RH850 Evaluation Platform

32

RH850/U2B10 Target Board with RAA271084 Power Management IC User's Manual: Hardware

Y-RH850-U2B10-TB-RAA271084

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Technology Corp. website (<u>https://www.renesas.com</u>).

Renesas Electronics

Rev.1.00 Apr 2025

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
 Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

(Rev.5.0-1 October 2020)

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Table of Contents

1.	Introduction	6
1.1	Package Components	6
1.2	Main Features	7
1.3	RH850/U2B10 Target Board with RAA271084 PMIC View	8
1.4	Used Devices	9
2.	Jumpers, Connectors, Switches and LEDs	10
2.1	Jumper Overview	11
2.2	Switches Overview	11
2.3	Connectors Overview	11
2.4	LED Overview	12
3.	Power Supply	13
3.1	Power Management IC (PMIC)	13
3.2	Power Supply LEDs	18
4.	Oscillator Circuit	19
5.	Debug and Flash Programming Interfaces	20
6.	Other Circuitry	22
6.1	System State and RESET	22
6.2	Expansion Connectors	23
6.3	CAN FD Interface	23
6.4	LIN Interface	24
6.5	USB Interface	24
6.6	PMOD Connectors	25
6.7	User LEDs	27
7.	Connectors	28
7.1	Debug Connector CN1	
7.2	USB-C Connector CN2	
7.3	Power Supply Connector CN3	29
7.4	Voltage Output Connector CN4	
7.5	CAN Connector CN5	29
7.6	Extension CLIN Connector CN6	
7.7	PMOD Connectors CN7 and CN8	
7.8	Expansion Connectors CN9 – CN12	32
8.	Dimensions	
9.	Schematics	35
9.1	RH850/U2B10	

9.2	Power Management IC RAA271084	37
9.3	Interfaces	38
Revis	ion History	.39

RENESAS MCU

1. Introduction

The RH850/U2B10 target board with RAA271084 PMIC serves as a target board with Arduino form factor. The circuit shows a possible implementation of RH850/U2B MCU and RAA271084 PMIC.

Notes

1. This document describes the functionality of the communication board and guides the user through its operation.

For details regarding the operation of the microcontroller, refer to the device's Hardware User's Manual.

- 2. In this document active low signals are marked by an appended 'Z' or '#' to the pin or signal name. E.g. the reset pin is named RESETZ or RESET#.
- 3. In this document the following abbreviations are used:
 - H level, L level: high or low signal level of a digital signal, the absolute voltage value depends on the signal

1.1 Package Components

The Y-RH850-U2B10-TB-RAA271084 product package consists of the following items. After you have unpacked the box, check if your Y-RH850-U2B10-TB-RAA271084 package contains all these items. *Table 1.1 Package Components for RH850/U2B10 target board with RAA271084 PMIC* shows the packing components of the target board package.

Item	Description	Quantity
D020090	RH850/U2B10 target board with RAA271084 PMIC	1
D017765-11	License information	1
D020165-24	Product contents list	1

Note

Please keep the target board packing box at hand for later reuse in sending the product for repairs or for other purposes. Always use the original packing box when transporting the target board Y-RH850-U2B10-TB-RAA271084. If packing of your product is not complete, it may be damaged during transportation.

1.2 Main Features

- Compact board design to promote a 'reference' schematic (and layout) for RH850/U2B10 device and RAA271084 PMIC
- 12V typ. (40V / 42V max.) power supply
- RH850/U2B10 (292 pin) microcontroller IC with 20MHz main oscillator
- RAA271084 automotive ASIL-D power management IC (incl. required components like FETs, L, C, etc.)
- 14-pin RH850 debug connector
- Three status LEDs
- Eight user LEDs
- Seven power LEDs
- RESET button
- Same board size as the Arduino Classic Family board.
- Port connectors placement for support of Arduino shields. Function assignment as close to Arduino function set as possible.
- One CAN FD interface
- One LIN interface
- Two PMOD connectors (Type: 1A/2A; Type 1A/6)
- One USB-C interface for UART / PC terminal communication
- Operation temperature $0^{\circ}C \le Ta \le +40^{\circ}C$

1.3 RH850/U2B10 Target Board with RAA271084 PMIC View

Below pictures show top and bottom view of the RH850/U2B10 Target Board with RAA271084 PMIC.

