REJ10J2129-0100 :{E NESAS

Renesas Starter Kit for R8C/38C
Tutorial Manual

RENESAS SINGLE-CHIP MICROCOMPUTER
R8C FAMILY R8C/3X SERIES

Rev.1.00 Renesas Electronics Europe Ltd.
Revision date: 01.APR.2010 WWW.renesas.com

Table of Contents

1O g F= o) =] N o (=) - T O PP PP PR PPPPPOPPIN 1
11 aF= o1 L= g2 [a1 1 {0 o L1 od 1o o PP PP PP PP SPPPTOPPN 2
Chapter 3. Tutorial ProjeCt WOTKSPACEcooiuiiiiiiiiiii ettt ettt a b s st e e e e b e e e e eneas 3
Chapter 4. ProjeCt WOTKSPACEueiiiiiiiiee ittt ettt e sttt e e e s bt e e sab bt e e e s bt et e e anbb et e e sbbb e e e anbneeesnnneas 4
o T 1 £ Yo [F ot 1o (R OO PP O PP PPPPPOPPPR 4
4.2. Creating @ NeW ProjECt WOTKSPACEcooiiiiiiieiiiiie ittt ettt e st e e sbbe e e snnneee s 4
4.3. Build Configurations and DEDUQG SESSIONSccuuuiiiiiiiiee ittt e e abb e e e sbb e e e s sbbeeeessbbeeeessabeeeeea 5
o I =W o I @ o] o1 T 1] £=1 1T o EP O PP OT P PP OPPRP 5
4.3.2. DEDUG SESSION.ciiiiitiii ettt b e e ekt e e b e e e ekt e e et e e e bt e e e b s annnes 5
Chapter 5. Building the TULOTAI PIOJECTcoiiiiiiieiiie ettt s e e e e e 6
I =101 [[T Vo O o Lo [ST PO P U PPPOTPRP 6
5.2. ConNECtiNg the AEDUGUET ...ttt e e s e e e s sbeeee e e 6
5.3. Connecting to the target With the EBaccouiuiiii i 7
Chapter 6. Downloading and RUNNING the TULOTIALeeiiiiiiiiii e 9
Chapter 7. PrOJECE FlES.coi itttk e e et e e e s bt e e e e ab bt e e e e b b et e e eanbe e e e enee e e annnes 15
7.1, Standard ProjECt FIlESoo ittt e ettt e e s st e e e e s b e e e e st b e e e e nrreee e 15
7.1.1. Initialisation code (resetprg.C / reSEtPrg.n) ..o e 15
7.1.2. Board initialisation code (hwsetup.c / RWSELUP.N).....ccooiiiiiiiii e 16
7.1.3. Main tutorial code (Main.C / MAIN.N)......cuiiiiii e 17
Chapter 8. AAditioNal INFOIMALION.ccoiiiiiie e e et e e s b e e e e e bb e e e e aabe e e e e nneas 18

Chapter 1. Preface

Cautions
This document may be, wholly or partially, subject to change without notice.

All rights reserved. Duplication of this document, either in whole or part is prohibited without the written permission of Renesas

Electronics Europe Limited.
Trademarks

All brand or product names used in this manual are trademarks or registered trademarks of their respective companies or

organisations.

Copyright
© 2010 Renesas Electronics Europe Ltd. All rights reserved.
© 2010 Renesas Electronics Corporation. All rights reserved.

© 2010 Renesas Solutions Corporation. All rights reserved.

Website: http://www.eu.renesas.com/
Glossary
CD Compact Disc MCU Microcontroller Unit
CPU Central Processing Unit PC Program Counter
E8a E8a On-chip debugger module RAM Random Access Memory
HEW High-performance Embedded Workshop ROM Read Only Memory
LCD Liquid Crystal Display RSK Renesas Starter Kit
LED Light Emitting Diode UsB Universal Serial Bus

http://www.eu.renesas.com/

Chapter 2. Introduction

This manual is designed to answer, in tutorial form, the most common questions asked about using a Renesas Starter Kit (RSK): The
tutorials help explain the following:

e How do | compile, link, download, and run a simple program on the RSK?
e How do | build an embedded application?
e How do | use Renesas’ tools?

