‘ﬁﬁﬂ‘ﬂ‘ﬂ‘ﬁfﬂ‘ﬂ‘ﬁﬁwﬂ‘ﬂ‘ﬁﬂ‘ﬂ‘ﬂ‘ﬁﬁﬂ‘ﬂ‘ﬂ‘ﬁﬂ‘wﬂ‘ﬁﬁﬂ‘ﬂ‘ﬁﬁ??ﬁﬁﬁﬂ‘ﬁﬁﬁwwﬁﬁﬁﬂ‘ﬁﬁﬁ j
64 Function Neame: main
55 Description: Main function
(=17 Parameters: HNone
67 Return wvalue: None
68 x-x-xwxx-xwwx-x-xwx-a--xwwx-xxwxw-xwwx-xxwx-x-xwwx-xwwx-x-xwxx-xwwx-x-xwxx-xwwx-x-xwxx-xwwx-x-xwxw-xwwx-xxwxwx/
=] wold main(woid)
70 |0CCSA i
71 /* Variables initislization */
72 |OCCo4 5 flFlagled = 0;
73 |OCCSE gqucKeyPressed = 0Ox00;
74 |0CCAL count = 0OxXFF;
=
Th /* Reset the LCD module %/
77 |OCCAS InitialiseDisplayi();
=]
78 /% Display Renesas Splash Screen */
80 |0CcCA9 Displaydtring (LCD_LINE1, "Reneszasz"):
81 |0CCEB3 DisplayString (LCD_LINEZ, NICFKIIAME):
g2
g3 /% Globhally enable masked interrupts */
54 |OCCEE EMNABLE_IRQ:
85
=13 /% Flash the user LEDs for sowe time or until a key is pressed.
87 |0Ccco FlashLED=() :
(=1=]
t=1=] /* Flash the user LEDs at a rate set by the user potentiomenter using
a0 interrupts. =/
21 |0CcC4 TimerdADC() :
Q2 -
1 | vl

e Insert a breakpoint on the call to the
‘TimerADC();’ function.

10

e Right click on the ‘FlashLEDs();’ function and

Togale Breakpaink Fa
select ‘Go to cursor'.

Define Column Format. ..

Calumns 4

Turn Header OnfOff

50 To Cursor
Sek PC Here
Display PC

View Disassembly

The code will execute to the selected line and stop. An automatic breakpoint was inserted in the code and then removed after calling the
break.

e Press ‘Step Over' on the Debug Tool Bar. ™ R

The code will run and flash the LEDs 200 times. The debugger will not exit until all 200 flashes have completed or a button is pressed on the
RSK.

o [fthe LEDs are still flashing press the SW1 button on the RSK to exit the ‘FlashLEDs(); function.
The code will run to the breakpoint we previously set on the ‘TimerADC(); function.

The ‘TimerADC();" function initialises an interrupt on an available internal timer. On a compare match in the timer module an interrupt is
generated. In the ‘TimerADC()’ code, the interrupt reads the last AD conversion for the external potentiometer and uses the result to set the
next compare match value. The AD conversion is then re-started.

The interrupt initialisation is completed as part of the hardware setup. This is contained in the file ‘interrupts.c’.
e Open the file ‘interrupts.c’ by double clicking on the file in the workspace view.
e Review this file and find the interrupt function that changes the LED pins, ‘_timer_rc(void);".
e Set a breakpoint on the line where the LED pins are modified.

e Press <Go> or <F5> to run the code from the T[]

current PC position.

2]
(=]

The code will stop in the interrupt routine. It is now possible to step through the interrupt function.
e Remove the breakpoint in the interrupt by double clicking again before exiting the function.

e Press <Go> to run the code from the current PC

e

position.
The code will now run to the infinite loop at the end of ‘main();’ function. The user LEDs should now be flashing. You can modify the flashing
rate by adjusting the potentiometer on the board.

e Press <Stop> on the debug tool bar.

ot

11

o Press ‘CTRL-B' to open the breakpoint window.

e Select ‘Remove All oK.

]
B

Cancel

e Press <OK>.

LR

e Open the file ‘main.c’
e Insert a breakpoint on ‘Statics_Test();".
The Statics_Test() is used to demonstrate that the initialisation has successfully copied all initialised variables from storage in flash to RAM.

e Press <Reset Go> on the Debug Tool Bar. =l M

The code will stop at the breakpoint. (Press a button to bypass the flashing LED test.)

e Press <Step In> on the Debug Tool Bar. U

It is possible to monitor variables during debugging of the code. To set up a ‘watch’ on a variable place the mouse over the variable. If the

variable is available in the current context a tool-tip will be displayed with the current value of the variable.

o Hover the mouse over the ‘ucStr’ variable to see the tooltip value. Then Right click on the variable name and select ‘Instant
Watch'.