Figure 1.1 RH850/U2B10 target board with RAA271084 PMIC top view

Figure 1.2 RH850/U2B10 target board with RAA271084 PMIC bottom view

The following figures provide the drawings of top and bottom views of the RH850/U2B10 Target Board with RAA271084 PMIC including solder mask.

Figure 1.3 RH850/U2B10 target board with RAA271084 PMIC top view

Figure 1.4 RH850/U2B10 target board with RAA271084 PMIC bottom view

1.4 Used Devices

The board uses the following devices:

- MCU: R7F70254EAFABB-C (RH850/U2B10)
- PMIC: RAA271084 (OTP-1F.12)

The devices are soldered to the pcb.

2. Jumpers, Connectors, Switches and LEDs

This section provides complete lists of all jumpers, connectors, switches, and LEDs.

The placement of these components on the board is depicted in the figure below.

Figure 2.2 Placement of components on the top side of the target board

Figure 2.1 Placement of components on the bottom side of the target board

2.1 Jumper Overview

On this board all jumpers are implemented as bridged solder jumpers. The following table provides an overview of all jumpers.

Table 2.1 Jumper overview

Switch	Function	Remark
JP1 – JP8	Cut traces to disconnect the user LEDs LED1 – LED8 from RH850/U2B10 ports P22[07]	refer to 6.7 User LEDs
JP9	Cut trace for power supply of LIN transceiver	refer to 6.4 LIN Interface
JP10	Cut trace for LIN Master/Slave selection Closed : Master (default) Open : Slave 	
JP11	 Cut trace to disable load on CAN FD interface. Closed : bus terminated (default) Open : bus not terminated 	refer to 6.3 CAN FD Interface
JP12	Connect USB to GreenPAK IC	refer to 6.1 System State and RESET

2.2 Switches Overview

The following table provides an overview of all switches.

Switch	Function	Remark
SW1	Reset switch	refer to 6.1 System State and RESET
SW2	Switches to activate EOT_ONLY mode of PMIC	refer to 3.1 Power Management IC (PMIC)
SW3		

2.3 Connectors Overview

The following table provides an overview of all connectors.

 Table 2.3 Connectors overview

Connector	Function	Remark
CN1	Debug and programming interface	refer to 5 Debug and Flash Programming Interfaces
CN2	USB-C output	refer to 6.5 USB Interface
CN3	+12.0 V external power supply	refer to 3.1 Power Management IC (PMIC)
CN4	+5.0 V output voltage, not assembled	refer to 3.1 Power Management IC (PMIC)
CN5	CAN FD interface connector, not assembled	refer to 6.3 CAN FD Interface
CN6	LIN interface connector, not assembled	refer to 6.4 LIN Interface

Table 2.3 Connectors overview (cont'd)

Connector	Function	Remark
CN7	PMOD connectors	refer to 6.6 PMOD Connectors
CN8		
CN9	Expansion connectors, not assembled	refer to 6.2 Expansion Connectors
CN10		
CN11		
CN12	1	

2.4 LED Overview

The following table provides an overview of all LEDs.

Table 2.4 LED overview

LED	Function	Color	Remark
LED1	User LED	blue	refer to 6.7 User LEDs
LED2			
LED3			
LED4			
LED5			
LED6			
LED7			
LED8			
LED9	12.0 V power supply V_BAT	green	refer to 3.2 Power Supply LEDs
LED10	5.7 V power supply V_5V7		
LED11	3.3 V power supply V_LDO1		
LED12	3.3 V power supply V_LDO2		
LED13	3.3 V power supply V_LDO3		
LED14	5.0 V power supply V_LDO4		
LED15	1.09 V core voltage power supply VDD		
LED16	RESET LED	red	refer to 6.1 System State and RESET
LED17	ERROROUT_M# LED		
LED18	VMONOUT# LED		
LED19	Operation signal from PMIC	green	refer to 3.1 Power Management IC (PMIC)
LED20	USB LED, TX	green	refer to 6.5 USB Interface
LED21	USB LED, RX	red	

3. Power Supply

3.1 Power Management IC (PMIC)

The target board is powered by a single 12V supply, which must be connected to connector CN3. All voltages required to operate the target board are generated by the Renesas power management IC RAA271084. For more information about this device, please refer to the RAA271084 datasheet.