The project generator will create a tutorial project with two selectable build configurations

e ‘Debug’ is a project built with the debugger support included.
e ‘Release’ build demonstrating code suitable for release in a product.

Files referred to in this manual are installed using the project generator as you work through the tutorials. The tutorial examples in this
manual assume that installation procedures described in the RSK Quick Start Guide have been completed. Please refer to the Quick

Start Guide for details of preparing the configuration.

NOTE: These tutorials are designed to show you how to use the RSK and are not intended as a comprehensive introduction to
the High-performance Embedded Workshop (HEW) debugger, the compiler tool-chains or the E8a Emulator - please consult the

relevant user manuals for more in-depth information.

Chapter 3. Tutorial Project Workspace

The workspace includes all of the files for two build configurations. The ‘tutorial’ code is common to both the ‘Debug’ and the ‘Release’
build configurations. The ‘tutorial’ is designed to show how code can be written, debugged and then downloaded without the debug
monitor in a ‘Release’ situation.

The build configuration menu in High-performance Embedded Workshop (HEW) allows the project to be configured such that certain
files may be excluded from each of the build configurations. This allows the inclusion of the debug monitor within the Debug build, and
its exclusion in the Release build. Contents of common C files are controlled with defines set up in the build configuration options and
#ifdef statements within the same files.

Maintaining only one set of project files means that projects are more controllable.

Chapter 4. Project Workspace

4.1. Introduction

HEW is an integrated development tool that allows the user to write, compile, program and debug a software project on any of the Renesas
Microcontrollers. HEW will have been installed during the installation of the software support for the RSK product. This manual will describe

the stages required to create and debug the supplied ‘tutorial’ code.

4.2. Creating a new Project Workspace

To look at the program, start High performance Embedded Workshop from the Windows Start Menu.

Open a new tutorial workspace from the [File -> New Workspace...] menu or select ‘Create a new project workspace’ when presented with

the ‘Welcome!’ dialog.

New Project Workspace E|E|

Projects l
Project Topes = Workzpace Mame:
il E5_RSKRACZ: |RSKRBC38C_Tutorial

W E84_RSKREC2S
#m E84_RSKREC2T
#m E24_RSERBC20

Project Mame:
|HSKHEE38E_Tutc:riaI

I Empty 4ppiication Diestory:
8 Import Makefie IC-\WorkSpace RISKRECIEC_Tutoril m
ﬂ Library

i FSKRACF CPU Farmily:

g FSKRSC36A W6 -

w FSKRACL3A Toal chain:

¥ Debugger anly - M16C E8: |F|enesas M1ELC Standard j

#* Debugger only - M1EC Sim
A Debugger only - REC Efa !«
< >

Properties...

(] 8 | Cancel

The example above shows the New Project Workspace dialog with the RSKR8C38C selected.

e Select CPU family as ‘M16C’ and Tool chain as ‘Renesas M16C Standard’ (R8C is supported by the same compiler as
M16C).

e Select the 'RSKR8C38C' Project type from the project list for the RSK.
e Enter a name for the workspace; all your files will be stored under a directory with this name.

e The project name field will be pre-filled to match the workspace name above; this name may be changed.
Note: HEW allows you to add multiple projects to a workspace. You may add the sample code projects later so you may

wish to choose a suitable name for the Tutorial project now.

e Click <OK> to start the RSK Project Generator wizard.

The next dialog presents the example projects available. Choose the ‘Tutorial’ code which will be explained later in this manual. There is
also an option for ‘Sample code’ which provides examples for using various peripherals. This will open a new dialog allowing the
selection of many code examples for the peripheral modules on the device. The final option is for an ‘application’ code build where the
debugger is configured but there is no program code. This project is suitable for the user to add code without having to configure the
debugger.

e Select “Tutorial” as the type of project to generate and then click “Next".
e Click “Finish” to create the project

The project generator wizard will display a confirmation dialog. Press ‘OK’ to create the project and insert the necessary files.
A tree showing all the files in this project will appear in HEW.

o To view the file ‘main.c’, double click on the file in the Workspace window. A new window will open showing the code.

