
1 Renesas Electronics Corporation. All rights reserved.

Cover

U
ser’s M

anual

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

www.renesas.com

Renesas Microprocessor
RZ Series

System Release Package

User’s Manual: Hardware and Software

Rev.1.10 Jun.04.2025

© 2025 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property of
their respective owners.

https://www.renesas.com/
http://www.renesas.com/contact/

© 2025 Renesas Electronics Corporation. All rights reserved.

Trademarks (continued)
For the “Cortex” notation, it is used as follows;
— Arm® Cortex®-A55
— Arm® Cortex®-M33
Note that after this page, they may be noted as Cortex-A55 and Cortex-M33 respectively.

Examples of trademark or registered trademark used in the RZ/G2L SMARC Module Board RTK9744L23C01000BE User’s Manual: Hardware;
 CoreSight™: CoreSight is a trademark of Arm Limited.
 MIPI®: MIPI is a registered trademark of MIPI Alliance, Inc.
 eMMC™: eMMC is a trademark of MultiMediaCard Association.

Note that in each section of the Manual, trademark notation of ® and TM may be omitted.
All other trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of Microprocessing Unit and
Microcontroller Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on
the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for
the products.

1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device

operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs.

Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can

easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or

conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be

grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed

circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the

states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied

to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a

similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power

is supplied until the power reaches the level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a

signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause

degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products

are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in

the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin

state as an input signal become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during

program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an

external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when

switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until

the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area

between VIL (Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering

the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and

VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access

these addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to

problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number

might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics,

such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a

different part number, implement a system-evaluation test for the given product.

 User’s Manual

R12UZ0177EU0110 Rev.1.10 Page 5 of 179
Jun.04.25

Renesas RZ Family / RZ/G Series

Renesas System Release Package
Introduction
This user manual describes the unified system release package. The system release package contains
supported hardware and software.

The result is a consistent experience across the different platforms. This streamlines the development
effort for user applications.

Package Contents
The system release package contains the following:

• Multiple Images that are geared to general baseline use-cases.
• Yocto build scripts.
• Host side tools.
• Environmental files.
• SDKs for all images
• Documentation which includes
• User manual
• Copyright & License information

Features
The following are the general features of the system release package.

• Architected to support multiple platforms by the same image and tools over time.
• Common frameworks
• Open-source packages using GPLv2 packages
• Carefully considered base images that allow for a quick starting point to build a product.
• Complete set of features working out of the box.
• Seamless out of box experience.
• Automated Yocto build scripts that can rebuild the entire package with only a few commands.
• Host tools to flash the firmware in multiple processes.
• Tools supporting both Linux and Windows workflows.
• Docker friendly build scripts.
• Extensive documentation covering the hardware, software and application development and

deployment.

 User’s Manual

R12UZ0177EU0110 Rev.1.10 Page 6 of 179
Jun.04.25

Contents

Introduction ... 5

Package Contents ... 5

Features.. 5

Glossary.. 12

1. Overview ... 13
1.1 Supported Distributions... 13
1.1.1 Yocto Images .. 13
1.1.2 Renesas Custom Images ... 13
1.1.3 Ubuntu Images .. 14
1.2 Supported Platforms ... 15

2. Introduction .. 16
2.1 Package Hierarchy .. 17
2.2 Source Repositories .. 19

3. Required Resources .. 20
3.1 Development Tools and Software ... 20
3.2 Hardware .. 20

4. Quick Start ... 21
4.1 SD-MMC Card Flashing .. 21
4.2 RZ/G2L-SBC ... 22
4.2.1 Hardware Requirements ... 22
4.2.2 Essential Hardware Setup .. 22
4.2.3 Complete Hardware Setup ... 23
4.2.4 Booting .. 24
4.2.5 Known Hardware and Functional Limitations on RZ/G2L-SBC .. 24

5. General Operational Flow .. 27
5.1 Arm Exception Levels ... 27
5.2 Secure and Non-Secure Runtime ... 28
5.3 Arm Trusted Firmware-A (TF-A) ... 28
5.3.1 Components of Boot ... 28
5.3.2 Trusted Boot Flow ... 31

6. OE Build .. 32
6.1 Yocto OE Build .. 32

 User’s Manual

R12UZ0177EU0110 Rev.1.10 Page 7 of 179
Jun.04.25

6.1.1 Yocto Build Host Environment Setup.. 32
6.1.2 Initiate Yocto Build .. 34
6.1.3 Collect the Build Output .. 34
6.2 Ubuntu OE Build ... 41
6.2.1 Ubuntu Build Host Environment Setup ... 41
6.2.2 Initial Ubuntu Build .. 43
6.2.3 Collect the Build Output .. 44

7. Creating A Bootable SD Card On the Host Machine .. 50
7.1 Linux Host ... 50
7.2 Windows Host ... 51

8. Programming / Flashing Firmware ... 52
8.1 RZ/G2L-SBC ... 52
8.1.1 Hardware Setup .. 53
8.1.2 Flash Bootloader on U-Boot Console ... 53

9. Accessing Supported Features .. 55
9.1 Supported Features in Yocto Images ... 55
9.1.1 QT Demo Applications .. 55
9.1.2 Quickboot Images and Network Configurations ... 57
9.1.3 40-Pin IO Expansion Interface .. 59
9.1.4 Accessing PWM Timers .. 64
9.1.5 Wi-Fi 802.11 Module ... 67
9.1.6 Onboard Audio Codec with Stereo Jack ... 70
9.1.7 MIPI DSI Display Touch Panel ... 71
9.1.8 Playing Video Files on RZ/G2L-SBC .. 75
9.1.9 MIPI CSI2 with Arducam 5MP OV5640 Camera Module ... 76
9.1.10 Package Management .. 79
9.1.11 Install Packages Using Python3-Pip ... 81
9.1.12 Python GUI Programming with Tkinter ... 82
9.1.13 Chromium Web Browser ... 84
9.2 Supported Features in Ubuntu Images ... 84
9.2.1 Accessing Supported Features in Ubuntu LXDE .. 85
9.2.2 Accessing Supported Features in Ubuntu Core ... 99

10. Network Boot and TFTP .. 102
10.1 TFTP Server Setup ... 102
10.2 NFS Server Setup ... 103
10.3 U-Boot DHCP IP Configuration ... 103
10.4 TFPT Boot ... 104

 User’s Manual

R12UZ0177EU0110 Rev.1.10 Page 8 of 179
Jun.04.25

11. Using SSH and SCP for Remote Access and File Transfers 108
11.1 Differences Between Dropbear and OpenSSH .. 108
11.2 Using OpenSSH .. 108
11.3 SSH Access .. 109
11.3.1 SSH from Windows Host .. 109
11.3.2 SSH from Linux Host .. 110
11.4 SCP (Secure copy protocol) ... 111
11.4.1 SCP from Windows Host .. 111
11.4.2 SCP from Linux Host .. 112
11.5 Switching from OpenSSH to Dropbear ... 112

12. Building the eSDK .. 113

13. Application Building, Packaging, and Running ... 115
13.1 How to extract the eSDK .. 115
13.2 Build a sample application using the eSDK with CMake .. 116
13.3 Package Programs with Cpack ... 118
13.3.1 Package a C Program .. 118
13.3.2 Package a Python Program .. 121
13.4 Run sample applications ... 123
13.5 Install and Run Debian application packages by using DPKG ... 124

14. Remote Debugging using GDBServer ... 126
14.1 Prepare GDB on the Host Machine .. 126
14.2 Install GDBServer on RZ/G2L-SBC .. 126
14.3 Remote Debugging Example .. 127
14.3.1 Remote Debugging on CLI ... 127
14.3.2 Remote Debugging on Visual Studio Code .. 130
14.3.3 Remote Debugging on Eclipse IDE .. 134
14.4 Postmortem Analysis Example ... 140
14.4.1 Postmortem Analysis on CLI .. 140
14.4.2 Postmortem Analysis on Visual Studio Code ... 142
14.4.3 Postmortem Analysis on Eclipse .. 144

15. Functional Overview .. 146
15.1 RZ/G2L-SBC Board .. 146
15.1.1 RZ/G2L SoC MPU Architecture .. 148
15.1.2 Overview ... 148
15.1.3 Physical View .. 149
15.1.4 Overview of Connectors ... 150
15.1.5 Power Supply .. 152

 User’s Manual

R12UZ0177EU0110 Rev.1.10 Page 9 of 179
Jun.04.25

15.1.6 Power Management Integrated Circuit- PMIC .. 154
15.1.7 RESET Control ... 154
15.1.8 Clock Configuration... 155
15.1.9 Peripheral Interface... 156
15.1.10 Memory ... 165
15.1.11 GPIO Internals .. 167

16. Appendix ... 170
16.1 Factory Firmware Flashing Using Serial Downloader (SCIF) Mode ... 170
16.2 RZ/G2L-SBC ... Error! Bookmark not defined.
16.2.1 Required Hardware ... 171
16.2.2 Flashing Bootloader/Firmware Using Linux Host ... 171
16.2.3 Flashing Bootloader/Firmware Using Windows Host ... 173
16.3 How To Get the Console After Bootup ... 174

17. Troubleshooting ... 175
17.1 Unable To Support Scripts for Bootloader/Firmware Flashing On Linux 175
17.2 Flashing Tools Failing Halfway ... 175
17.3 Running Many Qt Demo Apps Slow Down the System .. 175
17.4 DHCP Failure .. 175
17.5 ‘Ifconfig’ doesn’t list the Wi-Fi interface .. 176
17.6 IP Configuration .. 176
17.7 Stuck in U-boot with error “Bad Linux ARM64 Image magic!” .. 176

18. References .. 177
18.1 Git Repositories .. 177
18.2 RZ/G2L SoC ... 177
18.3 External Resources ... 177
18.3.1 QT Development ... 177
18.3.2 Yocto Project ... 177
18.3.3 Linux Kernel Documentation ... 177
18.3.4 Arm Developer Documentation ... 177
18.3.5 JEDEC DDR4 ... 178
18.3.6 PMOD Specification .. 178
18.3.7 Essential Linux Tutorial ... 178
18.3.8 Packaging ... 178
18.3.9 Using Extensible SDK ... 178
18.3.10 Install Eclipse IDE ... 178
18.3.11 Linux Kernel Development .. 178
18.3.12 Linux Kernel Driver Development ... 178

 User’s Manual

R12UZ0177EU0110 Rev.1.10 Page 10 of 179
Jun.04.25

Revision History .. 179

RZ Family / RZ/G Series RZ/G2L-SBC, Single Board Computer

R12UZ0177EU0110 Rev.1.10 Page 11 of 179
Jun.04.25

Glossary
Terms Description

802.11 - Wi-Fi The technical name of the standard specification for Wi-Fi is 802.11. This is also the working group
that develops and maintains the standards for Wi-Fi that everyone conforms to.

ADC – Analog to
digital converter

A hardware unit that converts an input analog signal to a digital value by measuring its immediate
voltage at a fixed resolution.

BSP – Board
Support Package

BSP is an essential software package that has bootloaders, Linux kernel, a minimal user space
and programming tools, allowing the device to boot. This core software allows the system to boot
into an operating system, enables all the features and allows application development.

CAN – Controller
area network

This is a standardized communication protocol used widely on automotive and aerospace
systems. It connects various ECU’s known as nodes and uses two wires / lines as a pair carrying
differential signals. This method of signaling allows long length cables to interface different
systems on the machine with reliable signals. The CAN protocol has multiple specifications and
is an ISO standard. It supports flexible data rates reaching as high as 8Mbps. Most automobiles
have CAN networks in them, and it is a part of OBD-2 specification which is mandatory law in
most of the world for automotive machines like cars.

DAC – Digital to
analog converter

A hardware unit that takes digital value and exerts a corresponding analog voltage on an output
line.

Firmware
For the scope of this document, the term ‘firmware’ refers to the low-level software that runs before
an OS takes over. This includes arm trust zone, optee & u-boot at the very least. It also refers to
the standalone binaries that run on the embedded real-time core like the CM33.

I2C - Inter
Integrated circuit
protocol:

This is a communication protocol used to implement digital communication between two devices
(chips / board) using only two wires. It is a standardized specification and is used widely to
implement low to medium data rate data transfers both among devices on the same circuit board
as well as external add on peripheral boards. I2C can be implemented across a few meters in
distance. I2C is half duplex meaning only one device can communicate at a time. Speeds range
from 100 Kbps to 3Mbps while 100 / 400 Kbps are the typical operating mode. The other major
advantage of this protocol is that it allows many devices to be on the same two lines reducing the
cost of the interfacing. This is ideal when there are many devices like sensors that transfer limited
amounts of data periodically. I2C can support up to 127 independent directly addressable devices
on the same channel.

IEEE- Institute of
Electrical and
Electronics
Engineers

IEEE is the world's largest technical professional organization dedicated to advancing technology
for the benefit of humanity. It is a major technical organization covering vast fields of engineering
and a major standards organization.

MCU – Micro
controller unit

A micro controller unit is a self-contained unit that has the core processing as well as core memory
within the same device. It often contains the core software programmed into the chip itself. This
allows the device to start executing with minimal external devices / circuitry. Some microcontrollers
can be powered on a mere breadboard.

MPU – Micro
processing unit

An MPU is a processing unit: a CPU that contains only the processing core and interfaces for
external peripherals. A microprocessor is usually a powerful CPU in its class. However, it requires
a very large number of external circuitries to achieve its functionality like external memory, disk
drives, etc.

PMIC – Power
management IC

This is a specific chip on the board that manages multiple power supply lines at various levels. It
manages the respective supplies along with sequences which control power on and power off
cycles.

RZ Family / RZ/G Series RZ/G2L-SBC, Single Board Computer

R12UZ0177EU0110 Rev.1.10 Page 12 of 179
Jun.04.25

SBC – Single
board computer

It is a standard term that means a tiny computer in the form factor of a single circuit board
usually just inches in area. This board is self-sufficient in every way and can give you a
usable computer with just a power supply, keyboard, mouse, and display.

SiP – System in
Package

SiP is a device where multiple silicon IP’s are combined to form a single device. It is one of the
densest chips where the external devices like flash memory, DDR RAM and even Wi-Fi module
are all packaged into a single chip. These are used in very niche application that require ultra
small size and low thermal requirement.

SoC- System on
Chip

A system on chip is a complete hardware platform packaged on to a single chip. It contains the
CPU, internal fast memory, interrupt controllers, pin controllers, ROM memory, and a few other
peripherals and sensors; all packaged into the same IC. An SoC despite the high level of
integration does not necessarily power on and run by itself. Microcontrollers are often independent
SoC’s that can work on their own. However, SoC’s often combine MPU’s and MCU’s into the same
chip. This allows very powerful systems to be built in a compact form factor but requires external
supporting peripherals like DDR RAM and flash memory and power management IC’s.

SPI - Serial
Peripheral
interface

SPI is another standard interface used to interface other devices on the board or attaching
peripheral boards. It specifies 3 wires / lines to achieve fast full duplex data transfer. Two devices
can send / receive data at the same time in this protocol. The protocol is also a high-speed protocol
where typical operating speeds start at 5Mbps and go over 50Mbps. This high speed allows
interfacing high speed devices like memory, Wi-Fi, subsystems made of independent
microcontrollers, etc. While only 3 lines are needed to interface two devices, a fourth line is used
as a device selector allowing multiple devices to share the same interface. However, only two
devices may communicate at a time.