A dialog will open showing the variable and allowing further details to be explored.

e Press <Add>
The dialog will close and a new pane will open in the workspace containing the variable.
It is possible to see that the string has been successfully initialised to ‘STATIC *,

e Seta breakpoint on the call to ‘DisplayString();” inside the for loop on ‘next_pos++';.

e Press ‘Go’ to run the code from the current PC = ElL
position.

When the program stops you can see the modified string displayed on the second line of the LCD.
Inspection of the watch pane will show that the first character of the variable string has been replaced with the first character of the constant
replacement string.

e Remove the breakpoint.
e Right click on the ‘DisplayString();” function call after the loop and select ‘Go to cursor'.

This shows that the variable was initialised at program start up and can be overwritten with ‘TESTTEST'.

You have now run the tutorial code and used many of the common features of the debugger. We suggest that you review the rest of the

12

tutorial code as many functions have important information on the operation of the code, the compiler directives and comments on when

they should or must be used. Please refer to Chapter 7 for more information on the project files.

13

Chapter 7. Project Files
7.1. Standard Project Files

The RSK tutorials are configured so that it is possible to provide the same tutorial code on multiple RSK products. This allows the
evaluation of the different processor cores using equivalent code. To achieve this, the following files are common between all device cores
and Tool-chains.

Each of the tutorial files has detailed comment text describing the function of each code entry. Please refer to the source code for greater

detail on the purpose and operation of the compiler specific details.

7.1.1. Initialisation code (resetprg.c / resetprg.h)

This is the entry point of the main tutorial code.

51 wold start (void)

52 {

53 % Jet interrupt stack pointer */
54 _isp = & _istack top;

55 /% Change protect mode register ¥/
=1 protect = 0x02;

57 f* Fet processor mode register ¥/
58 pmwoded = 0Ox00;

59 7 Change protect mode register +f
&0 protect = 0Ox00;

61 /% Zer flag register */

62 _flg = Ox0D080;

63 /% Fet user stack pointer ¥/

63 _Sp_ = & stack top;

65 A% 400H fixation (Do not change) */
66 _sh_ = 0Ox400;

a7 S% Z3et wariable wvector's address %/
68 _intbh = 0x00;

(=3=]

70 _asm(" ldo #itopof wector) s0FFFFh, INTEL™) ;
71

72 f# Initlalize each sections %/

73 initsct ()

73

75 Hif __ HEAPZIZE !'= 0

76 /% Initialize heap */

77 heap init{):

73 #endid

79

80 4if STANDARD IO !'= 0

=h /% Initialize standard IS0 *#/

5z _initi);

a3 Hendif

=3

a5 /% Initialize FBE registe for debugger */
86 _fh = 0:

g7

a8 % 3et up the hardwvare %/

g9 Hardware3etup () ;

a0

a1 S% Call main() routine */

S92 maini) ;

93

14

Initialisation of the variables used in the C compilers and initialisation of stack pointers are completed in the ‘initsct();’ function for the M16C

compiler. The call to ‘HardwareSetup(); will initialise the device hardware and peripherals ready for the tutorial software.

The call to ‘main();’ will start the main demonstration code.

7.1.2. Board initialisation code (hwsetup.c / hwsetup.h)

There are four common stages to the configuration of the microcontroller device. The code to demonstrate this is therefore split into four

functions. Each function is written specifically for the device supported. The function calls are shown below.

40
41
4z
43
34
a5
£
47
1]
49
50
51
52
33
54
55
=1
57
b=t

;www*ww***www*ww*wwwww***wwww*www*www**ww*wwwww***ww*wwwww*www**wt*w#wr***wt**w*w*w*
Function MName : HardwareIetup
Description : 3ets up the hardware.
Thizs function makes a call to initialisation functions to configure the CPU
operating fregquency, port pins & relevant on—chip modules [(i.e. such as ADC,

timer ete.) in order to setup the B3E for the wain application.
Parameters ! none
Feturn walue @ none

w**#*w****w**#*w****w**#*w**#*w**#*w**#*w****w**#*w****w****w**#*w**#*w**#*w**#*w**;

wmoid HardwareSetup (woid)

{
ConfigquredperatingFrequency (] ;
ConfigurePortPins() ;
EnablePeripherallodules () ;
ConfigurelInterruptsi():

'

f#ﬁ#ﬁw#ﬁ#ﬁw#ﬁ#ﬁ##ﬁ#ﬁw#ﬁ#ﬁ##ﬁ#ﬁw#ﬂ#ﬁw#ﬂ#ﬁ##ﬁ#ﬁw#ﬁ#ﬁ##ﬁ#ﬁw#ﬂ#ﬁW#ﬂ#ﬁ##ﬁ#ﬁw#ﬁ#ﬁ##ﬁ#ﬁw#ﬂ#

End of function Hardware3etup

w**#*w****w**#*w****w**#*w**#*w**#*w**#*w****w**#*w****w****w**#*w**#*w**#*w**#*w**f

15

7.1.3. Main tutorial code (main.c / main.h)

The main tutorial code is common to all tutorial projects. The display initialisation and string display functions operate on the LCD display

module. Check compatibility with ks0066u controller and pin connection on the schematic before connecting a LCD module not supplied by

Renesas.