4.3. Build Configurations and Debug Sessions

The workspace that has been created contains two build configurations and two debug sessions. The build configuration allows the same
project to be built but with different compiler options. The options available to the user are described fully in the HEW User’s Manual.
4.3.1. Build Configuration

The build configurations are selected from the left hand drop down list on the toolbar. The options available are ‘Debug’ and ‘Release’. The

‘Debug’ build is configured for use with the debugger. The ‘Release’ build is configured for final ROM-able code.

A common difference between the two builds may be the optimization settings. With the optimization turned on the debugger may seem to

execute code in an unexpected order. To assist in debugging it is often helpful to turn off optimization on the code being debugged.

e Select the ‘Debug’ build Configuration.

~| |SessionRBC_E8a 5YST |

4.3.2. Debug Session

The ‘Debug’ sessions are selected from the right hand drop down list on the toolbar. The options vary between RSK however one will
always start ‘Debug’ and include the type of debug interface. The alternate selection will be ‘DefaultSession’. The purpose of the ‘Debug’

session is to allow the use of different debugger tools or different debugger settings on the same project.

Select ‘SessionR8C_E8a_SYSTEM' debug session.

\Debug | || -

Chapter 5. Building the Tutorial Project

The ‘tutorial’ project build settings have been pre-configured in the tool-chain options. To view the tool chain options select the ‘Build’ Menu

item and the relevant tool-chain. This should be the first option(s) on the drop down menu.

The dialog that is displayed will be specific to the tool-chain selected.

The configuration pane on the left hand side will exist on all the

ha . L . . Configuration C | Assembly| Link | Libiarian | Lme | RTOS | criel»
tool-chain options. It is important when changing any setting to be [oobos S =
aware of the current configuration that is being modified. If you i Show Entres For: [Include fle drectories =]
i . . i . . L. . [H] Specifies lhe directany c_ontain_ing the file{s] specified in Hinclude.
wish to modify multiple or all build configurations this is possible by (3 Assembly souce fie | 104 Can specily up to 50 dectories

Add...

selecting ‘All" or ‘Multiple’ from the ‘Configuration’ drop down list.

e Review the options on each of the tabs and B =
‘Category’ dropdown lists to be aware of the
options available.
Options C:
When complete, close the dialog box by clicking <OK>. -D_UARTO__ -c info -dir "§{CONFIGDIR]" /all -silent -RECE

e Cancel

5.1. Building Code

There are three shortcuts available for building the project.

1. Select the ‘Build All’ toolbar button.

This will build everything in the project that has not been excluded from the build. This includes the standard library.

2. Select the ‘Build’ toolbar button. :

This will build all files that have changed since the last build. The standard library will not be built unless an option has been

changed.

3. Press‘F7

This is equivalent to pressing the ‘Build’ button described above.
Build the project now by pressing ‘F7’ or pressing one of the build icons as shown above.

During the build each stage will be reported in the Output Window.

The build will complete with an indication of errors and warnings encountered during the build.

5.2. Connecting the debugger

For this tutorial it is not necessary to provide an external power supply to the board. The power will be obtained from the USB port. Please

be aware that if you have too many devices connected to your USB port it may be shut down by Windows. If this happens remove some

devices and try again. Alternatively an external 5V power source can be connected at PWR connector taking care to ensure the correct

polarity and voltage.

The Quick Start Guide provided with the RSK board gives detailed instructions on how to connect the E8a to the host computer. The
following assumes that the steps in the Quick Start Guide have been followed and the E8a drivers have been installed.
e Fitthe LCD module to the connector marked ‘LCD’ on the RSK, so that it lies above ‘J3'. Ensure all the pins of the connector

are correctly inserted in the socket.
e Connect the E8a debugger to the USB port on your computer.

e Connect the E8a debugger to the target hardware ensuring that it is plugged into the connector marked ‘E8A’ on the RSK.