RZ Family / RZ/G Series 1. Overview

R12UZ0177EU0110 Rev.1.10 Page 13 of 179
Jun.04.25

1. Overview
The Renesas System Release Package is a unified software package that aims to provide an easy-to-
use yet comprehensive software platform for the Renesas RZ series of SoC-based boards. It aims to
provide fully functional base images for supported reference designs, along with easy-to-use
development and programming tools that allow the user to quickly get started on their application
development. This package aims to provide a standardized and familiar workflow for a similar
experience across a variety of Renesas RZ SoC-based product platforms.

This package provides comprehensive documentation, Quick start guides, multiple Linux-based
distribution images, automated tools and scripts, and an ongoing expansion of supported products.

1.1 Supported Distributions
The System Release package supports a set of both Yocto images and custom images to enable the
user to start quickly on their embedded end application. The large collection of images in prebuilt format
provides a wide set of capabilities. This release focuses on Yocto images.

1.1.1 Yocto Images
This section lists the standard Yocto images, offering a variety of configurations that cater to different
embedded use cases. From a minimal bootable environment to fully graphical systems, these images
provide the essential building blocks for embedded Linux development.

Table 1. Yocto images

Distribution Image file Version Description
Yocto minimal core-image-minimal dunfell-

23.0.26
A basic image that contains the
minimal set of components
required to boot the device. It
focuses on essential system
functions without extra tools or
features.

Yocto BSP core-image-bsp dunfell-
23.0.26

Extends core-image-minimal with
additional utilities and tools,
providing a lightweight
environment for system validation,
hardware diagnostics, and basic
development.

Yocto weston core-image-weston dunfell-
23.0.26

A standard graphical image with
Wayland and Weston support for
embedded GUI applications.

Yocto Qt core-image-qt dunfell-
23.0.26

Extends core-image-weston with
the Qt LGPL version (Qt5
framework) enabled, allowing for
Qt-based application development
and execution in a Wayland-based
environment.
Additionally, this image provides
some example applications (demo
apps) to quickly deploy Qt
applications on the development
platform.

1.1.2 Renesas Custom Images
This section presents Renesas-specific custom images, which are customized and optimized for
Renesas products. These images offer specialized features, including fast booting and tailored
environments for both graphical and CLI-based applications.

RZ Family / RZ/G Series 1. Overview

R12UZ0177EU0110 Rev.1.10 Page 14 of 179
Jun.04.25

Table 2. Renesas custom images

Distribution Image file Version Description
Renesas CLI Base renesas-core-image-cli dunfell-

23.0.26
Based on core-image-bsp, this
image offers a CLI environment for
Renesas hardware development
without graphical interfaces.
Besides the useful tools inherited
from the core-image-bsp, this
image also contains new packages
for SBC (Single Board Computer)
development. For example,
package managers (apt, dpgk),
network utilities for Bluetooth, Wi-
Fi.

Renesas
Quickboot CLI

renesas-quickboot-cli dunfell-
23.0.26

This image has the same system
functionality as the renesas-core-
image-cli but with Quickboot
enabled, allowing for faster boot
times and efficient system
validation on a CLI environment.

Renesas Weston
(Qt5)

renesas-core-image-
weston

dunfell-
23.0.26

Renesas customized core image
based on the core-image-weston,
with Qt5 framework support (no QT
demo apps included).
This image offers a full graphical
environment for Renesas hardware
development and all the useful
tools from the renesas-core-image-
cli.

Renesas
Quickboot
Wayland

renesas-quickboot-
wayland

dunfell-
23.0.26

This image has the same system
functionality as the renesas-core-
image-weston but with Quickboot
enabled, allowing for faster boot
times and efficient system
validation on a graphical
environment.

Note: Quickboot is a trade term that refers to the specific optimizations that are performed to achieve
ultra-low start-up times in specific images. Depending on the board architecture, the startup time can
be as low as 2s. While there is no assurance of the startup time in these images for every platform,
these images are the most optimized on our platforms.

1.1.3 Ubuntu Images
This section presents custom Ubuntu-based images tailored for embedded systems, offering a variety
of configurations to suit both headless and graphical environments. These images are optimized for
performance and ease of use, providing a solid foundation for deploying embedded applications on
Renesas platforms.

Table 3. Renesas Ubuntu images

Distribution Image file Version Description
Ubuntu Core ubuntu-core-image-qt

ubuntu-
base-22.04

A minimal, headless Ubuntu image
tailored for embedded systems. It
includes Qt framework support for
developing Qt-based applications
in a resource-efficient environment.

RZ Family / RZ/G Series 1. Overview

R12UZ0177EU0110 Rev.1.10 Page 15 of 179
Jun.04.25

Ubuntu LXDE ubuntu-lxde-image-qt ubuntu-
base-22.04-
base

A lightweight Ubuntu image
featuring the LXDE desktop
environment, providing a graphical
interface while maintaining low
resource consumption. This image
also includes Qt framework support
for GUI development.

1.2 Supported Platforms

Platform SoC OPN Description
RZ/G2L-SBC RZ/G2L US157-G2LSBCPOCZ RZ/G2L-based Pi-

compatible SBC.

https://www.renesas.com/en/products/microcontrollers-microprocessors/rz-mpus/rzg2l-sbc-rzg2l-single-board-computer
https://www.renesas.com/en/products/microcontrollers-microprocessors/rz-mpus/rzg2l-general-purpose-mpu-dual-core-arm-cortex-a55-cpus-and-single-core-cortex-m33-cpu-3d-graphics-and
https://www.renesas.com/en/products/microcontrollers-microprocessors/rz-mpus/rzg2l-sbc-rzg2l-single-board-computer

RZ Family / RZ/G Series 2. Introduction

R12UZ0177EU0110 Rev.1.10 Page 16 of 179
Jun.04.25

2. Introduction
The system release package provides a unified and consistent experience across multiple RZ platforms
by providing prebuilt binaries that are as universal as possible, along with all the tools and
documentation necessary to work with these platforms. To enable the platforms, the package contains
a variety of images that provide the most common starting points for embedded application
development. The workflow envisioned is provided below.

Figure 1. Embedded application workflow for RZ System release package

The package also comes with automated scripts that let users rebuild the entire package on the user
end as well as modify the existing images as needed. The eSDK’s and usage of the wic file formats for
the images allow the tweaking and generation of new images without rebuilding the entire package.
This lets users focus on the embedded applications instead of the platform's intricacies.

RZ Family / RZ/G Series 2. Introduction

R12UZ0177EU0110 Rev.1.10 Page 17 of 179
Jun.04.25

2.1 Package Hierarchy
The System Release Package is organized into two archives. The first archive is the primary package
itself containing the images, build scripts, documentation, etc. The second archive is the SDK archive.
The package is arranged into an intuitive file hierarchy that is easy to follow. There are ‘Readme.md’
files at every location to help with understanding of the contents. The Readme.md file at the root of the
hierarchy is a comprehensive guide that gives an overview of the entire package and how to use it.

Below is an overview of the package hierarchy, followed by a description of the contents and purpose
of each directory/file:

.
├── host
│ ├── build
│ ├── env
│ ├── Readme.md
│ ├── src
│ └── tools
├── license
│ ├── Disclaimer051.pdf
│ └── Disclaimer052.pdf
├── r11qs0062eu0110-rz-srp-yocto3-um-quick-start-guide.pdf
├── r12uz0177eu0110-rz-srp-yocto3-um.pdf
├── README.md
├── RZ_System_Release_Package_Evaluation_license.pdf
└── target
 ├── env
 ├── images
 └── Readme.md

9 directories, 9 files

host/: This directory holds all the tools, scripts, and artifacts needed on the host machine for building
and preparing the system images.

- build/: Contains build artifacts (manifests and test data).
Key files:

o Manifest file: Files like core-image-bsp-rzpi-<timestamp>.rootfs.manifest lists the
contents of the generated root file system.

o Test data: Files with the *.testdata.json extension that contains metadata or test
results of the said image.

- env/: Provides environment configuration files used during the build or runtime.
Key files:

o .env Files: Examples include core-image-bsp.env or core-image-minimal.env, which
define variables and configuration parameters for different image variants.

- src/: Holds build scripts, source code, and patches that are used to build the package.
Key files:

o rz-cmn-srp/: The folder that contains artifacts to build Yocto and Ubuntu images.
• Patches: Located in the patches/ subdirectory, these files (For example,

0001-...patch) apply for necessary modifications.

RZ Family / RZ/G Series 2. Introduction

R12UZ0177EU0110 Rev.1.10 Page 18 of 179
Jun.04.25

• Build scripts: The master script rzsbc_builder.sh automates the build process
for both Ubuntu and Yocto packages, handling setup, configuration, and
image generation based on user-selected build options.

• Configuration files: site.conf, which is used to set up a specific build tag.
• images.json: Contains the available build image options grouped by build

type, including Yocto images, Ubuntu images, and static image collections
(all-yocto-images, all-ubuntu-images, all-supported-images).

• git_patch.json: Contains json keys and repository configuration such as: url,
branch, tag, commit, repo type and patch paths to apply.

o ubuntu/: Main folder for Ubuntu-based image generation for RZ/G2L-SBC.
• config/: The folder that holds configuration files for different Ubuntu variants.
• docs/: Contains documentation detailing supported features and usage

instructions for each Ubuntu image variant.
• script/: The folder that contains all scripts related to Ubuntu image creation.
• config.ini: Configuration file that defines key parameters for the Ubuntu image

build process, such as the Ubuntu variant, base image, output filenames, and
system settings.

• setup_ubuntu_environment.sh: Main entry-point script (acts like a
dispatcher/header). It sources and sequences logic from the modular scripts
under script/. It does not build anything by itself.

- tools/: Provides utilities to assist with tasks such as bootloader flashing, uload-bootloader
flashing, or SD card image creation.
Key files:

o bootloader-flasher: Contains scripts for flashing the bootloader (with sub-directories
for Linux and Windows, each with their own instructions via Readme.md files).

o sd-creator: Utilities for creating SD card images for Linux and Windows.
o uload-bootloader: Includes automated host-side scripts to flash the qspi boot firmware

(IPL) using the images from the SD card.

license/: Contains all the supporting legal documents and licensing agreements related to the release
package.

target/: This directory includes all the files needed for deploying the system on target hardware.
- env/: Contains environment configuration files that are used during boot-up on the target

device.
Key file:

o uEnv.txt: A file that holds boot configuration parameters.
- images/: Holds the final system images and associated files required for the target device.

Key files:
o Firmware files: Files like bl2_bp-rzpi.bin and bl2-rzpi.bin are used to boot the device.
o System images: Files with the ‘.wic’ extension corresponding to different build

variants (BSP, minimal, Qt, Weston, Renesas images).
o dtbs folder: Directory containing ‘.dtb’ and ‘.dtbo’ files necessary for hardware

configuration.
o rootfs folder: Compressed archives (For example, core-image-bsp-rzpi.tar.bz2)

contain the root file system for each image.
- README.md (root level): This is the comprehensive guide that provides an overview of the

entire release package, including instructions on how to use, build, and deploy the system.

RZ Family / RZ/G Series 2. Introduction

R12UZ0177EU0110 Rev.1.10 Page 19 of 179
Jun.04.25

2.2 Source Repositories
The system release package is maintained in public repositories that hold all the latest work that has
been released. The table below describes the public repositories that are the basis for the system
release package.

Table 4. Public repositories for the system release package

Name Type URL Description
rz-build-
scripts

Yocto build
automation

Renesas-SST/rz-build-
scripts: Build scripts for rz
projects

Custom Yocto build script that
downloads the base Yocto
package and other downloaded
zip files, arranges the layers,
applies relevant meta layers,
sets up the environment, and
initiates a build.

meta-
renesas

Yocto meta layer Renesas-SST/meta-
renesas: Yocto meta layer
for Renesas System
Solutions

Yocto meta layer supports RZ
SoC platforms.

linux-rz Linux kernel Renesas-SST/linux-rz:
Linux kernel for System
and Solutions Products

This repo contains the kernel
fork with RZ SoC patches.

u-boot Boot loader Renesas-SST/u-boot: A u-
boot suporting System &
Solutions Products

A configuration file contains
JSON keys and repository
configuration such as: url,
branch, tag, commit, repo type,
and patch paths to apply.

rz-atf Arm Trusted
Firmware-A

Renesas-SST/rz-atf: Arm
Trusted Firmware
implementation for System
& Solutions products

Arm trusted the firmware repo
with the RZ SoC patch.

flash-writer Firmware flashing
tool

Renesas-SST/flash-writer:
Serial flashing utility to load
into blank boards
supporting System &
Solutions Products

This repository contains the
code for an essential tool that
is used as the base for flashing
blank boards in the factory for
the first time or recovering
bricked boards.

While the public repositories are mostly open source, the RZ SoCs contain IPs that are licensed
differently, and those functionalities require specific packages to be downloaded from the Renesas
website through login. These are mostly free-to-download packages and contain their licenses, which
are non-standard. The build scripts can identify and point to the missing packages and their download
URLs. You can download these scripts manually and copy them to the workspace.

https://github.com/Renesas-SST/rz-build-scripts
https://github.com/Renesas-SST/rz-build-scripts
https://github.com/Renesas-SST/rz-build-scripts
https://github.com/Renesas-SST/meta-renesas
https://github.com/Renesas-SST/meta-renesas
https://github.com/Renesas-SST/meta-renesas
https://github.com/Renesas-SST/meta-renesas
https://github.com/Renesas-SST/linux-rz
https://github.com/Renesas-SST/linux-rz
https://github.com/Renesas-SST/linux-rz
https://github.com/Renesas-SST/u-boot
https://github.com/Renesas-SST/u-boot
https://github.com/Renesas-SST/u-boot
https://github.com/Renesas-SST/rz-atf
https://github.com/Renesas-SST/rz-atf
https://github.com/Renesas-SST/rz-atf
https://github.com/Renesas-SST/rz-atf
https://github.com/Renesas-SST/flash-writer
https://github.com/Renesas-SST/flash-writer
https://github.com/Renesas-SST/flash-writer
https://github.com/Renesas-SST/flash-writer
https://github.com/Renesas-SST/flash-writer

RZ Family / RZ/G Series 3. Required Resources

R12UZ0177EU0110 Rev.1.10 Page 20 of 179
Jun.04.25

3. Required Resources

3.1 Development Tools and Software
The following tools are used for development:

• SEGGER JLink software (SEGGER - The Embedded Experts - Downloads - J-Link / J-Trace).
• Tera Term (Download File List - Tera Term - OSDN) on Windows PC for accessing UART.
• Minicom on the Ubuntu host machine for accessing the UART on Linux.
• Balena Etcher

3.2 Hardware
The following hardware would be needed to work with the RZ/G2L-SBC:

• Renesas RZ family SoC-based board from the supported list.
• Windows PC with Tera Term software and admin privileges.
• Ubuntu 20.04 host environment as native install, VM, or Docker environment: For working on

Yocto distros.
• UART TTL cables (Raspberry Pi compatible) featuring FTDI chipset. We do not recommend

PL2302-based UART TTL cables, as they have demonstrated issues with Windows drivers.
• Micro USB cables to interface with a host machine.
• Jumper wires/plugs.
• Mini-HDMI to HDMI display interface cable.
• Ethernet cables for networking.
• Power supply that can provide 5V at 3 A with USB-C pins. (not included in the package).
• Waveshare 5” DSI display module with a capacitive touch interface (optional: not included in

the hardware package).
• OV5640 camera module (optional: not included in the hardware package).

https://www.segger.com/downloads/jlink/
https://osdn.net/projects/ttssh2/releases/
https://etcher.balena.io/#download-etcher
https://www.amazon.com/dp/B091FYFNV8/ref=twister_B09PBVTZD8?_encoding=UTF8&th=1
https://www.arducam.com/product/arducam-5mp-mipi-camera-for-rzboard-v2l-with-renesas-rz-v2l-processor/

RZ Family / RZ/G Series 4. Quick Start

R12UZ0177EU0110 Rev.1.10 Page 21 of 179
Jun.04.25

4. Quick Start
This section describes how to quickly get set up and start running the supported platforms with this
release. The following are the essential steps for an SD-MMC card-based boot:

1. Select an image from the list of available images in the section 1.1.
2. Prepare an SD MMC card that has the image programmed onto it.
3. Prepare the hardware with power and debug UART interface. Displaying the connection to

one of the HDMI interfaces is highly recommended, but not essential.
4. Program the firmware using the appropriate scripts and process in the ‘host/tools’ directory of

the package.
5. Boot normally with the SD MMC card.