Note

It is not possible to power the target board from an emulator, which is connected to the debug connector CN1. If the board does not have a 12V power supply the power management IC will be switched off.

Within this document all voltage values are considered as 'typical'. Refer to the 'Electrical Characteristics' section of the Hardware User's Manual for allowed voltage ranges.

The power management IC has 4 LDO regulators, each of which can be fuse programmed to 3.3V or 5.0V.

The power management IC has also a buck-boost regulator DCDC1 and a buck regulator DCDC2.

The buck-boost regulator reduces the supply voltage V_BAT to 5.7V (V_5V7).

The buck regulator then generates the RH850 core voltage of 1.09V (VDD) from the 5.7V output by DCDC1.

The power management IC on the target board is programmed to provide the following voltages for RH850:

RAA271084 Regulator	Output Voltage	Max. Output Current	Usage
DCDC1	5.7 V	-	RAA271084's VIN2, LDOVIN1/2 and LDOVIN3/4
DCDC2	1.09 V	-	RH850/U2B10's VDDn
VCC (LDO0)	5 V	130 mA	RH850/U2B10's SYSVCC, SVRAVCC & SCRDRVCC
LDO1	3.3 V	350 mA	RH850/U2B10's VCCn & OSCVCC
LDO2	3.3 V	350 mA	RH850/U2B10's E0VCC, E1VCC, E2VCC & LVDVCC
LDO3	3.3 V	200 mA	Unused
LDO4	5 V	200 mA	RH850/U2B10's A0VCC, A1VCC, A2VCC, A0VREFH, A1VREFH, A2VREFH, ADSVCC, ADSVREFH & AFCVCC

Table 3.1 RAA271084 Power Connections

The power management IC has an SPI interface. This is connected to the MSPI5 interface of RH850. This interface can be used by the user application to program the configuration registers in the PMIC.

LED19 on the target board is system status LED for the PMIC. If all system self-tests at power on are passed successfully this LED will be switched on.

Switches SW2 and SW3 can be used to switch the PMIC to EOT_ONLY state. In this state voltage regulator outputs LDO1 – LDO4 are switched off.

The connector CN4 on the target board can be used as V_LDO4 (5.0V) output to some customer system.

Figure 3.1 shows the voltage generation circuit.

Figure 3.2 shows the RAA271084 (OTP-1F.12) connections to the RH850/U2B10.

Figure 3.1 Power supply circuit on the target board

Figure 3.2 RAA271084 – RH850/U2B10 Application Diagram

RAA271084		RH850/U2B10	Remarks
Pin#	Pin Name	Pin Name	
7	WAKE1	N.A.	Connected to external push button
8	WAKE2	N.A.	Connected to external push button

Table 3.2 I/O Connections (cont'd)

		Function 2: Drives an external LED: Active or Standby/Fau
PSTBYB	N.A.	Pulled up RAA271084's VCC (LDO0)
PWRCTLB	N.A.	Pulled up to RAA271084's VCC (LDO0)
COREMON	N.A.	Can be used as external voltage monitor. Input 0.8 V typic by using resister divider.
271084	RH850/U2B10	Remarks
Pin Name	Pin Name	
AMUX	ADC (AN10_0)	
SSPB	N.A.	Drives an external LED: Active or Standby/Fault
WDENB	GPIO (P33_0)	
VMONB	VMONOUT	
ERRB	ERROROUT_M	
RSTB	N.A.	Connected to SLG7RN48401-A (RESET_PMIC pin 14)
INTB	GPIO (P22_10)	
SPISDO	GPIO (P23_6)	
SPISDI	GPIO (P23_5)	
SPICLK	GPIO (P23_7)	
SPICSB	GPIO (P23_2)	+
	COREMON 271084 Pin Name AMUX SSPB WDENB WDENB WDENB WDENB INTB INTB SPISDO SPISDI SPISDI SPICLK	COREMONN.A.271084RH850/U2B10Pin NamePin NameAMUXADC (AN10_0)SSPBN.A.WDENBGPIO (P33_0)VMONBVMONOUTERRBERROROUT_MRSTBN.A.INTBGPIO (P22_10)SPISDOGPIO (P23_5)SPICLKGPIO (P23_7)

The RAA271084 has a customer configuration saved in its embedded one-time programmable (OTP) memory. *Table 3.3* provides the OTP-1F.12 settings to support the RH850/U2B10.