5.3. Connecting to the target with the E8a

This section will take you through the process of connecting to the device, programming the Flash and executing the code.

e Select the ‘SessionR8C_E8a_SYSTEM' debug Emulator Setting X
session. Emulator mode l Firrrivyare Location] Cormmunication Baud Hate]
. MCU Group [REC/38C Graup |
e Click the <Connect> button on the debug toolbar. _
Device |REF213800 =l
ah
-+ Mode | & Eraze Flash and Connect

" Keep Flash and Connect

e Select the correct MCU Group type (R8C/38C

" Program Flash

GrOUp i”ustrated), " Debugaing of CPU rewrite mads
-
e Select the correct device type (R5F2138CC as
illustrated). Power supply
[v Power Target from Erulator. (M 300
e Select “Erase Flash and Connect”. # 5 9 0y
o Ifthe E8ais to provide power to the CPU board, [ok | concel |
select “Power Target from Emulator” and choose [~ Do ot show thiz dislog box again,
the “5.0V” option. Otherwise connect a 5V centre :
. Emulator Setting §|
positive supply. —
Emulator mode Firmware Location l Communication Baud Hate]
o Choose “User Flash Area” in “Firmware Please select firmware location.

Location” tab.

[Enable advanced setting

e Choose “500000bps” in “Communication Baud
Rate” tab. Click <OK>.

Ok | Cancel

I Do not show this dislog bos again.

e The flash memory write program is then

downloaded to the microcontroller.

e The Output window in HEW will state

‘Connected’

Note: The connection to the target will
activate the debugger buttons on the HEW

toolbar.

Now is a good time to save the HEW session.

e Select ‘File’ | ‘Save Session’.

Emulator, Setting rg

Ernulator mode] Firmweare Location Communication B aud Rate l

Please select communication baud rate between Emulator and MCLL

0K | Cancel

I™ Do nat show this dialog box again.

If you have changed any workspace settings now is a good time to save the workspace.

e Select ‘File’ | ‘Save Workspace'.

Chapter 6. Downloading and Running the Tutorial

Once the code has been built in HEW it needs to be downloaded to the RSK.

There will now be an additional category in the workspace view for ‘Download Modules’

e Right click on the download module listed and TirmerDC.c 79
. , -3 Test Files (=1u]
select ‘Download’. [2] RSK_Headertst a1
-3 Download modules gz
U GEGERE S
iz Dependencies Lityileed
catarkdef b Download (Debug Data Only)
FlashLEDs.h
besetup.h
initzcth Download A Mew Module, .
interpts. h Remave
=l ledh
On completion, the debugger and code are ready to be executed.
To start debugging, we need to reset the debugger and target.
e Press ‘Reset CPU’ on the Debug Toolbar. =[F
|reset cpu|

The File window should open the ‘Tutorial’ code at the entry point. An arrow marks the current position of the program counter.

O&6ED

0gaEO

DEcEB4

08a6ES

O&6EE

08 6EE

0Eecz

[ml=aed

O0gaCa

086CE

0gabz

0gala

086DA

O&6DE

DE6Ez
O86ES

‘fﬁ‘””F L COMMER T T T T T T T T N T T T T T AT T N a T T T e resy

* Dutline 1 Start

* Description : Power on reset function. This function executes following to
* power on reset. It first calls hardware initialisation

* function & then 'main()' function.

* hronament I none

* BEeturn wvalus : none

*SRPINC COMMENT END””***************#*******#*******#*******#*******#*******#*{f

woild start (void)
{
f* ZBet interrupt stack pointer */

isp = &_listack _top:
/% Change protect mode register =/
pror = 0Ox0z20U;

/% Zet processor mode register
pmd = O0x00U;
/% Change protect mode register =/
pror = 0Ox001U;
f* et flag register */
_flg = _F walue_ :

#if _ STACESIZE_ !'=0
/% Zet user stack pointer */
Sp = & stack top!

Hendif
/% Zetting 400H (Do not change) */
sh = 0x4001;
f % Zet wvarisble wvector's address %/
_intkhh = 0x000;
_asm(" ldo #itopof wector) &0FFFFh, INTEL™) ;

/% Initialize each sections +/
initsect () ;

#if _ HEAPSIZE__ != O

f* Initialize heap */
heap init():

Hendif
#if _ STAMDARD IO 1= O
f*% Initialize standard IS0 %/
_inic();
Hendif
f* Initialige FB register for debugger */
fh = OU;

/% 3et up the hardware */
HardwareSetup i)

/% Call wain() routine */
waini)

% Call exit =/
exiti();
i

‘fﬂ‘**#*******#*******#*******#**

End of function start
-xww-xw-xww-xwwww-xww-xww-a-w-.v:-.rw-.v:ww-.rw-.v:-.r:-.nrw-.rw-x-.rw-xww-xw-xww-xwwww-xww-xww-xw-xwwwwwww-xw:xwwww-xj

10

We will now skip over the initialisation code and proceed to the main tutorial.