4.1 SD-MMC Card Flashing
The Linux bootable SD card creation is a very simple process. The idea is to use any filesystem imaging
tool (etcher) to burn the required image’s ‘.wic’ file (core-image-qt.wic for a qt demo image) located in
the ‘target/images’ directory of the release to the sd-mmc card. We recommend installing Balena etcher,
which is available for Linux, MacOS, and Windows.

Figure 2. Balena etcher UI

Steps:

1. Select “Flash from File”.
2. In the popup window, navigate to your release and select one of the chosen image files (core-

image-qt.wic).
3. Then click on ‘Select target,’ and it will list all available devices.
4. Select your SD MMC card.

Be mindful not to select your primary laptop/desktop hard drive.
5. Select ‘Flash’.
6. When flashing is completed, it will automatically dismount the SD MMC card device.

https://etcher.balena.io/#download-etcher

RZ Family / RZ/G Series 4. Quick Start

R12UZ0177EU0110 Rev.1.10 Page 22 of 179
Jun.04.25

7. Insert the SD MMC card into the RZ/G2L-SBC bottom SD MMC card connector.

4.2 RZ/G2L-SBC
This section describes the hardware-specific processes for the RZ/G2L-SBC single-board computer.

Note:

4.2.1 Hardware Requirements
The basic hardware setup consists of the following:

1. RZ/G2L-SBC
2. FTDI RS232 UART cable
3. USB-C 5V 3A+ power supply
4. SD-MMC card (minimum 8 GB)
5. 1080p HDMI display/Waveshare 5” MIPI DSI display touch panel
6. Ethernet cables.
7. OV5640 MIPI CSI camera
8. USB keyboard and mouse
9. 3.5mm Headphone with microphone

4.2.2 Essential Hardware Setup
Figure 3. Essential minimum interfaces show the basic essential hardware setup. We expect a UART
cable and an HDMI display to be available.

Figure 3. Essential minimum interfaces

https://www.renesas.com/en/products/microcontrollers-microprocessors/rz-mpus/rzg2l-sbc-rzg2l-single-board-computer
https://www.renesas.com/us/en/products/microcontrollers-microprocessors/rz-mpus/rzg2l-sbc-rzg2l-single-board-computer
https://www.amazon.com/Touchscreen-Raspberry-Compatible-Raspbian-RetroPie/dp/B091FYFNV8/ref=sr_1_3?crid=3K1QBBJYHG1ID&keywords=waveshare%2B5%22%2Bdsi&qid=1707245876&sprefix=waveshare%2B5%2Bdsi%2Caps%2C195&sr=8-3&th=1
https://www.arducam.com/product/arducam-5mp-ov5640-camera-module-for-renesas-rz-v2l-evaluation-kit/
https://www.amazon.com/Logitech-Wireless-Keyboard-Touchpad-PC-connected/dp/B014EUQOGK/ref=sr_1_4?crid=33FVVZHWTIABG&dib=eyJ2IjoiMSJ9.eRLfEXCz5hs18diT-l0VeJXTwuRLBpfTAxpYh_9zwIwPEWkGhztMsHQKT7rpTkBQ05bweg_1tH1qUC6kEmZPHyc9pVvBiicGJxlgn6ZnoypFjtiW5L16ZjGzis9KlFZqTgjvvrLv7TyHifnK-eoVjPdETb2L9THI4rED_aDdjQrudM3SRDMLx65skQf3KGRQcunYXYjqGHO7dEHDecv-rVWx5sxwjWMh1n3XmdYIOuFOC2KnHrDYDTeKBDsWC6c9OCCgmBtC5rPgW3BUGnlQeOHorPPwon9WL6MZkTTaux8.Lgg800UZ_vm4l8G480JqHnGrcQSkUwsRGUPZsULHKpQ&dib_tag=se&keywords=usb%2Bkeyboard%2Btouch&qid=1725938677&s=electronics&sprefix=usb%2Bkeyboard%2Btouch%2Celectronics%2C166&sr=1-4&th=1

RZ Family / RZ/G Series 4. Quick Start

R12UZ0177EU0110 Rev.1.10 Page 23 of 179
Jun.04.25

4.2.3 Complete Hardware Setup

Figure 4. Complete setup

RZ Family / RZ/G Series 4. Quick Start

R12UZ0177EU0110 Rev.1.10 Page 24 of 179
Jun.04.25

4.2.4 Booting
The booting is straightforward.

1. Insert the MMC card into the MMC port on the bottom side of the RZ/G2L-SBC.
2. Connect the keyboard, mouse, and HDMI display; then insert the USB-C power supply and turn

the power on.
3. You should see the boot log on the UART console and the Weston desktop with qt apps on the

HDMI screen.
4. Click on any of the applications and interact with them.

The image is fully featured and has powerful desktop-grade features. Read further to learn more about
the features packed into the Linux image.

4.2.5 Known Hardware and Functional Limitations on RZ/G2L-SBC

4.2.5.1 Linux (CA55) Side Known Issues
1. HDMI audio
- Status: Unverified

- Description: The functionality of the HDMI audio output has not been tested yet, and its behavior

remains uncertain. Additional development and testing are required to assess its reliability and

performance on the RZ/G2L-SBC.

2. Audio Sampling Rate Limitation
- Status: Limited to 48 kHz

- Description: Due to hardware limitations, the audio subsystem on the A55 side can only support

a 48 kHz sampling rate. This restriction is inherent in the hardware design, preventing the use

of any other audio sampling rates.

3. Onboard Bluetooth (BT) Functionality
- Status: Non-functional (onboard BT only)

- Description: The onboard Bluetooth functionality is currently non-operational due to a schematic
symbol error in the Laird Wi-Fi/BT module. The Bluetooth interface is missing from the module’s
schematic design, preventing Bluetooth connectivity. However, USB Bluetooth functionality
remains operational. This issue requires a hardware revision to enable full Bluetooth functionality
on the onboard module.

4.2.5.2 FreeRTOS/FSP (CM33) Side Known Issues

1. MIPI-CSI2 Camera and Peripherals Accessing Shared I2C1 Bus

In the RZ/G2L-SBC board, the MIPI CSI Camera interface, HDMI Bridge, and MIPI DSI all share the
same I2C1 channel. Due to this hardware constraint, controlling one of these devices may impact the
functionality of the others.

Limitations:

- I2C1 can only be accessed by one core at a time, which can prevent both the camera and display
from functioning simultaneously.

- Any device using I2C1 must be managed carefully to avoid conflicts with other peripherals.
- This limitation should be considered when designing the system to ensure both peripherals can

operate as required.

RZ Family / RZ/G Series 4. Quick Start

R12UZ0177EU0110 Rev.1.10 Page 25 of 179
Jun.04.25

Figure 5. CSI using shared I2C1 bus

Figure 6. HDMI using shared I2C1 bus

Figure 7. DSI using shared I2C1 bus

As shown in the three figures above, the shared I2C1 bus is used by multiple peripherals, which may
lead to conflicts if both cores are used simultaneously. To avoid issues, users should ensure that only
one core accesses I2C1 at a time or consider alternative methods for managing communication
between peripherals.

RZ Family / RZ/G Series 4. Quick Start

R12UZ0177EU0110 Rev.1.10 Page 26 of 179
Jun.04.25

2. Limited SCIF Availability for Multi-Core Development

However, a limitation exists in the number of available SCIF (Serial Communication Interface with FIFO)
channels, which impacts debugging and logging functionality for multi-core development.

Limitations:

- Single SCIF Channel: Only SCIF0 is available for serial communication, and it is exclusively
allocated to the CA55 core.

- Restricted logging for CM33: Since SCIF0 is dedicated to CA55, the CM33 core lacks direct
access to an SCIF channel, making it challenging to perform independent serial logging or
debugging.

This limitation should be considered when designing multi-core applications, especially those
requiring real-time logging, debugging, or inter-core communications.

RZ Family / RZ/G Series 5. General Operational Flow

R12UZ0177EU0110 Rev.1.10 Page 27 of 179
Jun.04.25

5. General Operational Flow
The diagram below shows the operational flow of most of the RZ-based systems during power ON.

Figure 8. RZ/G2L-SBC boot operational flow

By default, the board is in the power OFF state. When the power is supplied, the PMIC immediately
cycles power and puts the Cortex A55 into a POR state. This kickstarts the boot process with the Loader
and ends with Linux booting into user space.

While u-boot passes full control to the Linux kernel, the ARM trust zone remains active along with op-
tee within the ARM core’s trust zone of operations.

The exact boot time depends on the boot environment and the number of services in the initialization
process.

5.1 Arm Exception Levels
In order to explain the booting and running of software, it is necessary to understand the ARM core’s
exception levels. Exception levels refer to the different privilege modes of operation. These are different
levels at which the CPU operates, and each level is a layer of software that remains active throughout
the runtime of the SoC.

Figure 9. Arm Exception levels

RZ Family / RZ/G Series 5. General Operational Flow

R12UZ0177EU0110 Rev.1.10 Page 28 of 179
Jun.04.25

The general layout of this is intuitive. However, each level has multiple implementations and layer stacks
of its own. In most of our implementations, we do not deploy a Hypervisor. Hence, EL2 is bypassed.
The levels we are concerned with are mostly EL3 and EL2. EL3 is complex, having its own stack of
layers, which will be discussed subsequently in this section.

5.2 Secure and Non-Secure Runtime
The modern Arm64 has two execution modes, both active at the same time. These are called secure
and non-secure worlds. The secure world comes with its own OS, storage management, exception
handling, bootloaders, etc. The previous diagram shows the boot time model. The diagram below shows
the runtime model of the system levels.

Figure 10. Runtime Exception levels with their states

5.3 Arm Trusted Firmware-A (TF-A)
The Arm Trusted Firmware-A (TF-A project) is a reference implementation of the ARM architecture’s
EL3 layer. It consists of the entire stack of firmware in the EL3 level except for u-boot, which is the
primary high-level boot loader.

Unlike in previous implementations of ARM, where there were just stage 1 and stage 2 bootloaders, the
current generations operate with a more complex hierarchy that abstracts out hardware access and
initializations into different components of the boot. Even DDR configurations, which were traditionally
done by u-boot and later managed by the Linux kernel, are now done in the TF-A.

The TF-A project is also what is used by Renesas as its EL3 Firmware source. The forks of TF-A
maintained by Renesas contain necessary hardware specific changes on top of the ARM’s reference
implementation.

The reference TF-A version we use in our current release is 2.9.

5.3.1 Components of Boot
This section provides an overview of the entire boot process used in the RZ‑based system as per the
TF-A paradigm. The process is divided into several distinct stages that collectively transition the
hardware from a power‑off state to a fully operational system running the operating system. Each stage
is handled by a different component:

https://trustedfirmware-a.readthedocs.io/en/latest/index.html

RZ Family / RZ/G Series 5. General Operational Flow

R12UZ0177EU0110 Rev.1.10 Page 29 of 179
Jun.04.25

Table 5. RZ-specific TF-A implementation

Component Description
BL1 (Boot Loader
Stage 1 – AP Trusted
ROM):

- BL1 is embedded in the Boot ROM of the SoC and is the first code
executed when power is applied (POR).

- It initializes the most basic hardware components (such as memory and
essential peripherals) and sets the stage for a secure boot.

BL2 (Bootloader
Stage 2 – Trusted
boot firmware)

- BL2 is the next stage in the boot process, executed by the Trusted Boot
Firmware that was loaded in BL1.

- It loads two key components into DRAM: the EL3 Runtime Software
(BL31) and U-Boot.

BL31 (Boot Loader
stage 3-1 – EL3
Runtime Software)

- BL31 is the EL3 Runtime Software running at the highest privilege level
(EL3).

- It is part of the Arm Trusted Firmware-A and is responsible for
configuring Arm TrustZone to create a secure execution environment.

BL32 (Boot Loader
stage 3-2 – Secure-
EL1 Payload)

- This is optional; it is used to load a secure payload (such as OP-TEE)
that provides a Trusted Execution Environment. This is also where the
encrypted filesystem is handled and contains the keys. This layer is
also known as “Trust Zone” or “Trusted Execution Environment” (TEE),
such as the ‘TEE’ in ‘OP-TEE’

BL33 (Non-Trusted-
firmware – u-boot)

- The final boot stage where the u-boot is loaded, taking control of the
system and booting the operating system into user space.

Note: TF-A is highly flexible and has plenty of optional layers. This section covers the specific
implementation used in the RZ series of SoC’s reference implementation and hence does not use
(bypasses) many of the optional levels such as BL3-0 SCP Firmware load. The components
described here are the final implementation and supersede the reference ARM TF-A.

5.3.1.1 BL1
BL1 is the first program that runs on POR. While TF-A mentions all the layers and provides reference
implementations till BL32, the BL1 is often a proprietary implementation that is strictly under NDA
requirements.

The core functions of BL1 include:

• Execution of code from the POR reset vector, which contains an XIP ROM within the SoC.
• Determine between warm and cold reset boots. In the case of a warm boot, the secondary

cores will go on a separate entry point while the primary boot core will continue cold boot.
This is platform specific.

• Platform initialization:
o Enable trusted watchdog.
o Base Clock configuration and enable system timer.
o Console initialization.
o Enable SoC interconnect like AHB bridges.
o Enable MMU and the memory map.
o Enable the peripherals that are potential sources for the BL2 image.

• Check if there is a firmware update required, and if so, proceed with the firmware update
process. This is usually the case with warm reset with a setting passed in.