Address	Register Name	OTP Value
0x10	OPT_SEQ_CTRL	0x00
0x11	OPT_SLOT_TIME	0x00
0x12	OPT_SLOT_DCDC	0x00
0x13	OPT_SLOT_LDO	0x00
0x14	OPT_HP	0x10
0x15	OPT_DS	0x10
0x16	OPT_TOFF_TIME	0x00

Table 3.3 RAA271084 OTP-1F.12 Configuration (cont'd)

0x30	OPT_ERRB_CTRL	0x00
0x31	OPT_VMONB_CTRL	0x80
0x82	OPT_WDT_CONFIG1	0x00
0x120	OPT_FLT_RESP1	0x00
0x121	OPT_FLT_RESP2	0x00
0x122	OPT_FLT_RESP3	0x00
0x123	OPT_FLT_RESP4	0x00
0x124	OPT_FLT_RESP5	0x00
Address	Register Name	OTP Value
0x125	OPT_FLT_RESP6	0x00
0x126	OPT_FLT_RESP7	0x00
0x127	OPT_FLT_RESP8	0x00
0x128	OPT_FLT_SHDN1	0x00
0x129	OPT_FLT_SHDN2	0x00
0x140	OPT_INTB_MASK1	0x00
0x141	OPT_INTB_MASK2	0x00
0x142	OPT_INTB_MASK3	0x00
0x143	OPT_INTB_MASK4	0x00
0x148	OPT_SSPB_MASK1	0x00
0x149	OPT_SSPB_MASK2	0x00
0x14A	OPT_SSPB_MASK3	0x00
0x14D	OPT_SSPB_MASK5	0x00
0x150	OPT_VOUT	0x20
0x151	OPT_FB1_THRESH	0x00
0x152	OPT_FB2_THRESH	0x00
0x153	OPT_LDO1_THRESH	0x50
0x154	OPT_LDO2_THRESH	0x50
0x155	OPT_LDO3_THRESH	0x00
0x156	OPT_LDO4_THRESH	0x50
0x157	OPT_COREMON_THRESH	0x00
0x158	OPT_LDO0_THRESH	0x50
0x160	OPT_FAULT_DLY1	0x00
0x161	OPT_FAULT_DLY2	0x00
0x162	OPT_FAULT_DLY3	0x00
0x163	OPT_FAULT_DLY4	0x00
0x164	OPT_FAULT_DLY5	0x00

R20UT5516ED0100 Rev.1.00 April 17, 2025

OPT_DEV_MODE1	0x30
OPT_DEV_MODE2	0x20
OPT_DEV_MODE3	0x00
SEL_DEV_MODE1	0x00
OPT_WAIT_DISCHG1	0x00
OPT_WAIT_DISCHG2	0x00
OPT_PD_CTRL	0x00
OPT_STATE_CTRL	0x20
Register Name	OTP Value
OPT_SS	0x00
OPT_WDENB_CTRL	0x00
OPT_PG_CTRL	0x00
OPT_VDDIO	0x01
OTP ID1	0x1F
OTP ID2	0x12
	OPT_DEV_MODE2 OPT_DEV_MODE3 SEL_DEV_MODE1 OPT_WAIT_DISCHG1 OPT_WAIT_DISCHG2 OPT_PD_CTRL OPT_STATE_CTRL Register Name OPT_PG_CTRL OPT_PG_CTRL OPT_PG_CTRL OPT_VDDIO OPT_VDDI0

3.2 Power Supply LEDs

The target board includes 7 green LEDs (LED9 – LED15) to indicate the availability of various voltages available on the target board:

- LED9: 12.0V board supply voltage (V_BAT)
- LED10: PMIC 5.7V output from buck-boost regulator DCDC1 (V_5V7) of the
- LED11: PMIC 3.3V output from LDO1 (V_LDO1)
- LED12: PMIC 3.3V output from LDO2 (V_LDO2)
- LED13: PMIC 3.3V output from LDO3 (V_LDO3)
- LED14: PMIC 5.0V output from LDO4 (V_LDO4)
- LED15: PMIC 1.09V output from buck regulator DCDC2 (VDD) (see *Figure 6.1 RESET circuit and status LEDs*)

Figure 3.3 Power supply LEDs on the target board

4. Oscillator Circuit

The board has a soldered oscillator of 20MHz that is used for RH850/U2B10 clock generation.