Open the file called ‘resetprg.c’ by double clicking it in the project navigator.

Place a breakpoint at the call to main();

Breakpoints can be set by double clicking in the column containing the PC arrow next to the line to break at; or selecting the
line and pressing F9; or right click on the line and select ‘Toggle breakpoint'. Alternatively set an eventpoint, by clicking in
the column to the left of the breakpoint column. Maximum eight eventpoints can be set at a time. Eventpoints do not require

programming the flash memory, and thus are faster to use.

i

Press ‘Go’ on the Debug Toolbar.

The code will execute to the breakpoint. At this point, all the device initialisation will have been completed.

Press ‘Step In’ on the Debug Toolbar. IR

The code window will open ‘main.c’ and show the new position of the program counter.

08580

035ED

05554
035C4

035Ds

08502

085DD

O85ED
O55E4

lfw””FT_]NC COHHENT””#**#*ﬁwﬁﬁwﬁwﬁﬁwﬁﬁwﬁﬁwﬁﬁwﬁﬁwﬁﬁwﬁﬁwﬁwﬁﬁwﬁﬁwﬁﬁwﬁﬁwﬁﬁwﬁﬁwﬁﬁwﬁwﬁﬁw
* Ducline : main
* Description : Main prograwm. This function calls timer, ADC & LCD
initialisation functions. The user LEDs flashes until
the user presses a switch on the RE3K.
* Argurment I none

* Return wvalues I none
F#SFUNC COMMENT BN Dttt A A A A A w S wrrnr oS w v r s s,

wold main(wvoid)

{
/% Reset the LCD module. */
Initialiselisplay ()

/% Dizplay Renezas Iplash Jcreesn. #/
Displaystring (LCD_LINE1l, "Renesas"):
DisplayString (LCD_LINEZ, NICENAME):

/% Flash the user LEDs for sSome time or until & push hutton is pressed. */
FlashLED=s1() ;

/% Flash the user LED= at a rate set hy the user potentiometer (ADC) using
interrupts. %/
TimerdDC () ;

4% Demonstration of initialised warishles. Use this function with the
debugger . L
Statics Testl():

4% This function must not exit *f
while (1) :
i

l,"TH"RTH‘TH"&‘TH‘KTH‘XTW'RTW'RTW'RTW'RTKTW'RTW'RTW'RTW'RTW'RTW'RTW'RT'RTW'RTW'RTW'RTW'RTW'RTW'RTW'RT'RTW'RTW'RTW

End of function main
‘k1fﬂ".'f1fﬂ'1fﬂ"k1;#‘.'f1fﬂ"k#ﬂ"?f1fﬂ"k1fﬂ"k1;#‘.'f1f7:1fﬂ"k#ﬂ".'f1fﬂ"?f1fﬂ"k1fﬂ".'f1fﬂ"k#ﬂ".'f1f‘.'f1fﬂ"k#ﬂ".'f1fﬂ"k#ﬂ"k##‘k*#‘k#ﬂ"k#‘k*#‘k##‘ktﬁf

Insert a breakpoint on the call to the ‘TimerADC()’

function.

11

e Right click on the ‘FlashLEDs(); function and select _
Toggle Breakpoink F9
‘Go to cursor’.

Define Column Format, ..

Colurmns 4

Turn Header CnfOF

(o To Cursar

Set PC Here
Display PC

The code will execute to the selected line and stop. An automatic breakpoint was inserted in the code and then removed after calling the
break.

e Press ‘Step Over on the Debug Toolbar. [T

The code will run and flash the LEDs 200 times. The debugger will not exit until all 200 flashes have completed or a switch is pressed on the
RSK.

o Ifthe LEDs are still flashing, press any user switch on the RSK to exit the ‘FlashLEDs()’ function.