• Read bootstrapping pins and cycle through boot sources.
• BL2 image load.
• Pass control to BL2.

Note: BL1 functions are platform dependent. In aarch64 architectures, BL1 contains a limited set of
SMC call implementations, allowing some back and forth between EL1, BL2, and BL1.

RZ Family / RZ/G Series 5. General Operational Flow

R12UZ0177EU0110 Rev.1.10 Page 30 of 179
Jun.04.25

Unlike traditional systems, modern systems have all layers of software remain active in their own quasi-
virtual world and allow some interactions through the SMC call mechanism. These are critical for
firmware updates and control passing across layers, along with initialization data like ID strings and
timing. The Linux kernel has a secure component that interacts with all the EL3 components through
SMC calls.

For more information, refer to TF-A’s documentation for further details.

5.3.1.2 BL2
The BL2 layer is provided by Renesas TF-A implementation. The TF-A provides bl2.bin, which is the
implementation used here.

Functions of BL2:

• Initialize console.
• Configure platform storage to load further images. This includes DDR, SD MMC, etc.
• MMU initialization and mapping.
• Set up security components.
• Populate shared memory to be passed to other components.
• Define memory regions and timing.
• Device tree load and address passing.
• BL2 loads multiple images to the DDR memory.

o EL1 Runtime: This is the secure TEE OS that runs on the secure side of EL1.
o U-boot: Primary BL33 bootloader.

5.3.1.3 BL31
BL31 is the EL3 runtime software responsible for managing secure monitor calls (SMCs) and switching
between secure and non-secure execution worlds. It is provided as part of the TF-A implementation.

Functions of BL31:

• Initialize console.
• Configure the Interconnect to enable hardware coherency.
• Enable the MMU and map the memory it needs to access.

To initialize the generic interrupt controller (GIC):

• Initialize the power controller device.
• Detect the system topology.
• Manage execution handoff between secure (BL32) and non-secure (BL33) environments.
• If a Trusted OS (BL32) is present, transfer execution to BL32; otherwise, transfer execution

directly to BL33.

5.3.1.4 BL33
BL33 refers to the non-secure world in ARM's TEE. It is the first non-secure code loaded by TF-A after
the secure world (BL31) and optionally BL32 (Trusted OS).

In ARM-based systems, BL33 is typically the secondary stage bootloader (SSBL), responsible for
further system initialization and loading the operating system.

For RZ-based systems, U-Boot is used as the default SSBL, preparing the hardware and loading the
operating system into memory. The reference U-Boot version we use in our current release is 2021.10.

Functions of BL33 (U-Boot):

• Initializes key hardware components such as the CPU, memory, and storage devices.

RZ Family / RZ/G Series 5. General Operational Flow

R12UZ0177EU0110 Rev.1.10 Page 31 of 179
Jun.04.25

• Configures system peripherals like UART, I2C, SPI, and others, ensuring they are ready for
the OS.

• Loads essential images, including the kernel and device tree, into memory from boot sources
such as SD cards or network locations using Network Boot and TFTP.

• Sets the necessary environment variables and passes boot arguments to the kernel.
• Finally, after loading the required images, BL33 hands off control to the operating system

kernel to complete the boot process.

5.3.2 Trusted Boot Flow
The Trusted Boot process ensures secure initialization of the system through the following sequence:

- Power‑on and BL1 execution: When power is applied, the boot ROM immediately executes
BL1. It performs minimal hardware initialization and basic security checks.

- BL2 initialization: BL1 loads BL2 into memory. BL2 then verifies the system’s integrity,
establishes additional secure boot mechanisms, and loads the next critical components (BL31
and U-Boot).

- Security setup via BL31: EL3 Runtime Software executes and sets up system-level security
before handing off control.

- Transition to normal operation: U‑Boot takes over from BL31 to finalize system initialization,
prepare hardware interfaces, and manage device drivers as needed.

- Launching the operating system (BL33): Finally, U‑Boot loads the Linux kernel (BL33). The
kernel then starts the operating system, transitioning the system into full user‑mode operation,
and completes the boot process.

Figure 11. Trusted boot flow

RZ Family / RZ/G Series 6. OE Build

R12UZ0177EU0110 Rev.1.10 Page 32 of 179
Jun.04.25

6. OE Build

6.1 Yocto OE Build
This section describes how to prepare a host system, download dependencies, and then perform a full
Yocto build. The following sub-sections are step-by-step processes of performing a successful Yocto
build.

6.1.1 Yocto Build Host Environment Setup
Requirements

• Ubuntu 20.04 LTS (64bit) is recommended as a build environment as we are using ‘Dunfell’
version.

• Development packages for Yocto:
Refer to the official Yocto documentation (Yocto Project Documentation) to get started.
Refer to the official Yocto quick build guide (Yocto Project Quick Build — The Yocto Project ®
3.1.27 documentation) for a quick start.

The files listed in Table 6. Prerequisite files from release package are part of the release package.
These are essential files to be used for the RZ/G2L-SBC Yocto build. You should find them located
under the path ‘host/src/’ of the release package.

Table 6. Prerequisite files from the release package (Yocto build only)

File Description
rz-cmn-srp/ Main folder for Yocto/Ubuntu build environment for RZ-G2L/SBC.
rzsbc_builder.sh Custom master build script that downloads required packages and ZIP

files, configures meta layers, sets up the environment, and builds for
both Yocto and Ubuntu target images. Execute it with no arguments for a
help description.

site.conf An override file that targets a specific build version.
patches This is a folder that contains additional patches that are needed for

Yocto eSDK build. The patches are organized as follows:
- meta-summit-radio/
• 0001-meta-classes-esdk-explicitly-address-the-location-of.patch
• 0002-rzsbc-summit-radio-pre-3.4-enable-usb-bt-support.patch

- poky/
• 0001-rzsbc-summit-radio-pre-3.4-support-eSDK-build.patch

images.json Contains the available build image options grouped by build type,
including Yocto images, Ubuntu images, and static image collections
(all-yocto-images, all-ubuntu-images, all-supported-images).

git_patch.json A configuration file contains JSON keys and repository configuration
such as: url, branch, tag, commit, repo type and patch paths to apply.

jq-linux-amd64 A lightweight and flexible shell tool that supports parsing of JSON data.
README.md A README file describing all the necessary info about the building

process.

Install packages on Ubuntu Host.

1. Update the Ubuntu package manager.
$ sudo apt update

2. Install necessary packages and tools which are used by the Yocto build.
$ sudo apt install -y gawk wget git-core diffstat unzip texinfo gcc-multilib \
build-essential chrpath socat cpio python python3 python3-pip python3-pexpect \
xz-utils debianutils iputils-ping libsdl1.2-dev xterm p7zip-full libyaml-dev \
rsync curl locales bash-completion

https://docs.yoctoproject.org/#brief-build-system-packages
https://docs.yoctoproject.org/3.1.27/brief-yoctoprojectqs/brief-yoctoprojectqs.html
https://docs.yoctoproject.org/3.1.27/brief-yoctoprojectqs/brief-yoctoprojectqs.html

RZ Family / RZ/G Series 6. OE Build

R12UZ0177EU0110 Rev.1.10 Page 33 of 179
Jun.04.25

3. Configure local git account for the user.
$ git config --global user.name “Your Name”
$ git config --global user.email “you@example.com”

4. Download the following packages provided by Renesas.

Table 7. List of packages to manually download for Yocto Build

File name Version Download Link Comments

RTK0EF0045Z13001ZJ-
v1.1.2_EN.zip 1.1.2

rz-mpu-graphics-
library-evaluation-
version

This is the Mali driver and
graphics package that
enables the Mali GPU in
the SoC.

RTK0EF0045Z15001ZJ-
v1.1.0_EN.zip 1.1.0

rz-mpu-video-codec-
library-evaluation-
version

Video codec package

5. We assume that all the downloaded zip files from Table 6. Prerequisite files from release
package are collected at the path ‘Downloads/renesas-yocto’ in the user’s home directory
creating paths ‘~/Downloads/renesas-yocto/*.zip’. If your locations are different, you must
substitute the appropriate paths in the following steps.

6. Copy all the above downloaded zip files to a build folder (For example, ~/renesas/rz-cmn-srp
as shown below) in Ubuntu Host PC.
$ cd ~/Downloads/renesas-yocto
$ mkdir -p ~/renesas/rz-cmn-srp
$ mv *.zip ~/renesas/rz-cmn-srp

7. Copy the files ‘rzsbc_builder.sh’, ‘site.conf’, ‘README.md’, ‘jq-linux-amd64’ and ‘patches’
folder from the release package into ‘~/renesas/rz-cmn-srp’ folder. (This example assumes
the pre-requisite files that are described in Table 5. RZ-specific TF-A implementation are
located at package unpacked location ~/Downloads/renesas-yocto/rz-cmn-srp-1.1)
$ cd ~/Downloads/renesas-yocto/rz-cmn-srp-1.1/host/src/rz-cmn-srp
$ cp README.md ~/renesas/rz-cmn-srp
$ cp rzsbc_builder.sh ~/renesas/rz-cmn-srp
$ cp site.conf ~/renesas/rz-cmn-srp
$ cp jq-linux-amd64 ~/renesas/rz-cmn-srp
$ cp git_patch.json ~/renesas/rz-cmn-srp
$ cp images.json ~/renesas/rz-cmn-srp
$ cp -r patches ~/renesas/rz-cmn-srp

https://www.renesas.com/us/en/document/swo/rz-mpu-graphics-library-evaluation-version-rzg2l-and-rzg2lc-rtk0ef0045z13001zj-v112enzip
https://www.renesas.com/us/en/document/swo/rz-mpu-graphics-library-evaluation-version-rzg2l-and-rzg2lc-rtk0ef0045z13001zj-v112enzip
https://www.renesas.com/us/en/document/swo/rz-mpu-graphics-library-evaluation-version-rzg2l-and-rzg2lc-rtk0ef0045z13001zj-v112enzip
https://www.renesas.com/us/en/document/sws/rz-mpu-video-codec-library-evaluation-version-rzv2l-rtk0ef0045z15001zj-v110enzip
https://www.renesas.com/us/en/document/sws/rz-mpu-video-codec-library-evaluation-version-rzv2l-rtk0ef0045z15001zj-v110enzip
https://www.renesas.com/us/en/document/sws/rz-mpu-video-codec-library-evaluation-version-rzv2l-rtk0ef0045z15001zj-v110enzip

RZ Family / RZ/G Series 6. OE Build

R12UZ0177EU0110 Rev.1.10 Page 34 of 179
Jun.04.25

8. Eventually, all the necessary files for the Yocto build should be present in ‘~/renesas/rz-cmn-
srp folder as shown below.
renesas@builder-pc:~/renesas/rz-cmn-srp$ tree
.
├── git_patch.json
├── images.json
├── jq-linux-amd64
├── patches
│ ├── meta-summit-radio
│ │ ├── 0001-rzsbc-summit-radio-pre-3.4-support-eSDK-build.patch
│ │ └── 0002-rzsbc-summit-radio-pre-3.4-enable-usb-bt-support.patch
│ └── poky
│ └── 0001-meta-classes-esdk-explicitly-address-the-location-of.patch
├── README.md
├── rzsbc_builder.sh
└── site.conf

4 directories, 9 files

6.1.2 Initiate Yocto Build
Add execute permission to rzsbc_builder.sh.

renesas@builder-pc:~/renesas/rz-cmn-srp$ chmod a+x rzsbc_builder.sh
Commence build.

renesas@builder-pc:~/renesas/rz-cmn-srp$ IMAGE=<target-images> ./rzsbc_builder.sh
build
There are eight available build targets. For detailed information, refer to 1.1 Supported Distributions.
To build core-image-qt, use the following command:

renesas@builder-pc:~/renesas/rz-cmn-srp$ IMAGE=core-image-qt ./rzsbc_builder.sh
build

6.1.3 Collect the Build Output
After building Yocto with the ‘all-supported-images’ option, which builds all images at once, the output
folder should be located at: `~/renesas/rz-cmn-srp/yocto_rzsbc_board/build/tmp/deploy/images/rzpi`
The output folder outline should look as follows:

renesas@builder-pc:~/renesas/rz-cmn-
srp/yocto_rzsbc_board/build/tmp/deploy/images/rzpi$ tree
.
├── host
│ ├── build

Note:

RZ Family / RZ/G Series 6. OE Build

R12UZ0177EU0110 Rev.1.10 Page 35 of 179
Jun.04.25

│ │ ├── core-image-bsp-rzpi-20250501070750.rootfs.manifest
│ │ ├── core-image-bsp-rzpi-20250501070750.testdata.json
│ │ ├── core-image-bsp-rzpi.manifest -> core-image-bsp-rzpi-
20250501070750.rootfs.manifest
│ │ ├── core-image-bsp-rzpi.testdata.json -> core-image-bsp-rzpi-
20250501070750.testdata.json
│ │ ├── core-image-minimal-rzpi-20250501070907.rootfs.manifest
│ │ ├── core-image-minimal-rzpi-20250501070907.testdata.json
│ │ ├── core-image-minimal-rzpi.manifest -> core-image-minimal-rzpi-
20250501070907.rootfs.manifest
│ │ ├── core-image-minimal-rzpi.testdata.json -> core-image-minimal-rzpi-
20250501070907.testdata.json
│ │ ├── core-image-qt-rzpi-20250501064412.rootfs.manifest
│ │ ├── core-image-qt-rzpi-20250501064412.testdata.json
│ │ ├── core-image-qt-rzpi.manifest -> core-image-qt-rzpi-
20250501064412.rootfs.manifest
│ │ ├── core-image-qt-rzpi.testdata.json -> core-image-qt-rzpi-
20250501064412.testdata.json
│ │ ├── core-image-weston-rzpi-20250501070433.rootfs.manifest
│ │ ├── core-image-weston-rzpi-20250501070433.testdata.json
│ │ ├── core-image-weston-rzpi.manifest -> core-image-weston-rzpi-
20250501070433.rootfs.manifest
│ │ ├── core-image-weston-rzpi.testdata.json -> core-image-weston-rzpi-
20250501070433.testdata.json
│ │ ├── renesas-core-image-cli-rzpi-20250501064822.rootfs.manifest
│ │ ├── renesas-core-image-cli-rzpi-20250501064822.testdata.json
│ │ ├── renesas-core-image-cli-rzpi.manifest -> renesas-core-image-cli-rzpi-
20250501064822.rootfs.manifest
│ │ ├── renesas-core-image-cli-rzpi.testdata.json -> renesas-core-image-cli-
rzpi-20250501064822.testdata.json
│ │ ├── renesas-core-image-weston-rzpi-20250501064943.rootfs.manifest
│ │ ├── renesas-core-image-weston-rzpi-20250501064943.testdata.json
│ │ ├── renesas-core-image-weston-rzpi.manifest -> renesas-core-image-weston-
rzpi-20250501064943.rootfs.manifest
│ │ ├── renesas-core-image-weston-rzpi.testdata.json -> renesas-core-image-
weston-rzpi-20250501064943.testdata.json
│ │ ├── renesas-quickboot-cli-rzpi-20250501065154.rootfs.manifest
│ │ ├── renesas-quickboot-cli-rzpi-20250501065154.testdata.json
│ │ ├── renesas-quickboot-cli-rzpi.manifest -> renesas-quickboot-cli-rzpi-
20250501065154.rootfs.manifest
│ │ ├── renesas-quickboot-cli-rzpi.testdata.json -> renesas-quickboot-cli-
rzpi-20250501065154.testdata.json
│ │ ├── renesas-quickboot-wayland-rzpi-20250501065315.rootfs.manifest
│ │ ├── renesas-quickboot-wayland-rzpi-20250501065315.testdata.json
│ │ ├── renesas-quickboot-wayland-rzpi.manifest -> renesas-quickboot-wayland-
rzpi-20250501065315.rootfs.manifest