Figure 4.1 Oscillator circuit

5. Debug and Flash Programming Interfaces

For debugging and flash programming purposes debug and flash programming tools can be connected to the CN1 connector.

The Renesas standard emulator for the target board is the E2 emulator. This can be used as an emulator for debugging or as flash programmer.

To connect an E2 emulator to the debug connector on the target board, use the conversion adapter that comes with the E2 emulator, and the user system interface cable. *Figure 5.1* shows an example of the connection.

After connecting the user system interface cable to the conversion adapter, connect the conversion adapter to the debug connector CN1 on the target board.

Make sure the switch SW1 on the conversion adapter is set to position [1-2].

Refer to 7.1 Debug Connector CN1 for details about the CN1 pin assignment.

R20UT5516ED0100 Rev.1.00 April 17, 2025

Figure 5.1 Debug and programming interface

6. Other Circuitry

6.1 System State and RESET

This target board has a special reset circuit using the Renesas GreenPAK IC SLG7RN48401-A.

This IC is designed to receive various RH850 control signals and switch control LED accordingly.

The target board has 2 LED to indicate RH850 control signals:

• LED17 for a control signal triggered by ERROROUT_M#.

• LED18 for a control signal triggered by VMONOUT#.

Figure 6.1 RESET circuit and status LEDs

It also receives the RESET signals from the RESET switch SW1, from the power management IC (Renesas RAA271084), and from the USB to UART converter (FTDI FT232RL). Based on these signals the GreenPAK IC generates the RESET#-signal for all circuits on the target board and controls the reset LED (LED16).

The GreenPAK monitors the RH850 core voltage VDD and switches LED15 on to indicate proper core voltage operation.

Figure 6.1 shows the circuit of the GreenPAK IC.

6.2 Expansion Connectors

The target board includes 4 expansion connectors, that resemble ARDUINO connectors.

For details on connectors CN9 – CN12 refer to 7.8 Expansion Connectors CN9 – CN12.

Figure 6.2 shows the circuit diagram for the expansion connectors.

Figure 6.2 Expansion connectors

6.3 CAN FD Interface

The target board provides one CAN FD interface using a Microchip CAN FD transceiver ATA6561. The CAN signals are output to connector CN5.

For details on connector CN5 please refer to *7.5 CAN Connector CN5*.

The board uses CAN0 interface of RH850/U2B10 on ports P12_2

Figure 6.3 CAN FD interface circuits

and P12_4 as inputs to the CAN FD transceiver.

P12_3 is a digital I/O. It can be used to switch the CAN FD transceiver to stand by mode.

The board provides a load for the CAN FD interface. This load can be disabled by opening the cut trace JP11.

6.4 LIN Interface

The target board provides one LIN interface using an NXP LIN transceiver TJA1021. The LIN signals are output to connector CN6.

For details on connector CN6 please refer to *7.6 LIN Connector CN6.*

The board uses RLIN34 interface of RH850/U2B10 on ports P12_5 and P12_6 as interface to the LIN transceiver.

Figure 6.4 LIN interface circuit

The LIN transceiver is powered via the bridged solder jumper JP10. The trace can be cut to switch the power supply for the LIN transceiver off if the input voltage to the target board exceeds 40V.

6.5 USB Interface

The target board offers one USB interface with USB-C connector CN2 for UART communication.

It uses the RLIN32 function of RH850/U2B10 on ports P10_5 and P10_6 as UART output. The UART signals are fed to a FTDI USB to UART converter IC FT232RL. The USB to UART converter generates the USB signals, that are output to connector CN2.

Figure 6.5 shows the circuit diagram of the USB interface.

For details on connector CN2 please refer to 7.2 USB-C Connector CN2.

Figure 6.5 USB - UART interface circuit

6.6 **PMOD Connectors**

The target board has two PMOD connectors for easy connection of PMOD compatible extension boards.

The 2 interfaces differ slightly in the supported functions.

PMOD0 supports GPIO and SPI functionality.