63
64
65
66
67
63
63
w0
71
e
73
74
-
=
7
7o
=)
(=11
g1
g2
83
g4
g5
g6
a7
33
g9
20
91
=
93
94
935
Sb
o7
=]
99
100
101
10z
103
104

{

¥

fw*wﬁwﬁwﬁ#ﬁ#ﬁ#*#*#*#*#w#wﬁwﬁwﬁ#ﬁ#ﬁ#*#*ﬁ*ﬁ*ﬁ#ﬁ#ﬁ#ﬁ#ﬁ#ﬁ#ﬁ#*#******w*wﬁwﬁwﬁ#ﬁ#ﬁ#*#*ﬁ*ﬁ

Functcion Natwe: main

Dezcriprtion: Main function
Paramercers: None
Feturn walue: None

xwwwwwwwwwﬁwwwwwwwwxwwwwwwwwwwwwwwwwwwwwwwxwwwwwwwwwﬁwwwwwwwwxwwwwwwwwwwwwwwwwwwwwwg

wold main (wvoid)

A% YWariablez initialization +/
flFlagled = 0;

gucEevyPressed = 0x00;

count = OxXFF;

f*% Reset the LCD module *f
Initialiselisplavi):

#% Display Renesas Splash Jcreen */
Dizplayitring (LCD_LINE1l, "Renesas"):
DisplayString (LCD_LINEZ, NICKNAME)

% Globally enable masked interrupts *f
ENAELE TRQ:

#% Flash the user LED=z for Some time or until a key i= presszed. +/f
FlashLED=s() ;

4% Flash the user LED=z at & rate Zet by the uger potentiomenter [(ADC) using
interrupts. */f
TimerADC ()

f£* Demonstration of initialised warisbles. Use this funtion with the debugger. *;
Statics_Test():

/% End of the user program. This function must not exit. */
while (1)
i

/% Wait forever *f

fw*wﬁwﬁwﬁ#ﬁ#ﬁ#*#*#*#*#w#wﬁwﬁwﬁ#ﬁ#ﬁ#*#*ﬁ*ﬁ*ﬁ#ﬁ#ﬁ#ﬁ#ﬁ#ﬁ#ﬁ#*#******w*wﬁwﬁwﬁ#ﬁ#ﬁ#*#*ﬁ*ﬁ

End of function main
#w#w#w*w*#ﬁ#ﬁ#ﬁ#ﬁ#ﬁ#ﬁ#w#w#w*w*#ﬁ#ﬁ#ﬁ#ﬁ#ﬁ#ﬁ#w#w#w*w*#ﬁ#ﬁ#ﬁ#ﬁ#ﬁ#ﬁ#w#w#w*w*#ﬁ#ﬁ#ﬁ#ﬁ#ﬁﬁj

16

Chapter 8. Additional Information

For details on how to use High-performance Embedded Workshop (HEW), refer to the HEW manual available on the CD or from the web

site.
Further information available for this product can be found on the Renesas website at:

http://lwww.renesas.com/renesas_starter kits

General information on Renesas Microcontrollers can be found at the following website.

Global: http://www.renesas.com/

Regional (English language) sites can be accessed from the Global site, or directly by going to:

Europe: http://renesas.eu

Americas: http://america.renesas.com

Asia: http://sg.renesas.com

17

http://www.renesas.com/renesas_starter_kits
http://www.renesas.com/
http://renesas.eu/
http://america.renesas.com/
http://sg.renesas.com/

Renesas Starter Kit for R8C/2F
Tutorial Manual
Publication Date Rev.01.00 02.APR.2008
Published by: Renesas Technology Europe Ltd.
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, UK

©2008 Renesas Technology Europe and Renesas Solutions Corp., All Rights Reserved.

Renesas Starter Kit for R8C/2F
Tutorial Manual

RENESAS

Renesas Electronics Corporation
1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan REG10J0142-0100

	Chapter 1. Preface
	Chapter 2. Introduction
	Chapter 3. Tutorial Project Workspace
	Chapter 4. Project Workspace
	4.1. Introduction
	4.2. Creating a new Project Workspace
	4.3. Build Configurations and Debug Sessions
	4.3.1. Build Configuration
	4.3.2. Debug Session

	Chapter 5. Building the Tutorial Project
	5.1. Building Code
	5.2. Connecting the debugger
	5.3. Connecting to the target with the E8A

	Chapter 6. Downloading and Running the Tutorial
	Chapter 7. Project Files
	7.1. Standard Project Files
	7.1.1. Initialisation code (resetprg.c / resetprg.h)
	7.1.2. Board initialisation code (hwsetup.c / hwsetup.h)
	7.1.3. Main tutorial code (main.c / main.h)

	Chapter 8. Additional Information