RZ Family / RZ/G Series 6. OE Build

R12UZ0177EU0110 Rev.1.10 Page 36 of 179
Jun.04.25

│ │ └── renesas-quickboot-wayland-rzpi.testdata.json -> renesas-quickboot-
wayland-rzpi-20250501065315.testdata.json
│ ├── env
│ │ ├── core-image-bsp.env
│ │ ├── core-image-minimal.env
│ │ ├── core-image-qt.env
│ │ ├── core-image-weston.env
│ │ ├── Readme.md
│ │ ├── renesas-core-image-cli.env
│ │ ├── renesas-core-image-weston.env
│ │ ├── renesas-quickboot-cli.env
│ │ └── renesas-quickboot-wayland.env
│ ├── Readme.md
│ ├── src
│ │ └── rz-cmn-srp
│ │ ├── git_patch.json
│ │ ├── images.json
│ │ ├── jq-linux-amd64
│ │ ├── patches
│ │ │ ├── meta-summit-radio
│ │ │ │ ├── 0001-rzsbc-summit-radio-pre-3.4-support-eSDK-build.patch
│ │ │ │ └── 0002-rzsbc-summit-radio-pre-3.4-enable-usb-bt-
support.patch
│ │ │ └── poky
│ │ │ └── 0001-meta-classes-esdk-explicitly-address-the-location-
of.patch
│ │ ├── README.md
│ │ ├── rzsbc_builder.sh
│ │ └── ubuntu
│ │ ├── config
│ │ │ ├── ubuntu_core
│ │ │ │ ├── network_interfaces.conf
│ │ │ │ └── resolved.conf
│ │ │ └── ubuntu_lxde
│ │ │ ├── interfaces
│ │ │ ├── lightdm.conf
│ │ │ ├── NetworkManager.conf
│ │ │ ├── rsyslog
│ │ │ ├── ttyS0.conf
│ │ │ └── v4l2-init.sh
│ │ ├── config.ini
│ │ ├── docs
│ │ │ ├── ubuntu_core
│ │ │ │ └── README.md
│ │ │ └── ubuntu_lxde
│ │ │ ├── Pictures
│ │ │ │ ├── audacity.png

RZ Family / RZ/G Series 6. OE Build

R12UZ0177EU0110 Rev.1.10 Page 37 of 179
Jun.04.25

│ │ │ │ ├── bluetooth_0.png
│ │ │ │ ├── bluetooth_1.png
│ │ │ │ ├── bluetooth_2.png
│ │ │ │ ├── bluetooth_3.png
│ │ │ │ ├── bluetooth_4.png
│ │ │ │ ├── csi_0.png
│ │ │ │ ├── csi_1.png
│ │ │ │ ├── csi_2.png
│ │ │ │ ├── eth_1.png
│ │ │ │ ├── eth_2.png
│ │ │ │ ├── eth_3.png
│ │ │ │ ├── eth_4.png
│ │ │ │ ├── eth_5.png
│ │ │ │ ├── eth.png
│ │ │ │ ├── save_audio_0.png
│ │ │ │ ├── save_audio_1.png
│ │ │ │ ├── save_audio_2.png
│ │ │ │ ├── vlc_open_0.png
│ │ │ │ ├── vlc_open_1.png
│ │ │ │ ├── vlc_open_2.png
│ │ │ │ ├── vlc.png
│ │ │ │ ├── vlc_video_1.png
│ │ │ │ ├── vlc_video.png
│ │ │ │ ├── web_1.png
│ │ │ │ ├── web_2.png
│ │ │ │ ├── web_lxterm_htop.png
│ │ │ │ ├── web.png
│ │ │ │ └── wifi_0.png
│ │ │ └── README.md
│ │ ├── include
│ │ │ ├── common
│ │ │ │ ├── allow_empty_password.sh
│ │ │ │ ├── create_wic.sh
│ │ │ │ ├── install_gstreamer.sh
│ │ │ │ ├── install_weston.sh
│ │ │ │ ├── prepare_ubuntu_base.sh
│ │ │ │ └── yocto_working.sh
│ │ │ ├── ubuntu_core
│ │ │ │ ├── mount.sh
│ │ │ │ ├── prepare_conf.sh
│ │ │ │ ├── prepare_env.sh
│ │ │ │ ├── prepare_rootfs_qt.sh
│ │ │ │ └── setup_dns.sh
│ │ │ └── ubuntu_lxde
│ │ │ ├── create_swap.sh
│ │ │ ├── mount.sh
│ │ │ ├── prepare_conf.sh

RZ Family / RZ/G Series 6. OE Build

R12UZ0177EU0110 Rev.1.10 Page 38 of 179
Jun.04.25

│ │ │ └── prepare_rootfs_qt.sh
│ │ ├── script
│ │ │ ├── ubuntu_core
│ │ │ │ ├── apt_install_base.sh
│ │ │ │ ├── link_to_leagcy_iptables.sh
│ │ │ │ └── set_root_password.sh
│ │ │ └── ubuntu_lxde
│ │ │ ├── apt_audio_video.sh
│ │ │ ├── apt_blueman.sh
│ │ │ ├── apt_install_base.sh
│ │ │ ├── apt_lxde_desktop.sh
│ │ │ ├── apt_wifi_ble.sh
│ │ │ ├── create_rzpi_user.sh
│ │ │ ├── set_root_password.sh
│ │ │ ├── set_swap_enable.sh
│ │ │ └── setup-set-permissions.sh
│ │ └── setup_ubuntu_environment.sh
│ └── tools
│ ├── bootloader-flasher
│ │ ├── linux
│ │ │ ├── bootloader_flash.py
│ │ │ └── Readme.md
│ │ ├── Readme.md
│ │ └── windows
│ │ ├── config.ini
│ │ ├── flash_bootloader.bat
│ │ ├── Readme.md
│ │ └── tools
│ │ ├── cygterm.cfg
│ │ ├── flash_bootloader.ttl
│ │ ├── TERATERM.INI
│ │ ├── ttermpro.exe
│ │ ├── ttpcmn.dll
│ │ ├── ttpfile.dll
│ │ ├── ttpmacro.exe
│ │ ├── ttpset.dll
│ │ └── ttxssh.dll
│ ├── Readme.md
│ ├── sd-creator
│ │ ├── linux
│ │ │ ├── Readme.md
│ │ │ └── sd_flash.sh
│ │ ├── Readme.md
│ │ └── windows
│ │ ├── config.ini
│ │ ├── flash_filesystem.bat
│ │ ├── Readme.md

RZ Family / RZ/G Series 6. OE Build

R12UZ0177EU0110 Rev.1.10 Page 39 of 179
Jun.04.25

│ │ └── tools
│ │ ├── AdbWinApi.dll
│ │ ├── cygterm.cfg
│ │ ├── fastboot.bat
│ │ ├── fastboot.exe
│ │ ├── flash_system_image.ttl
│ │ ├── TERATERM.INI
│ │ ├── ttermpro.exe
│ │ ├── ttpcmn.dll
│ │ ├── ttpfile.dll
│ │ ├── ttpmacro.exe
│ │ ├── ttpset.dll
│ │ └── ttxssh.dll
│ └── uload-bootloader
│ ├── linux
│ │ ├── Readme.md
│ │ └── uload_bootloader_flash.py
│ ├── Readme.md
│ └── windows
│ ├── config.ini
│ ├── Readme.md
│ ├── tools
│ │ ├── cygterm.cfg
│ │ ├── TERATERM.INI
│ │ ├── ttermpro.exe
│ │ ├── ttpcmn.dll
│ │ ├── ttpfile.dll
│ │ ├── ttpmacro.exe
│ │ ├── ttpset.dll
│ │ ├── ttxssh.dll
│ │ └── uload-flash_bootloader.ttl
│ └── uload-flash_bootloader.bat
├── license
│ ├── Disclaimer051.pdf
│ └── Disclaimer052.pdf
├── r11qs0062eu0110-rz-srp-yocto3-um-quick-start-guide.pdf
├── r12uz0177eu0110-rz-srp-yocto3-um.pdf
├── README.md
├── RZ_System_Release_Package_Evaluation_license.pdf
└── target
 ├── env
 │ ├── Readme.md
 │ └── uEnv.txt
 ├── images
 │ ├── bl2_bp-rzpi.bin
 │ ├── bl2_bp-rzpi.srec
 │ ├── bl2-rzpi.bin

RZ Family / RZ/G Series 6. OE Build

R12UZ0177EU0110 Rev.1.10 Page 40 of 179
Jun.04.25

 │ ├── core-image-bsp-rzpi.wic
 │ ├── core-image-minimal-rzpi.wic
 │ ├── core-image-qt-rzpi.wic
 │ ├── core-image-weston-rzpi.wic
 │ ├── dtbs
 │ │ ├── overlays
 │ │ │ ├── Readme.md
 │ │ │ ├── rzpi-can.dtbo
 │ │ │ ├── rzpi-dsi.dtbo
 │ │ │ ├── rzpi-ext-i2c.dtbo
 │ │ │ ├── rzpi-ext-spi.dtbo
 │ │ │ └── rzpi-ov5640.dtbo
 │ │ ├── Readme.md
 │ │ ├── rzpi--5.10.184-cip36+gitAUTOINC+ad250e7c25-r1-rzpi-
20250501063653.dtb
 │ │ ├── rzpi.dtb -> rzpi--5.10.184-cip36+gitAUTOINC+ad250e7c25-r1-rzpi-
20250501063653.dtb
 │ │ └── rzpi.dts
 │ ├── fip-rzpi.bin
 │ ├── fip-rzpi.srec
 │ ├── Flash_Writer_SCIF_rzpi.mot
 │ ├── Image -> Image--5.10.184-cip36+gitAUTOINC+ad250e7c25-r1-rzpi-
20250501063653.bin
 │ ├── Image--5.10.184-cip36+gitAUTOINC+ad250e7c25-r1-rzpi-20250501063653.bin
 │ ├── Readme.md
 │ ├── renesas-core-image-cli-rzpi.wic
 │ ├── renesas-core-image-weston-rzpi.wic
 │ ├── renesas-quickboot-cli-rzpi.wic
 │ ├── renesas-quickboot-wayland-rzpi.wic
 │ └── rootfs
 │ ├── core-image-bsp-rzpi.tar.bz2
 │ ├── core-image-minimal-rzpi.tar.bz2
 │ ├── core-image-qt-rzpi.tar.bz2
 │ ├── core-image-weston-rzpi.tar.bz2
 │ ├── Readme.md
 │ ├── renesas-core-image-cli-rzpi.tar.bz2
 │ ├── renesas-core-image-weston-rzpi.tar.bz2
 │ ├── renesas-quickboot-cli-rzpi.tar.bz2
 │ └── renesas-quickboot-wayland-rzpi.tar.bz2
 └── Readme.md

44 directories, 208 files

RZ Family / RZ/G Series 6. OE Build

R12UZ0177EU0110 Rev.1.10 Page 41 of 179
Jun.04.25

6.2 Ubuntu OE Build
This section describes how to build a custom Ubuntu Core image for the RZ/G2L-SBC. The process
involves using the chroot method, which creates an isolated environment, and utilizes a compressed
ubuntu-base file as the foundation. The overall build process relies on a Yocto-based environment to
generate the necessary system files. The steps outlined below cover the entire process, including
setting up the build host environment and creating the Ubuntu image for the RZ/G2L-SBC.

What is chroot?

chroot (change root) is a Unix command that changes the apparent root directory for a process and its
children, effectively isolating the environment for building or running applications. This is useful for
creating custom system images, as it ensures that the environment is clean and separated from the
host system.

6.2.1 Ubuntu Build Host Environment Setup
To begin the build process, it is essential to set up the build host environment. This involves configuring
the necessary tools and dependencies to prepare for the Ubuntu image build.

The provided build script will handle all necessary steps, including Yocto and do Ubuntu root filesystem
setup. Refer to section Yocto OE Build only for additional details on the Yocto environment, if needed.

Table 8: Prerequisite files from the release package for Ubuntu build

File Description
rz-cmn-srp/ Main folder for Yocto/Ubuntu build environment for RZ-

G2L/SBC.
rzsbc_builder.sh Custom master build script that downloads required

packages and ZIP files, configures meta layers, sets up
the environment, and builds for both Yocto and Ubuntu
target images.

site.conf An override file that targets a specific build version.
patches This is a folder that contains additional patches that are

needed for Yocto eSDK build. The patches are organized
as follows:
- meta-summit-radio/
• 0001-meta-classes-esdk-explicitly-address-the-

location-of.patch
• 0002-rzsbc-summit-radio-pre-3.4-enable-usb-bt-

support.patch
- poky/
• 0001-rzsbc-summit-radio-pre-3.4-support-eSDK-

build.patch
git_patch.json A configuration file contains JSON keys and repository

configuration such as: url, branch, tag, commit, repo type
and patch paths to apply.

images.json Contains the available build image options grouped by
build type, including Yocto images, Ubuntu images, and
static image collections (all-yocto-images, all-ubuntu-
images, all-supported-images).

jq-linux-amd64 A lightweight and flexible tool that supports parsing JSON
file.

README.md A README file describing all the necessary info about the
building process.

ubuntu/ Main folder for Ubuntu-based image generation for
RZ/G2L-SBC.

ubuntu/config The folder that holds configuration files for different Ubuntu
variants.

RZ Family / RZ/G Series 6. OE Build

R12UZ0177EU0110 Rev.1.10 Page 42 of 179
Jun.04.25

ubuntu/docs Contains documentation detailing supported features and
usage instructions for each Ubuntu image variant.

ubuntu/script The folder that contains all scripts related to Ubuntu image
creation.

ubuntu/setup_ubuntu_environment.sh Main entry-point script (acts like a dispatcher/header). It
sources and sequences logic from the modular scripts
under script/. It does not build anything by itself.

ubuntu/config.ini Configuration file that defines key parameters for the
Ubuntu image build process, such as the Ubuntu variant,
base image, output filenames, and system settings.

Install packages on Ubuntu Host.

1. Ensure that all Yocto build tools and packages described in Section 6.1.1 Yocto build Host
Environment Setup have been completed.