PMOD1 supports GPIO and I2C functionality.

Figure 6.6 PMOD connectors

Table 6.1 and *Table 6.2* list the available functions and show which ports on RH850 are being used for them.

Pin	GPIO (type 1)		Exp. GPIO (type 1A)		SPI (type 2)		Exp. SPI (type 2A)	
	PMOD signal	MCU signal	PMOD signal	MCU signal	PMOD signal	MCU signal	PMOD signal	MCU signal
1	GPIO	P20_2	GPIO	P20_2	CS	MSPI8CSS0	CS	MSPI8CSS0
2	GPIO (PWM)	P20_0	GPIO (PWM)	P20_0	MOSI	MSPI8SO	MOSI	MSPI8SO
3	GPIO	P20_1	GPIO	P20_1	MISO	MSPI8SI	MISO	MSPI8SI
4	GPIO	P20_4	GPIO	P20_4	SCK	MSPI8SC	SCK	MSPI8SC
5	GND	GND	GND	GND	GND	GND	GND	GND
6	VCC	V_LDO2	VCC	V_LDO2	VCC	V_LDO2	VCC	V_LDO2
7			GPIO	P20_8			GPIO (INT)	IRQ12
8			GPIO (PWM)	P20_10 TAUD0O15			GPIO (RESET)	P20_10 TAUD0O15
9			GPIO	P20_3			GPIO (CS2)	P20_3 MSPI8CSS1
10			GPIO	P20_5			GPIO (CS3)	P20_5 MSPI8CSS2
11			GND	GND			GND	GND
12			VCC	V_LDO2			VCC	V_LDO2

Table 6.1 PMOD0 pin configuration

Table 6.2 PMOD1 pin configuration

Pin	Exp. SPI (type 1)		Exp. UART (type 1A)		I2C (type 6)	
	PMOD signal	MCU signal	PMOD signal	MCU signal	PMOD signal	MCU signal
1	GPIO	P00_4	GPIO	P00_4	NC (INT)	IRQ7
2	GPIO (PWM)	P00_5 TAUD0O5	GPIO (PWM)	P00_5 TAUD0O5	NC (RESET)	P00_5
3	GPIO	P00_6	GPIO	P00_6	SCL	RIIC1SCL
4	GPIO	P00_7	GPIO	P00_7	SDA	RIIC1SDA
5	GND	GND	GND	GND	GND	GND
6	VCC	V_LDO2	VCC	V_LDO2	VCC	V_LDO2
7			GPIO	P22_8		
8			GPIO (PWM)	P22_9 (TAUD2O11		
9			GPIO	P22_11		
10			GPIO	P22_12		
11			GND	GND		
12			VCC	V_LDO2		

6.7 User LEDs

The target board includes 8 user LEDs (LED1 – LED8).

The user LEDs can be controlled from ports $P22_0 - P22_7$ on RH850.

The LEDs are connected to RH850 via bridged solder jumpers JP1 – JP8. If an LED should not be connected to the processor the connection can easily be cut at the corresponding jumper.

Figure 6.7 User LEDs

7. Connectors

7.1 Debug Connector CN1

Please refer to *5 Debug and Flash Programming Interfaces* for details on the function of this connector.

Pin	Function	Device port
1	TDCK/LPDCLK/FPCK	JP0_2
3	TRST#	
5	TDO/LPDO/FPDT	JP0_1
7	TDI/LPDIO/FPDR	JP0_0
9	TMS	JP0_3
11	RDY/LPDCLKOUT	JP0_5
13	RESET#	

Table 7.1 On-chip debug connector CN1

Pin	Function	Device port
2	GND	
4	FLMD0	
6	-	
8	V_LDO1 (3.3V)	
10	EVTO0#	P32_0
12	GND	
14	GND	

7.2 USB-C Connector CN2

Please refer to 6.5 USB Interface for details on the function of this connector.

Pin	Function	Signal Name
A1	GND[0]	GND
A4	V-BUS[0]	V_USB (5.0V)
A5	CC1	GND
A6	DP1	USBDP
A7	DN1	USBDM
A8	SBU1	
A9	V-BUS[3]	V_USB (5.0V)
A12	GND[3]	GND

Pin	Function	Signal Name
B1	GND[2]	GND
B4	V-BUS[2]	V_USB (5.0V)
B5	CC2	GND
B6	DP2	USBDP
B7	DN2	USBDM
B8	SBU2	
B9	V-BUS[1]	V_USB (5.0V)
B12	GND[1]	GND

Table 7.2 USB-C connector CN2

7.3 Power Supply Connector CN3

Please refer to 3 Power Supply for details on the function of this connector.