The code will run to the breakpoint we previously set on the ‘TimerADC’ function.

The ‘TimerADC' function initialises an interrupt on an available internal timer. On overflow of the timer module an interrupt is generated. In

the ‘TimerADC’ code version the interrupt reads the last ADC conversion for the external potentiometer and uses the result to set the next
overflow value. The ADC conversion is then re-started.

The interrupt initialisation is completed as part of the hardware setup. This is contained in the file ‘interrupts.c’.
e Open the file ‘interrupts.c’ by double clicking on the file in the workspace view.
e Review this file and find the interrupt function that changes the LED pins, _timer_rc().
e Seta breakpoint on the line where the LED pins are modified.

e Press <Go> or <F5> to run the code from the

'
—+
'
—

position of the PC.

€
[m}

The code will stop in the interrupt routine. It is now possible to step through the interrupt function.

e Remove the breakpoint in the interrupt by double clicking again before exiting the function.

e Press <Go> to run the code from the current

T

'
—

position of the PC.

€
[m}

12

The code will now run to the infinite loop at the end of main() function. The user LEDs should now be flashing. You can modify the flashing

rate by adjusting the potentiometer on the board.

e Click <Halt> icon available on ‘Debug’ toolbar 10

Breakpoints EJE|

0K

e Press ‘CTRL-B' to open the breakpoint window.

Cancel

e Select ‘Remove All

e Press <OK>,

[

e Open the file ‘main.c’
e Insert a breakpoint at ‘Statics_Test()’ function.

The Statics_Test() is used to demonstrate that the initialisation routine has successfully copied all the initialised variables from storage in
flash to RAM.

e Press <Reset Go> on the Debug Toolbar. 1

The code will stop at the breakpoint. (Press a button to bypass the flashing LED test.)

e Press <Step In> on the Debug Toolbar. ot

It is possible to monitor variables while debugging the code. To set up a ‘watch’ on a variable place the mouse over the variable. If the

variable is available in the current context a tool-tip will be displayed with the current value of the variable.

e Hover, the mouse over the ‘ucStr variable to see the tooltip value. Then Right click on the variable name and select ‘Instant
Watch'.

A dialog will open showing the variable and allowing further details to be explored.

e Press <Add>
The dialog will close and a new pane will open in the workspace containing the variable.
It is possible to see that the string has been successfully initialised to ‘STATIC .

e Seta breakpoint on the call to ‘DisplayString();' inside the for loop.

e Press ‘Go’ to run the code from the current PC =F ElL
position.

When the program stops you can see the modified string displayed on the second line of the LCD.
Inspection of the watch pane will show that the first character of the variable string has been replaced with the first character of the constant

replacement string.

e Remove the breakpoint

e Right click on the ‘DisplayString();” function call after the loop and select ‘Go to cursor’.

13

This shows that the variable was initialised at program start up and can be overwritten with TESTTEST'.
You have now run the ‘tutorial’ code and used many of the common features of the debugger. We suggest that you review the rest of the
‘tutorial code’; as many functions have important information on the operation of the code, the compiler directives and comments on when

they should or must be used. Please refer to Chapter 7 for more information on the project files.

14

Chapter 7. Project Files
7.1. Standard Project Files

The RSK tutorials are configured so that it is possible to provide the same ‘tutorial’ code on multiple RSK products. This allows the
evaluation of the different processor cores using equivalent code. To achieve this, the following files are common between all device cores
and Tool-chains.

Each of the tutorial files has detailed comment text describing the function of each code entry. Please refer to the source code for greater

detail on the purpose and operation of the compiler specific details.

7.1.1. Initialisation code (resetprg.c / resetprg.h)

This is the entry point of the main ‘tutorial’ code.

SEe e FUNE oMM E N T s s s S N T A A A AT A TS AT AN T AN A ANA TN TTTRTAN

* outline I Start

* Description : Power on reset function. This function executes following to
* power on reset, It first calls hardware initialisation

* function & then 'mwain()' function.