2. Create folders for Ubuntu and Yocto workspace, then copy all the above downloaded zip files
to a build folder (For example, ~/renesas/rz-cmn-srp as shown below) in Ubuntu Host PC.
$ cd ~/Downloads/renesas-yocto
$ mkdir -p ~/renesas/rz-cmn-srp/
$ mkdir -p ~/renesas/rz-cmn-srp/ubuntu
$ mv *.zip ~/renesas/rz-cmn-srp

3. Copy the files ‘rzsbc_builder.sh’, ‘site.conf’, ‘README.md’, ‘jq-linux-amd64’ and ‘patches’
folder from the release package into ‘~/renesas/rz-cmn-srp’ folder. (This example assumes
the pre-requisite files that are described in Table 5. RZ-specific TF-A implementation are
located at package unpacked location ~/Downloads/renesas-yocto/rz-cmn-srp-1.1) for Yocto
build.
$ cd ~/Downloads/renesas-yocto/rz-cmn-srp-1.1/host/src/rz-cmn-srp
$ cp README.md ~/renesas/rz-cmn-srp
$ cp rzsbc_yocto.sh ~/renesas/rz-cmn-srp
$ cp site.conf ~/renesas/rz-cmn-srp
$ cp jq-linux-amd64 ~/renesas/rz-cmn-srp
$ cp git_patch.json ~/renesas/rz-cmn-srp
$ cp images.json ~/renesas/rz-cmn-srp
$ cp -r patches ~/renesas/rz-cmn-srp

4. Copy the files ‘setup_environment_ubuntu.sh’, ‘config.ini’, and the ‘scripts’, ‘include’, ‘docs’,
and ‘config’ folders from the release package into the ‘~/renesas/rz-cmn-srp/ubuntu’ folder for
the Ubuntu build process.
$ cd ~/Downloads/renesas-yocto/rz-cmn-srp-1.1/host/src/rz-cmn-srp/ubuntu
$ cp -r config/ ~/renesas/rz-cmn-srp/ubuntu/
$ cp -r docs/ ~/renesas/rz-cmn-srp/ubuntu/
$ cp -r include/ ~/renesas/rz-cmn-srp/ubuntu/
$ cp -r script/ ~/renesas/rz-cmn-srp/ubuntu/
$ cp setup_ubuntu_environment.sh ~/renesas/rz-cmn-srp/ubuntu/
$ cp config.ini ~/renesas/rz-cmn-srp/ubuntu/

RZ Family / RZ/G Series 6. OE Build

R12UZ0177EU0110 Rev.1.10 Page 43 of 179
Jun.04.25

Eventually, all the necessary files for the Ubuntu build should be present in ‘renesas’ folder as shown
below.
renesas@builder-pc:~/renesas/$ tree -L 3
.
└── rz-cmn-srp
 ├── git_patch.json
 ├── images.json
 ├── jq-linux-amd64
 ├── patches
 │ ├── meta-summit-radio
 │ └── poky
 ├── README.md
 ├── rzsbc_builder.sh
 └── ubuntu
 ├── config
 ├── config.ini
 ├── docs
 ├── include
 ├── script
 └── setup_ubuntu_environment.sh

10 directories, 7 files

6.2.2 Initial Ubuntu Build
The config.ini file is used for configuring the script that builds an Ubuntu image for ARM systems. It
includes essential parameters for partition sizes, the Ubuntu base file, and other configurations needed
to create the rootfs and wic image. Here are the parameters that need to be configured before starting
the script:

• UBUNTU_TYPE: Type of target Ubuntu. Available types are "CORE", "LXDE" and "ALL".
("ALL" option will build all Ubuntu types)

• BOOT_SIZE_MB: Size of the boot partition in MB. It should be larger than 100MB.

• ROOTFS_SPACE: Additional space for the rootfs partition in MB.

• UBUNTU_BASE_FILE_NAME: The file name of the Ubuntu base that will be downloaded.

• UBUNTU_BASE_LINK: The link to download the Ubuntu base file.

• OUTPUT_ROOTFS: The output file name for the rootfs.

• OUTPUT_WIC: The output file name for the wic image.

• TIME_ZONE_AREA: The time zone area (e.g., "Asia").

• TIME_ZONE_CITY: The time zone city (e.g., "Ho_Chi_Minh").

• IS_WESTON_ENABLE: Set to 0 to disable Weston compositor.

• USERNAME: The default username for logging into the system (e.g., "rzpi"). This account is
used for user login during system access.

• PASSWORD: The password associated with the default USERNAME (e.g., "1"). This
password is required to authenticate the user during login.

RZ Family / RZ/G Series 6. OE Build

R12UZ0177EU0110 Rev.1.10 Page 44 of 179
Jun.04.25

To perform a build, first go to ubuntu folder

renesas@builder-pc:~/$ cd ~/renesas/rz-cmn-srp
Add execute permission to rzsbc_builder.sh.

renesas@builder-pc:~/renesas/rz-cmn-srp$ chmod a+x rzsbc_builder.sh

Before running the build script, please ensure that this source belongs to a regular user (not root or a
privileged user), and the user executing this must have sudo/root privileges.

renesas@builder-pc:~/renesas/rz-cmn-srp$ IMAGE=<target-image> ./rzsbc_builder.sh
build

Run the following command with the appropriate option:

- ubuntu-core: Build Ubuntu core image
- ubuntu-lxde: Build Ubuntu LXDE image (with graphic stacks).
- all-ubuntu-images: Build both Ubuntu LXDE and Ubuntu Core

For example to build ubuntu-lxde image:

renesas@builder-pc:~/renesas/rz-cmn-srp$ IMAGE=ubuntu-lxde ./rzsbc_builder.sh
build

6.2.3 Collect the Build Output
After building Ubuntu LXDE and Ubuntu Core, the output folder should be located at: `~/renesas/rz-
cmn-srp/yocto_rzsbc_board/build/tmp/deploy/images/rzpi`
The output folder outline should look as follows:

renesas@builder-
pc:~/renesas/yocto/yocto_rzsbc_board/build/tmp/deploy/images/rzpi$ tree
.
├── host
│ ├── build
│ ├── env
│ │ └── Readme.md
│ ├── Readme.md
│ ├── src
│ │ └── rz-cmn-srp
│ │ ├── git_patch.json
│ │ ├── images.json
│ │ ├── jq-linux-amd64
│ │ ├── patches
│ │ │ ├── meta-summit-radio

Host PC with Ubuntu 20.04 is recommended for the build. Prepare environment for
building package and local build environment

RZ Family / RZ/G Series 6. OE Build

R12UZ0177EU0110 Rev.1.10 Page 45 of 179
Jun.04.25

│ │ │ │ ├── 0001-rzsbc-summit-radio-pre-3.4-support-eSDK-build.patch
│ │ │ │ └── 0002-rzsbc-summit-radio-pre-3.4-enable-usb-bt-
support.patch
│ │ │ └── poky
│ │ │ └── 0001-meta-classes-esdk-explicitly-address-the-location-
of.patch
│ │ ├── README.md
│ │ ├── rzsbc_builder.sh
│ │ └── ubuntu
│ │ ├── config
│ │ │ ├── ubuntu_core
│ │ │ │ ├── network_interfaces.conf
│ │ │ │ └── resolved.conf
│ │ │ └── ubuntu_lxde
│ │ │ ├── interfaces
│ │ │ ├── lightdm.conf
│ │ │ ├── NetworkManager.conf
│ │ │ ├── rsyslog
│ │ │ ├── ttyS0.conf
│ │ │ └── v4l2-init.sh
│ │ ├── config.ini
│ │ ├── docs
│ │ │ ├── ubuntu_core
│ │ │ │ └── README.md
│ │ │ └── ubuntu_lxde
│ │ │ ├── Pictures
│ │ │ │ ├── audacity.png
│ │ │ │ ├── bluetooth_0.png
│ │ │ │ ├── bluetooth_1.png
│ │ │ │ ├── bluetooth_2.png
│ │ │ │ ├── bluetooth_3.png
│ │ │ │ ├── bluetooth_4.png
│ │ │ │ ├── csi_0.png
│ │ │ │ ├── csi_1.png
│ │ │ │ ├── csi_2.png
│ │ │ │ ├── eth_1.png
│ │ │ │ ├── eth_2.png
│ │ │ │ ├── eth_3.png
│ │ │ │ ├── eth_4.png
│ │ │ │ ├── eth_5.png
│ │ │ │ ├── eth.png
│ │ │ │ ├── save_audio_0.png
│ │ │ │ ├── save_audio_1.png
│ │ │ │ ├── save_audio_2.png
│ │ │ │ ├── vlc_open_0.png
│ │ │ │ ├── vlc_open_1.png
│ │ │ │ ├── vlc_open_2.png

RZ Family / RZ/G Series 6. OE Build

R12UZ0177EU0110 Rev.1.10 Page 46 of 179
Jun.04.25

│ │ │ │ ├── vlc.png
│ │ │ │ ├── vlc_video_1.png
│ │ │ │ ├── vlc_video.png
│ │ │ │ ├── web_1.png
│ │ │ │ ├── web_2.png
│ │ │ │ ├── web_lxterm_htop.png
│ │ │ │ ├── web.png
│ │ │ │ └── wifi_0.png
│ │ │ └── README.md
│ │ ├── include
│ │ │ ├── common
│ │ │ │ ├── allow_empty_password.sh
│ │ │ │ ├── create_wic.sh
│ │ │ │ ├── install_gstreamer.sh
│ │ │ │ ├── install_weston.sh
│ │ │ │ ├── prepare_ubuntu_base.sh
│ │ │ │ └── yocto_working.sh
│ │ │ ├── ubuntu_core
│ │ │ │ ├── mount.sh
│ │ │ │ ├── prepare_conf.sh
│ │ │ │ ├── prepare_env.sh
│ │ │ │ ├── prepare_rootfs_qt.sh
│ │ │ │ └── setup_dns.sh
│ │ │ └── ubuntu_lxde
│ │ │ ├── create_swap.sh
│ │ │ ├── mount.sh
│ │ │ ├── prepare_conf.sh
│ │ │ └── prepare_rootfs_qt.sh
│ │ ├── script
│ │ │ ├── ubuntu_core
│ │ │ │ ├── apt_install_base.sh
│ │ │ │ ├── link_to_leagcy_iptables.sh
│ │ │ │ └── set_root_password.sh
│ │ │ └── ubuntu_lxde
│ │ │ ├── apt_audio_video.sh
│ │ │ ├── apt_blueman.sh
│ │ │ ├── apt_install_base.sh
│ │ │ ├── apt_lxde_desktop.sh
│ │ │ ├── apt_wifi_ble.sh
│ │ │ ├── create_rzpi_user.sh
│ │ │ ├── set_root_password.sh
│ │ │ ├── set_swap_enable.sh
│ │ │ └── setup-set-permissions.sh
│ │ └── setup_ubuntu_environment.sh
│ └── tools
│ ├── bootloader-flasher
│ │ ├── linux

RZ Family / RZ/G Series 6. OE Build

R12UZ0177EU0110 Rev.1.10 Page 47 of 179
Jun.04.25

│ │ │ ├── bootloader_flash.py
│ │ │ └── Readme.md
│ │ ├── Readme.md
│ │ └── windows
│ │ ├── config.ini
│ │ ├── flash_bootloader.bat
│ │ ├── Readme.md
│ │ └── tools
│ │ ├── cygterm.cfg
│ │ ├── flash_bootloader.ttl
│ │ ├── TERATERM.INI
│ │ ├── ttermpro.exe
│ │ ├── ttpcmn.dll
│ │ ├── ttpfile.dll
│ │ ├── ttpmacro.exe
│ │ ├── ttpset.dll
│ │ └── ttxssh.dll
│ ├── Readme.md
│ ├── sd-creator
│ │ ├── linux
│ │ │ ├── Readme.md
│ │ │ └── sd_flash.sh
│ │ ├── Readme.md
│ │ └── windows
│ │ ├── config.ini
│ │ ├── flash_filesystem.bat
│ │ ├── Readme.md
│ │ └── tools
│ │ ├── AdbWinApi.dll
│ │ ├── cygterm.cfg
│ │ ├── fastboot.bat
│ │ ├── fastboot.exe
│ │ ├── flash_system_image.ttl
│ │ ├── TERATERM.INI
│ │ ├── ttermpro.exe
│ │ ├── ttpcmn.dll
│ │ ├── ttpfile.dll
│ │ ├── ttpmacro.exe
│ │ ├── ttpset.dll
│ │ └── ttxssh.dll
│ └── uload-bootloader
│ ├── linux
│ │ ├── Readme.md
│ │ └── uload_bootloader_flash.py
│ ├── Readme.md
│ └── windows
│ ├── config.ini

RZ Family / RZ/G Series 6. OE Build

R12UZ0177EU0110 Rev.1.10 Page 48 of 179
Jun.04.25

│ ├── Readme.md
│ ├── tools
│ │ ├── cygterm.cfg
│ │ ├── TERATERM.INI
│ │ ├── ttermpro.exe
│ │ ├── ttpcmn.dll
│ │ ├── ttpfile.dll
│ │ ├── ttpmacro.exe
│ │ ├── ttpset.dll
│ │ ├── ttxssh.dll
│ │ └── uload-flash_bootloader.ttl
│ └── uload-flash_bootloader.bat
├── license
│ ├── Disclaimer051.pdf
│ └── Disclaimer052.pdf
├── r11qs0062eu0110-rz-srp-yocto3-um-quick-start-guide.pdf
├── r12uz0177eu0110-rz-srp-yocto3-um.pdf
├── README.md
├── RZ_System_Release_Package_Evaluation_license.pdf
└── target
 ├── env
 │ ├── Readme.md
 │ └── uEnv.txt
 ├── images
 │ ├── bl2_bp-rzpi.bin
 │ ├── bl2_bp-rzpi.srec
 │ ├── bl2-rzpi.bin
 │ ├── dtbs
 │ │ ├── overlays
 │ │ │ ├── Readme.md
 │ │ │ ├── rzpi-can.dtbo
 │ │ │ ├── rzpi-dsi.dtbo
 │ │ │ ├── rzpi-ext-i2c.dtbo
 │ │ │ ├── rzpi-ext-spi.dtbo
 │ │ │ └── rzpi-ov5640.dtbo
 │ │ ├── Readme.md
 │ │ ├── rzpi--5.10.184-cip36+gitAUTOINC+ad250e7c25-r1-rzpi-
20250501063653.dtb
 │ │ ├── rzpi.dtb -> rzpi--5.10.184-cip36+gitAUTOINC+ad250e7c25-r1-rzpi-
20250501063653.dtb
 │ │ └── rzpi.dts
 │ ├── fip-rzpi.bin
 │ ├── fip-rzpi.srec
 │ ├── Flash_Writer_SCIF_rzpi.mot
 │ ├── Image -> Image--5.10.184-cip36+gitAUTOINC+ad250e7c25-r1-rzpi-
20250501063653.bin
 │ ├── Image--5.10.184-cip36+gitAUTOINC+ad250e7c25-r1-rzpi-20250501063653.bin

RZ Family / RZ/G Series 6. OE Build

R12UZ0177EU0110 Rev.1.10 Page 49 of 179
Jun.04.25

 │ ├── Readme.md
 │ ├── rootfs
 │ │ ├── Readme.md
 │ │ ├── renesas-ubuntu-rzpi.tar.bz2
 │ │ ├── ubuntu-core-image-qt-rzpi.tar.bz2
 │ │ └── ubuntu-lxde-image-qt-rzpi.tar.bz2
 │ ├── ubuntu-core-image-qt-rzpi.wic.gz
 │ └── ubuntu-lxde-image-qt-rzpi.wic.gz
 └── Readme.md

44 directories, 157 files

RZ Family / RZ/G Series 7. Creating A Bootable SD Card On the Host Machine

R12UZ0177EU0110 Rev.1.10 Page 50 of 179
Jun.04.25

7. Creating A Bootable SD Card On the Host Machine
This section describes all the tools and methods for creating a Linux bootable SD card under different
environments of host machines, such as laptops.