Table 7.3 Power supply	connector CN3
------------------------	---------------

Pin	Function
1	GND
2	-
3	+12V
4	+12V

7.4 Voltage Output Connector CN4

Please refer to *3.1 Power Management IC (PMIC)* for details on the function of this connector.

Table 7.4 Voltage output connector CN4

Pin	Function	
1	V_LDO4	
2	GND	

7.5 CAN Connector CN5

Please refer to 6.3 CAN FD Interface for details on the function of this connector.

Table 7.5 CAN connector CN5

Pin	Function
1	CAN_H
2	CAN_L
3	GND

7.6 Extension CLIN Connector CN6

Please refer to 6.4 LIN Interface for details on the function of this connector.

Table 7.6 LIN connector CN6

Pin	Function
1	LIN
2	LIN_BAT
3	GND

7.7 PMOD Connectors CN7 and CN8

Please refer to 6.6 PMOD Connectors for details on the function of these connectors.

Pin	GPIO (type 1)		Exp. GPIO (Exp. GPIO (type 1A)		oe 2)	Exp. SPI (t	Exp. SPI (type 2A)	
	PMOD signal	MCU signal	PMOD signal	MCU signal	PMOD signal	MCU signal	PMOD signal	MCU signal	
1	GPIO	P20_2	GPIO	P20_2	CS	MSPI8CSS0	CS	MSPI8CSS0	
2	GPIO (PWM)	P20_0	GPIO (PWM)	P20_0	MOSI	MSPI8SO	MOSI	MSPI8SO	
3	GPIO	P20_1	GPIO	P20_1	MISO	MSPI8SI	MISO	MSPI8SI	
4	GPIO	P20_4	GPIO	P20_4	SCK	MSPI8SC	SCK	MSPI8SC	
5	GND	GND	GND	GND	GND	GND	GND	GND	
6	VCC	V_LDO2	VCC	V_LDO2	VCC	V_LDO2	VCC	V_LDO2	
7			GPIO	P20_8			GPIO (INT)	IRQ12	
8			GPIO (PWM)	P20_10 TAUD0O15			GPIO (RESET)	P20_10 TAUD0O15	
9			GPIO	P20_3			GPIO (CS2)	P20_3 MSPI8CSS1	
10			GPIO	P20_5			GPIO (CS3)	P20_5 MSPI8CSS2	
11			GND	GND			GND	GND	

Table 7.7 PMOD0 connector CN7

12	 	VCC	V_LDO2	 	VCC	V_LDO2

Table 7.8 PMOD1 connector CN8

Pin	Exp. SPI (type 1)		Exp. UART	(type 1A)	I2C (type 6)	
	PMOD signal	MCU signal	PMOD signal	MCU signal	PMOD signal	MCU signal
1	GPIO	P00_4	GPIO	P00_4	NC (INT)	IRQ7
2	gpio (pwm)	P00_5 TAUD0O5	gpio (pwm)	P00_5 TAUD0O5	NC (RESET)	P00_5
3	GPIO	P00_6	GPIO	P00_6	SCL	RIIC1SCL
4	GPIO	P00_7	GPIO	P00_7	SDA	RIIC1SDA
5	GND	GND	GND	GND	GND	GND
6	VCC	V_LDO2	VCC	V_LDO2	VCC	V_LDO2
7			GPIO	P22_8		
8			GPIO (PWM)	P22_9 (TAUD2O11		
9			GPIO	P22_11		
10			GPIO	P22_12		
11			GND	GND		
12			VCC	V_LDO2		

7. Connectors

7.8 Expansion Connectors CN9 – CN12

Please refer to *6.2 Expansion Connectors* for details on the function of these connectors.