* Argument ! none

* Beturn walue : none

FCFURNC COMMENT END””ﬁ'1€#ﬁ'ﬂ'#1‘ﬂ'#1‘ﬁ'1€#ﬁ'ﬂ'#1‘ﬂ'#1‘ﬁ'1€#ﬁ'ﬂ'#1‘ﬂ'#1‘ﬁ'#1‘**#ﬁ*#*ﬁ#*ﬁ*#ﬁ*#**#*ﬁ##ﬁf

wvold start (wvoid)
{
/% Zet interrupt stack pointer */

i=p = & _istack_top:
/% Change protect mwode register *f
pror = Ox021U;

/% Zet processor mode register
pwld = 0x00U;
/% Change protect mode register)/

pror = 0Ox00u;
/* Zet flag register */
flg_ = __F_value__;

#if _ STACKSIZE_ '=0
/% Zet user stack pointer */

3p = &_sztack_top;
#endif
f% Zetting 400H (Do not change) 7
sh = Ox40017;
J% Zet varishle wector's address +f
_intkh = Ox007;
_asmi" lde #(topof vector) &OFFFFh, INTEL™) :

/% Initlalize each sections */
initsct () ;

#if _ HEAPSIZE != O

/% Initialize heap */
heap_init{):

fendif
#if _ STANDARD IO != O
/% Initialize standard I 0 #/F
_initil;
#Hendif
/% Initislize FE register for debugger */
_fh = OU;

/% et up the hardware */
HardwareIetup (]

A% Call main{) routine */
main()

A% Call exitc %/
exit ()
¥

S A N A N A R R N N R A N AN AN AN A A RN A T ANEAAAATAAAT AT AN

End of function start
1?1?ﬁﬁ'wﬁﬁﬁ'ﬁﬁﬁﬁ‘ﬁﬁwﬁﬁﬁ'ﬁﬁﬁ'ﬁ‘ﬁﬁwﬁﬁwﬁﬁwtﬁﬁtﬁﬁ'ﬁ'ﬁﬁﬁ'ﬁ‘ﬂ‘1?1?ﬁ‘1?ﬁ'ﬁﬂ‘ﬁ'ﬁ‘ﬁﬁﬁ‘ﬁﬁwﬁﬁwﬁﬁﬁﬁﬁﬁwﬁﬁwﬁﬁﬁtﬁﬁwf’

15

Initialisation of the variables used in the C compilers and initialisation of stack pointers are completed in the *_INITSCT’ function for the H8

and SH compilers. The call to ‘hardwaresetup()’ will initialise the device hardware and peripherals ready for the tutorial software.

The call to ‘main()’ will start the main demonstration code.

7.1.2. Board initialisation code (hwsetup.c / hwsetup.h)

There are four common stages to the configuration of the microcontroller device. The code to demonstrate this is therefore split into four

functions. Each function is written specifically for the device supported. The function calls are shown below.

G EI . COMMEN T A A T A A T T A T A T A T A A A A T A T A AN A AN A TFATATNASSS

* Outline : HardwareZetup

+ Description : Zets up the hardware.

* This function calls the hardware initialization functions to
* configure the CPU operating fredquency, port pins & reguired
+ on—-chip wodules in order to setup the B3K for the main

+ application.

T oArcnument I none

+ Beturn wvalus @ none

*SEINC COMMENT END””*1:1:###************1‘1‘1:1:###***************w###*************f

void HardwareSetup (wvoid)

{
S Configures CPU clock %/
ConfigurelperatingFrequencyi() 2

/% Configures port pins ¥/
ConfigurePortPins|():

S % Enables regquired on-chip peripheralas /
EnablePeripherallModules=s()

/% Configures interrupts L
ConfigureInterrupts();
H

o o ol ol ol ol ol ol ol ol ol ol ol ol ol e o

End of function HardwareZetup
1‘1‘1‘##'ﬁ'##***********1‘1‘1‘w###'ﬁ'*#*********1‘1‘1‘1;1;'&"ﬁ'#***********1‘1‘1‘#w###*************f

16

7.1.3. Main tutorial code (main.c / main.h)

The main tutorial code is common to all tutorial projects. The display initialisation and string display functions operate on the LCD display
module. Check compatibility with ks0066u controller and pin connection on the schematic before connecting a LCD module not supplied by

Renesas.