7.1 Linux Host
This section explores the SD-flashing tools available in the Linux environment.
There is a helper script `sd_flash.sh` in the `host/tools/sd-creator/linux` folder of the Yocto build
output/release directory for this purpose.

Run the following command to learn how to use the script:

$./sd_flash.sh
The script needs an argument to run successfully. The argument is the device to be flashed with the
image. In this case, the device needs to flash its SD card. You will have to identify the correct device
name that represents the SD card on Linux.

The example below shows how to identify an SD card on Ubuntu 22.0.4. The command ‘lsblk’ is
executed to check all available storage devices. You can see that the 32 GB SD card is represented
under the device name ‘sdb’ in the result (its full name is /dev/sdb). The command also shows you
where the drive partitions are mounted in the filesystem.

$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTS
sda 8:0 0 119.2G 0 disk
├─sda1 8:1 0 976M 0 part /boot
├─sda2 8:2 0 977M 0 part [SWAP]
├─sda3 8:3 0 977M 0 part /boot/efi
└─sda4 8:4 0 116.4G 0 part /var/snap/firefox/common/host-hunspell
 /
sdb 8:16 1 31.6G 0 disk
nvme0n1 259:0 0 1.1T 0 disk /data1

Identify the device name of the SD card to be flashed. Then, pass it to the script as an argument, as
shown in the example here:

$./sd_flash.sh /dev/sdb
After executing the SD card flashing script successfully, the SD card is automatically unmounted.

Note: Since the various Linux distributions have different disk management arrangements, the script
may fail to create the card. Hence, we are unable to assure that the script works in every Linux
environment. In the case it fails, you may modify the call for creating the filesystem, like the calls to
ext4fs in the script. Pay attention to the script and ensure that it succeeds.The script is tested on Ubuntu
22.0.4.

The full command allows you to specify the rootfs you want to flash:

$./sd_flash.sh /dev/sdb <full-path-to-your-rootfs.tar.bz2 file>
For example, to flash the Renesas cli image, you can try:

$./sd_flash.sh /dev/sdb /home/Renesas-sst/rz-cmn-srp-
1.1/target/images/rootfs/renesas-core-image-cli-rzpi.tar.bz2

RZ Family / RZ/G Series 7. Creating A Bootable SD Card On the Host Machine

R12UZ0177EU0110 Rev.1.10 Page 51 of 179
Jun.04.25

7.2 Windows Host
The preferred way to flash the image onto the SD card is to use Balena Etcher. For Yocto images,
flash the .wic file, such as core-image-qt-rzpi.wic, onto the SD card.

For Ubuntu images, the file type is different; you will use a .wic.gz file, such as ubuntu-lxde-image-qt-
rzpi.wic.gz. Balena Etcher can directly flash the .wic.gz file onto the SD card without any need for
extraction.

RZ Family / RZ/G Series 8. Programming / Flashing Firmware

R12UZ0177EU0110 Rev.1.10 Page 52 of 179
Jun.04.25

8. Programming / Flashing Firmware
The firmware part of this release contains the secure world Trusted firmware images:

Table 9. Firmware description

Module Binary Stack layer Description
ROM code N/A BL1 This is the internal ROM code that the

Arm Cortex SoC’s primary core
executes at POR.

Flash writer Flash_Writer_SCIF_rzpi.mot BL2 This is meant for serial load in factory
environments, which is directly loaded
onto the SRAM by the BL1 (ROM
code) through UART SCIF0. It is then
executed to acquire another image on
UART SCIF0 to directly flash onto qspi
or emmc into the boot sector. It
provides a command-based ui.

Arm trusted
Firmware-A

bl2_bp-<board>.bin
bl2_bp-<board>.srec

BL2 Trusted Firmware-A implementation
binary. Its job is to load BL31, BL32,
and u-boot (BL33) binaries into
memory.
It comes in two formats:
• .bin – for raw flashing for native in-

system flashing
• .srec – motorola srec format for

flash writer
Firmware
Image
Package (
FIP)

fip-<board>.bin
fip-<board>.srec

BL3 to EL3 This image is also a standard trusted
firmware package that is a unified
image containing:
• BL31 – Trusted Firmware-A

Secure monitor
• BL32 – Trusted Firmware-A Optee
• BL33 – U-boot

It comes in two formats:
• .bin – for raw flashing for native in-

system flashing
• .srec – motorola srec format for

flash writer

8.1 RZ/G2L-SBC
The RZ/G2L-SBC comes with the most recent firmware images. However, there might be cases where
a firmware update may be needed, such as in a factory setting where volume flashing is performed, or
a custom version is designed by the end user. Renesas BSP provides firmware update tools to make it
seamless to perform these tasks under multiple OS environments.

The RZ/G2L-SBC images consist of:

1. Trusted firmware
2. Multi-stage bootloaders.
3. Linux demo distribution.

The SBC board is designed to boot from QSPI EEPROM containing the trusted firmware and
bootloaders. However, SBC does not have emmc storage, and the Linux image is expected to be
available on an SD card or a TFTP server.

RZ Family / RZ/G Series 8. Programming / Flashing Firmware

R12UZ0177EU0110 Rev.1.10 Page 53 of 179
Jun.04.25

8.1.1 Hardware Setup
To perform a firmware flashing:

1. The board has the UART console connected to the host PC.

Figure 12. Cortex A55 debug UART cable interface

2. The SD card with the Linux boot image from the release.
3. A 5V 3A USB-C power supply.

Other interfaces are not necessary for this purpose.

8.1.2 Flash Bootloader on U-Boot Console
If users want to update the Bootloader without touching the hardware setup, we support a method for
flashing the Bootloader on the U-Boot console. This is especially useful when end customers need to
update firmware as part of a field service. This is a straightforward method.

The sub-directory `host/tools/uload-bootloader` in Yocto build output/release folder contains the toolset
for SD card flashing. The sub-directory contains its ReadMe (Readme.md) file with the flashing
procedure.

Note: Default bootloader images (.bin) are in the subdirectory `/boot/uload-bootloader` of the root
filesystem in the SD card. You can put your own bootloader images there and perform a flashing.

Before performing the flashing:

 Make sure the board is powered off.

 Connect the debug serial port (SCIF0 - TXD, RXD, GND) to your Linux PC.

 Insert the SD card with the Linux image (you do not need a separate image for this).

 Ensure that Teraterm application is installed on your windows pc.

 Ensure that the minicom and FTDI drivers are loaded properly on the Linux host pc.

 Ensure that the scripts in the process have executed permissions.

RZ Family / RZ/G Series 8. Programming / Flashing Firmware

R12UZ0177EU0110 Rev.1.10 Page 54 of 179
Jun.04.25

8.1.2.1 Linux Host
The Linux flashing script is named uload_bootloader_flash.py under the uload-bootloader/linux folder.

The script has options, and the details of using it are provided in the Readme.md file at the same
location. You know more about the command by issuing a `-h` option while invoking the script.

$./uload_bootloader_flash.py -h

Note: The script, by default, tries to access /dev/ttyUSB0 without passing any arguments. This works
on most systems that have a single FTDI cable attached to a single USB port.

Here are the steps to flash:

1. Ensure that the hardware setup is accurate, as described above.

2. Start the script uload_bootloader_flash.py.

renesas@builder-pc:~/yocto/yocto_rzsbc_board/build/tmp/deploy/images/rzpi$ cd
host/tools/uload-bootloader/linux
renesas@builder-pc:~/yocto/yocto_rzsbc_board/build/tmp/deploy/im-
ages/rzpi/host/tools/uload-bootloader/linux$./uload_bootloader_flash.py

3. Power on the board. The flashing should automatically start and complete.

4. Once the flashing is complete, power-cycle the board.

8.1.2.2 Windows Host
Windows host uses its own script that is cleanly tucked into the sub directory of uload-bootloader called
windows. The sub-directory has its own Readme.md that describes everything that is needed.

The Windows script is also a script that only depends on the teraterm TTL scripting tool.

1. Navigate through the release to the Windows utility directory and update the config.ini with the
COM port number.

2. Execute the uload-flash_bootloader.bat.

3. Notice application windows open and perform flashing. Once the flashing is completed, it will
disconnect from the UART port. Power-cycle the board.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 55 of 179
Jun.04.25

9. Accessing Supported Features
This section explores the key features and interfaces available across Yocto and Ubuntu images on the
supported platforms, beginning with the RZ/G2L-SBC.

9.1 Supported Features in Yocto Images

9.1.1 QT Demo Applications
The Linux image ‘core-image-qt’ has a root file system that contains a few QT applications for demo
purposes. They can be launched from the taskbar at the top of the screen. They can also be launched
through the UART console. When you login to the console, you will find all the demo apps in the home
directory of the root user.

root@rzpi:~# cd /home/root/demo/scripts/
root@rzpi:~/demo/scripts# ls
Help.sh Qmlvideofx-demo.sh QtCinematicExperience-demo.sh Qteverwhere-demo.sh
Qt-launch-demo.sh QtSmarthome-demo.sh
Most of the demo apps are launched through their corresponding shell script or the UI launchers on the
taskbar.

For example, the QT smart home demo applications can be executed as follows:

root@rzpi:~# cd /home/root/demo/scripts/
root@rzpi:~/demo/scripts# ./QtSmarthome-demo.sh
The following Figure 13. All the demo apps are on the taskbar on the main screen, which shows all
the demo apps on the taskbar:

Figure 13. All the demo apps are on the taskbar on the main screen.

Each demo app offers a unique blend of functionality and user interface, catering to diverse needs and
preferences. However, due to the main memory limitation, not all of them can run successfully on the
RZ/G2L-SBC.

Table 10. Demo apps description the details for each demo app.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 56 of 179
Jun.04.25

Table 10. Demo apps description

Qt demo
application

name

Screenshot Description

Qt Smart
Home
(QtSmarthome-
demo.sh)

 - This application shows
how you can control and
adjust various home
operations. Some activities
are the control of windows,
blinds, heating, and lighting.
- The operations are
activated by a change in
weather conditions, and you
can also adjust the weather
as you like in the "weather
god control" mode.

Qt Graphical
Effects
(Qmlvideofx-
demo.sh)

This demo application does not run properly when
rendering videos due to its heavy size. There is no
screenshot for it.

Qt everywhere
(Qteverwhere-
demo.sh)

 - This application contains
several Qt Quick 2
applications, which you can
launch by tapping the
device.
- The applications are
separated into several areas
such as Games, Multimedia,
Feeds, Canvas,
Applications, and Particles &
Shaders.

Qt Quick
(Qt-launch-
demo.sh)

 - This demo application
shows new features in QT
Quick 2.0.
- There are “Qt Quick -
Front” where font rendering
is performed, “Qt Quick -
Canvas” where shapes are
created visually, and “Qt
Quick – Particle System”
where special effects follow
your cursor.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 57 of 179
Jun.04.25

Qt Cinematic
Experience
(QtCinematic
Experience-
demo.sh)

 - This UX demo application
presents some graphical
features of Qt5.
- The name 'Cinematic
Experience' reflects how it is
possible to build user
interfaces with increased
dynamics.

9.1.2 Quickboot Images and Network Configurations
Renesas provides custom Quickboot images optimized for faster boot times. These images include
necessary systemd optimizations and a streamlined kernel to minimize boot delays.

By default, systemd services for networking, D-Bus, and other non-essential components are disabled,
leaving only the core boot services active.

The details of these images are provided in section 1.1 Supported Distributions:

Table 11. Custom quickboot images

Images Description

renesas-quickboot-cli A minimal Linux image with Quickboot enabled, offering only a CLI
without a desktop environment. It supports HDMI/DSI output but lacks
graphical components and a desktop, which makes it ideal for fast-
booting command-line-based systems.

renesas-quickboot-
wayland

A Quickboot-enabled Linux image with Wayland and Qt support,
featuring the Weston graphical desktop environment. It provides a
basic graphical desktop, allowing users to develop and integrate
custom GUI applications. No desktop applications are included by
default. However, the QT framework is available, allowing the user to
install and run any QT application.

9.1.2.1 Enable Networking Stack
For both Quickboot CLI and Quickboot Wayland images, networking (including Wi-Fi, Bluetooth, and
SSH services) is disabled by default and must be enabled manually. The required scripts are in
/home/root/network-management/.

To see available options before enabling any services, run the help command:

root@rzpi:~# cd network-management
root@rzpi:~/network-management# ./enable_networking_stack.sh help
This command displays the usage information along with the following options:

- Wi-Fi: Enable Wi-Fi services.
- Bluetooth: Enable Bluetooth services.
- sshd: Enable SSH/SCP services.
- all: Enable all network-related services (wifi, bluetooth, sshd).

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 58 of 179
Jun.04.25

Run the following command with the appropriate option:

root@rzpi:~/network-management# ./enable_networking_stack.sh <service>

For example, to enable Wi-Fi, run:

root@rzpi:~/network-management# ./enable_networking_stack.sh wifi

To enable all networking services:

root@rzpi:~/network-management# ./enable_networking_stack.sh all

Note: Reboot the board for the changes to take effect or manually restart each service and its
dependencies.

9.1.2.2 Disable Networking Stack
To restore the default Quickboot behavior and disable unused network services, use the provided script.
This removes systemd service symlinks and masks services related to networking, Wi-Fi, Bluetooth,
and SSH.

Run the following command with the appropriate option to disable unused services:

root@rzpi:~/network-management# ./disable_networking_stack.sh <service>
For example, to disable Bluetooth:

root@rzpi:~/network-management# ./disable_networking_stack.sh bluetooth
To fully restore Quickboot’s default behavior by disabling all networking services:

root@rzpi:~/network-management# ./disable_networking_stack.sh all
Note: Reboot the board for the changes to take effect or manually restart each service and its
dependencies.

9.1.2.3 Kernel Optimization
By default, the release package does not optimize the kernel. If you want to optimize it, you can enable
kernel optimization by setting the appropriate variable in local.conf.

When enabled, this optimization disables unused features and converts certain built-in modules into
loadable modules (USD, touchscreen, CANFD,..). This helps reduce kernel size, improve boot time,
and free up system resources.

To optimize the kernel, follow these steps to modify the local.conf:

1. Open the local.conf file in Yocto build configuration.

2. Set the ‘OPTIMIZE_KERN’ from “0” to “1”.

Optimized Linux Kernel Support: Build with optimizations for the Linux kernel
Default: 0 - Disable
Set to: 1 - Enable
OPTIMIZE_KERN = "1"
This will ensure that unnecessary kernel features are disabled and certain modules are built as loadable,

leading to a more efficient system.