Table 7.9 Extension connector CN10 and	CN11
--	------

	C	N10	CN11		
Pin	RH850 Port	Arduino Function	RH850 Port	Arduino Function	
1	Not connected	NC	AN00_0	A0	
2	V_LDO2 (3.3V)	IOREF	AN00_1	A1	
3	RESET#	RESET	AN00_2	A2	
4	V_LDO2 (3.3V)	3V3	AN00_3	A3	
5	V_LDO4 (5.0V)	5V	P00_2 / RIIC0SDA	A4 / SDA	
6	GND	GND	P00_1	A5 / SCL	
7	GND	GND			
8	Not connected	VIN			

Table 7.10 Extension connector CN9 and CN12

	(CN9	CN12		
Pin	RH850 Port	Arduino Function	RH850 Port	Arduino Function	
1	P11_0	D8	P02_5 / RLIN30RX	D0 / RX	
2	P11_1	D9	P02_6 / RLIN30TX	D1 / TX	
3	P11_7 / MSPI0CSS0	D10 / CS	P02_0 / IRQ6	D2	
4	P11_9 / MSPI0SO	D11 / MOSI	P02_7 / IRQ7	D3	
5	P11_4 / MSPI0SI	D12 / MISO	P02_3 / TAUDIO10	D4	
6	P11_5 / MSPI0SC	D13 / SCK	P02_4 / TAUDIO11	D5	
7	GND	GND	AN25_0	D6	
8	V_LDO4 (5.0V)	AREF	AN25_1	D7	
9	P00_2 / RIIC0SDA	SDA			
10	P00_1 / RIIC0SCL	SCL			

8. Dimensions

Figure 7.1 Mechanical dimensions

9. Schematics

CAUTION

The schematics shown in this document are not intended to be used as a reference for mass production. Any usage in an application design is in sole responsibility of the customer.

The following components described in the schematics are not provided with the board upon delivery:

- Capacitors: C3, C17, C19, C22, C74, C75, C107
- Resistors: R22, R23, R131
- 2-pin connector: CN4
- 3-pin connectors: CN5, CN6
- 6-pin connector: CN11
- 8-pin connectors: CN10, CN12
- 10-pin connector: CN9

The above components are crossed out in the schematics.

9.1 RH850/U2B10

R20UT5516ED0100 Rev.1.00 April 17, 2025

9.2 Power Management IC RAA271084

R20UT5516ED0100 Rev.1.00 April 17, 2025

9.3 Interfaces

R20UT5516ED0100 Rev.1.00 April 17, 2025

Revision History

		Description	Description	
Rev.	Date	Page	Summary	
V1.00	2025-04-17	-	Initial release for RH850/U2B10 target board with RAA271084 PMIC	

RH850/U2B10 Target Board with RAA271084 Power Management IC User's Manual: Hardware

Publication Date: Rev.1.00 April 17, 2025

Published by: Renesas Electronics Corporation

SALES OFFICES

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Corporation

http://www.renesas.com

 Renesas Electronics Corporation

 TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan

 Renesas Electronics America Inc.

 1001 Murphy Ranch Road, Milpitas, CA 85035, U.S.A.

 Tei: +1-108-32-8888, Fax: +1-408-43-551

 Renesas Electronics Canada Limited

 9251 Yongs Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3

 Tei: +1-905-237-2004

 Renesas Electronics Change CombH

 Arcadiastraser 10, 40-472 Dusseldorf, Germany

 Tei: +39-211-6503-0, Fax: +49-211-6503-1327

 Renesas Electronics (Shangha) Co., Ltd.

 Ronesa Stectronics (Shangha) Co., Ltd.

 Ronit 101-101, Floor 1, Building 7, Yard No. 7, 8th Street, Shangdi, Haidian District, Beijing 100085, China

 Tei: +86-1-2325-1155, Fax: +86-21-2226-0999

 Renesas Electronics (Shangha) Co., Ltd.

 Unit 101-1161-11617, Tower 2, Grand Contury Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

 Tei: +886-24-2226-0888, Fax: +86-24-2226-0899

 Renesas Electronics Singapore Place, 103 Prince Edward Road West, Mongkok, Kowloon, Hong Kong

 Tei: +862-415-5800, Fax: +86-24-2226-0899

 Renesas Electronics Singapore Place, 104

 137, No. 363, Fu Shing North Road, Taipei 10543, Taiwan

 Tei: +862-415-5800, Fax: +86-24-3300

 Renesas Electronics Malaysia Sdn.Bhd.