’.’ﬁ””FUNC COHHENT””***#*#**ﬁﬁwﬁwﬁﬁﬁﬁwﬁwﬁﬁ*ﬁwﬁwﬁﬁ*?Hrﬁwﬁﬁwﬁwﬁwﬁﬁwﬁwﬁwﬁﬁwﬁwﬁ#ﬁﬁwﬁwﬁ
¥ Cutline I main
* Description : Main programm. Thisz function calls timer, ADC & LCD
initialisation functions. The user LEDs flashes uncil
the user presses a switch on the R3E.
* Aronument I none

¥ Beturn walus : none
F NG COMMENT EN D o i v A A A T Fh AT R AR A R TRTTTF N TN

void main (void)

{
/% Reset the LCD module. *f
Initialisebisplay():

f* Display Benesaz 2plash Screen. %/
Displayitring(LCD LINE1l, "Eenezasz"):
DisplayString(LCD LINEZ, NICKMAME]:

/% Flash the user LED=z for sSowe tiwe or until a push button iz pressed. */
FlashLED=1();

/% Flash the user LEDz at a rate zet by the uzer potentiometer (ADC) uzing
interrupts. %/
TimerdDC () 2

/% Demonstration of initialised warisbles. Use this function with the
debugger . L
dtatics Test():

/% This function must not exit #f
while (1) :
H

ff***#**w***#**w*****'.':1:1:1:*1:*'.':1:1:1:*1:*'.':1:*1:*'.':1".':1:*1:*1:1‘1:1:*1:*1:1:1:1:*1:**w*w****w*w*#**w*w*#**w

End of function main
wﬁwﬂ'?fﬂ'ﬁwﬁ#ﬁ#ﬁﬁwﬁwﬂ'ﬁﬂ'?f?fff?fﬂ'?fﬂ'?f?fﬁ?fﬂ'?fﬂ'?f1fﬂ'1fﬂ'ﬁﬂ'ﬁ1fﬂ'1fﬂ'?fﬂ'?f1fﬂ'1fﬂ'?fwﬁ1fﬂ'1fﬂ'ﬁwﬁwﬁwﬁﬁ#ﬁ#ﬂ'#ﬂ'ﬁwﬁwﬁ#ﬁﬁw;’

17

Chapter 8. Additional Information

For details on how to use High-performance Embedded Workshop (HEW), refer to the HEW manual available on the CD or from the web

site.
Further information available for this product can be found on the Renesas website at:

http://www.renesas.com/renesas_starter kits

General information on Renesas Microcontrollers can be found at the following website.

Global: http://lwww.renesas.com/

Regional (English language) sites can be accessed from the Global site, or directly by going to:

Europe: http://renesas.eu
America: http://america.renesas.com
Asia http://sg.renesas.com

18

http://www.renesas.com/renesas_starter_kits
http://www.renesas.com/
http://renesas.eu/
http://america.renesas.com/
http://sg.renesas.com/

Renesas Starter Kit for R8C/38C
Tutorial Manual
Publication Date Rev.1.00 01.APR.2010
Published by: Renesas Electronics Europe Ltd.
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire,

SL8 5FH, UK

©2010 Renesas Electronics Europe and Renesas Solutions Corp., All Rights Reserved.

Renesas Starter Kit for R8C/38C
Tutorial Manual

RENESAS

Renesas Electronics Europe Ltd.
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, UK

	Chapter 1. Preface
	Chapter 2. Introduction
	Chapter 3. Tutorial Project Workspace
	Chapter 4. Project Workspace
	4.1. Introduction
	4.2. Creating a new Project Workspace
	4.3. Build Configurations and Debug Sessions
	4.3.1. Build Configuration
	4.3.2. Debug Session

	Chapter 5. Building the Tutorial Project
	5.1. Building Code
	5.2. Connecting the debugger
	5.3. Connecting to the target with the E8a

	Chapter 6. Downloading and Running the Tutorial
	Chapter 7. Project Files
	7.1. Standard Project Files
	7.1.1. Initialisation code (resetprg.c / resetprg.h)
	7.1.2. Board initialisation code (hwsetup.c / hwsetup.h)
	7.1.3. Main tutorial code (main.c / main.h)

	Chapter 8. Additional Information