Step 3: Rebuild and deploy the image to apply the changes.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 59 of 179
Jun.04.25

9.1.3 40-Pin IO Expansion Interface
The 40 IO Expansion Interface on RZ/G2L-SBC has support for:

• I2C channel 0
• I2C channel 3
• SPI channel 0
• SCIF channel 0
• CAN channel 0
• CAN channel 1
• GPIO pin-function (default).

Notes:

• The GPIO pin array is multiplexed with peripheral IO lines.
• By default, I2C channel 0 and SCIF channel 0 are enabled.
• The rest of the pins are GPIO’s by default.
• Enable the other functions by editing the uEnv.txt on the SD card and enabling the

appropriate device tree overlay file (DT overlays). This is also how some of the dedicated
drivers are enabled, like the display.

• Reboot the board for the overlay to take effect.

9.1.3.1 U-Boot Environment
The u-boot environment file is named ‘uEnv.txt’ and is present in the ‘boot’ directory. It contains boot
configuration settings to be processed by the U-Boot and configuration to be passed on to the Linux
kernel. The full description of the U-Boot environment is beyond the scope of this document. However,
we cover the necessary aspects and settings that are relevant to the SBC and most frequently used.

Table 12. Boot configuration settings provide a list of all the overlay options available in the provided
kernel.

Table 12. Boot configuration settings

Config Value if
set Loading Description

fdtfile rzpi.dtb rzpi.dtb
Main device tree file to be loaded from the
filesystem

enable_overlay_i2c 1 or 'yes'
rzpi-ext-
i2c.dtbo

Enables the i2c driver enumeration and
reconfigures the relevant IO pins to connect
to the I2C peripheral.

enable_overlay_spi 1 or 'yes'
rzpi-ext-
spi.dtbo

Enables the SPI driver enumeration and
reconfigures the relevant IO pins to connect
to the SPI peripheral.

enable_overlay_can 1 or 'yes'
rzpi-
can.dtbo

Enables the CAN driver enumeration and
reconfigures the relevant IO pins to connect
to the CAN peripheral.

enable_overlay_dsi 1 or 'yes'
rzpi-
dsi.dtbo

Enables the waveshare DSI to display
touch panel driver enumeration and
reroutes the video to DSI.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 60 of 179
Jun.04.25

enable_overlay_csi_ov5
640 1 or 'yes'

rzpi-
ov5640.dtb
o

Enables the OV5640 CSI camera driver
enumeration and loads the v4l2 pipelines.

There is a `readme.txt` file in `/boot` folder with the descriptions of the FDT overlay information. This
is usually more up-to-date with the build.

Note: The Linux shell command ‘sync’ needs to be run after changing files on the rootfs to ensure that
the data is flushed to the actual physical storage. Without it, there is a possibility that the changes
may not take effect in the actual file.

Device tree file changes require the SBC to be rebooted to take effect.

9.1.3.2 GPIO (General Purpose I/O pins)
By default, most pins are configured as GPIOs on the SBC’s 40-pin GPIO pin header. This section
describes what those pins are and how to access them. The IO pins are explored in detail in Figure 94.
40 PIN GPIO map with orientation details. The explanation of the Linux GPIO framework is beyond the
scope of this document. In this section, we mostly deal with the identification of pin and port numbers
and how to access them.

Linux sysfs uses /sys/class/gpio entries to control the GPIO bank. The following table maps out the
pins and their functions to the IO port header:

Table 13. GPIO pins and functions

GPIO Pin
number Function group pin

J3

PINs
pin group Function GPIO Pin

Number

 Left

side
Right
side

 3.3V 1 2 5V

490 I2C3 SDA 46 2 3 4 5V

491 I2C3 SCL 46 3 5 6 GND

304 GPIO 23 0 7 8 0 38 SCIF0 TX 424

 GND 9 10 1 38 SCIF0 RX 425

456 GPIO 42 0 11 12 2 7 GPIO 178

336 GPIO 27 0 13 14 GND

345 GPIO 28 1 15 16 0 8 GPIO 184

 3.3V 17 18 0 15 GPIO 240

465 SPI0 MOSI 43 1 19 20 GND

466 SPI0 MISO 43 2 21 22 1 14 GPIO 233

464 SPI0 CK 43 0 23 24 3 43 SPI0 CS 467

 GND 25 26 1 11 GPIO 209

 I2C0 SDA 27 28 I2C0 SCL

 GPIO 4 0 29 30 GND

153 GPIO 4 1 31 32 0 32 GPIO 376

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 61 of 179
Jun.04.25

297 GPIO 22 1 33 34 GND

457 CAN0 TX 42 1 35 36 1 23 GPIO 305

208 CAN0 RX 11 0 37 38 0 46 CAN1 TX 488

 GND 39 40 1 46 CAN1 RX 489

The SoC uses bank ID and IO line number to identify the GPIO port. The pin mux uses a unique Px_y
notation for physical pins. Linux, however, uses a linear GPIO pin number list and internally maps the
GPIO numbers to the appropriate GPIO line.

Use the following steps to identify the correct Linux pin number:

1. We start with the Px_y io pin from the schematic. Identify the port values as per Table 14. Symbol
definition for GPIO Px_y Notation.

Table 14. Symbol definition for GPIO Px_y Notation

Symbol /
variable in
notation

Description

x Group number / port number

y Pin number in port (0:8)

G Group in (always 8 bit which is the size of the
port register). Constant 8.

pbase Pin base: starting io pin number (constant
120). All external Linux gpio pins start from
120.

2. Calculate the Linux port ID using the following formula:

Linux_pin_number = (x * G) + y + Pbase

Example for J3 PIN 7:

(23*8) + 0 + 120 = 304 = pinum

To set the GPIO pin, change the directory to the GPIO sysfs directory and set values as shown below:

root@rzpi:~# cd /sys/class/gpio/
root@rzpi:/sys/class/gpio# echo 304 > export
There will be a new directory that represents the GPIO pin. In this example, it will be the P23_0
directory.

root@rzpi:/sys/class/gpio# ls
P23_0 export gpiochip120 unexport
Inside the P23_0 directory, some control interfaces are created by the Linux sysfs to manage the
GPIO pin:

root@rzpi:/sys/class/gpio# cd P23_0
root@rzpi:/sys/class/gpio/P23_0# ls
active_low device direction edge power subsystem uevent value
Note: The Linux sysfs is not populated with all the gpio’s. They are usually mapped for use within the
kernel. So, to get the gpio handle, it is necessary to call an export on it so that the kernel driver makes

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 62 of 179
Jun.04.25

it available by populating a new directory with the pin number and control handles placed in it. For
details, refer to the official document: https://docs.kernel.org/5.10/admin-guide/gpio/sysfs.html

(1) Setting I/O Pin Direction
To control the input/output of the GPIO pin, either “in” or “out” should be written to the “direction”
interface. Writing as “out” defaults to initializing the value as low.

root@rzpi:/sys/class/gpio# echo out > P23_0/direction

(2) Reading the GPIO
To read the state high/low of the GPIO pin, print out the value of the “value” interface.

root@rzpi:/sys/class/gpio# cat P23_0/value
0

Value 0 means the I/O pin is low; Value 1 means the I/O pin is high.

(3) Setting the GPIO
The ability to control the pin’s output is only available when the direction is set to ‘out’ / output mode.
To set the high/low value of the GPIO pin (output pin), either “1” or “0” should be written to the “value”
interface. Any nonzero value is treated as high.

root@rzpi:/sys/class/gpio# echo 1 > P23_0/value
root@rzpi:/sys/class/gpio# cat P23_0/value
1
root@rzpi:/sys/class/gpio# echo 0 > P23_0/value
root@rzpi:/sys/class/gpio# cat P23_0/value
0

You can always read the current state of the port by reading back the value of the interface.

9.1.3.3 Enabling I2C Function (Channel 3 – RIIC3)
Edit `uEnv.txt` and uncomment the line as follows to enable I2C channel 3 on the 40 IO expansion
interface:

Change the following line:

#enable_overlay_i2c=1
To

enable_overlay_i2c=1
Then reboot the RZ/G2L-SBC.

To check if I2C channel three is enabled, run the following command and check the result:

root@rzpi:~# i2cdetect -l
i2c-3 i2c Renesas RIIC adapter I2C adapter
i2c-1 i2c Renesas RIIC adapter I2C adapter
i2c-4 i2c i2c-1-mux (chan_id 0) I2C adapter
i2c-0 i2c Renesas RIIC adapter I2C adapter
root@rzpi:~#
To map out all the devices present on the I2C bus, execute the following command:

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 63 of 179
Jun.04.25

root@rzpi:~# i2cdetect -y -r 3
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: 50 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --
Any device present on the bus will be marked with the appropriate i2c device ID.

9.1.3.4 SPI function (Channel 0 – RSPI0)
Edit `uEnv.txt` as follows to enable SPI channel 0 on the 40 IO expansion interface:

Change the following line:

#enable_overlay_spi=1
To

enable_overlay_spi=1
This will enable the SPI module.

Run the following command to configure the SPI:

root@rzpi:~# spi-config -d /dev/spidev0.0 -q
/dev/spidev0.0: mode=0, lsb=0, bits=8, speed=2000000, spiready=0
Connect Pin 19 (RSPI0 MOSI) to Pin 21 (RSPI0 MISO), then run the below command and check the
result. The idea is to transmit on MOSI and read back on MISO to validate the transfer.

root@rzpi:~# echo -n -e "1234567890" | spi-pipe -d /dev/spidev0.0 -s 10000000 |
hexdump
0000000 3231 3433 3635 3837 3039
000000a

9.1.3.5 CAN Function (Channel 0,1 - CAN 0,CAN 1)
Edit `uEnv.txt` as follows to enable CAN channel 0,1 on 40 IO expansion interface:

Change the following line:

#enable_overlay_can=1
To

enable_overlay_can=1
To verify that the CAN channels are enabled, run the following command and check the result:

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 64 of 179
Jun.04.25

root@rzpi:~# ip a | grep can
3: can0: <NOARP,ECHO> mtu 16 qdisc noop state DOWN group default qlen 10
 link/can
4: can1: <NOARP,ECHO> mtu 16 qdisc noop state DOWN group default qlen 10
 link/can
root@rzpi:~#
Then set up for CAN devices. Now you can go up/down the interface or send data over CAN
channels.

The example below shows the communication between two CAN channels.

root@rzpi:~# ip link set can0 down
root@rzpi:~# ip link set can0 type can bitrate 500000
root@rzpi:~# ip link set can0 up
[48.120419] IPv6: ADDRCONF(NETDEV_CHANGE): can0: link becomes ready
root@rzpi:~# ip link set can1 down
root@rzpi:~# ip link set can1 type can bitrate 500000
root@rzpi:~# ip link set can1 up
[69.906039] IPv6: ADDRCONF(NETDEV_CHANGE): can1: link becomes ready
root@rzpi:~# candump can0 & cansend can1 123#01020304050607
[1] 271
 can0 123 [7] 01 02 03 04 05 06 07
root@rzpi:~# candump can1 & cansend can0 123#01020304050607
[2] 273
 can0 123 [7] 01 02 03 04 05 06 07
 can1 123 [7] 01 02 03 04 05 06 07
root@rzpi:~#

9.1.4 Accessing PWM Timers
The RZG2L-SBC provides PWM (Pulse Width Modulation) timers, which can be used for various
applications, including motor control, LED dimming, and signal generation for external devices. PWM
allows for precise control over voltage levels by adjusting the duty cycle, making it useful in scenarios
requiring variable power output.

9.1.4.1 Overview
The RZ/G2L-SBC board's device tree source (DTS) includes two GPT channels by default, providing
PWM functionality for three pins.

- GPT4: Supports two PWM channels (channel_A and channel_B).
- GPT5: Supports a signal PWM channel A.

However, these channels are disabled by default because the GPT4 pins are assigned to SPI, and the
GPT5 pins are used for DSI. If these resources are repurposed for PWM, then the default functions
(SPI or DSI) will no longer be available.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 65 of 179
Jun.04.25

&gpt4 {
 pinctrl-0 = <&gpt4_pins>;
 pinctrl-names = "default";
 channel = "both_AB";
 poeg = <&poega &poegb &poegc &poegd>;
 status = "disabled";
};

&gpt5 {
 pinctrl-0 = <&gpt5_pins>;
 pinctrl-names = "default";
 channel="channel_A";
 poeg = <&poegd>;
 status = "disabled";
};
To enable the use of PWM, follow the steps in the next subsection:

9.1.4.2 Enabling GPT Channels for PWM Use
This section explains how to enable GPT channels for PWM on the RZ/G2L-SBC board. By default, the
GPT channels are disabled in the device tree, so they need to be enabled manually.

Note: Ensure you have internet access before running the commands.

1. Install the device tree compiler tool.

root@rzpi:~# apt-get update
root@rzpi:~# apt-get install device-tree-compiler

2. Decompile the dtb file into a dts file.

root@rzpi:~# dtc -I dtb -O dts -f /boot/rzpi.dtb -o rzpi.dts

3. Modify the dts file.

Open the rzpi.dts file in a text editor.

root@rzpi:~# vi rzpi.dts

For GPT4, locate gpt@10048400

For GPT5, locate gpt@10048500

Change the status property of the node you want to enable from "disabled" to "okay". Save the file after
making the changes.

4. Recompile the dts file back into a dtb file.

root@rzpi:~# dtc -I dts -O dtb -f rzpi.dts -o new_rzpi.dtb

5. Deploy the new dtb file:

Replace the original dtb file with the newly compiled one.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 66 of 179
Jun.04.25

Note: It is recommended to back up the original DTB file beforehand. After recompiling the DTS into a
DTB and deploying it to /boot/rzpi.dtb, ensure that the file retains its original name. If the DTB file is
missing or renamed, the boot process may fail.

root@rzpi:~# cp new_rzpi.dtb /boot/rzpi.dtb

6. Reboot the system to apply the changes.

After booting up, if everything is configured correctly, the PWM device file will be automatically
generated in /sys/class/pwm/pwmchipX, where X can be 0, 1, 2, and so on.

9.1.4.3 Enable PWM channels
Before using PWM, the channels need to be exported to the system.

For example, to use PWM chip 0 and export channel 0, the following steps are required.

root@rzpi:~# cd /sys/class/pwm/pwmchip0/
root@rzpi:/sys/class/pwm/pwmchip0# echo 0 > export

9.1.4.4 Configuring PWM
To configure a single PWM channel (For example, from GPT5), follow these steps:

In this example, the period is set to 1,000,000 nanoseconds, and the duty cycle is configured to 500,000
nanoseconds, which is 50% of the period. Adjust these values as needed to achieve the desired PWM
output.

1. Modify the duty cycle and period.

Set the period (in nanoseconds).

root@rzpi:/sys/class/pwm/pwmchip0/# cd pwm0
root@rzpi:/sys/class/pwm/pwmchip0/pwm0# echo 1000000 > period

Set the duty cycle (in nanoseconds).

root@rzpi:/sys/class/pwm/pwmchip0/pwm0# echo 500000 > duty_cycle

2. Enable the PWM to start output.

root@rzpi:/sys/class/pwm/pwmchip0/pwm0# echo 1 > enable

For devices like GPT4 that provide two PWM channels (channel A and channel B), each channel
needs to be configured separately.

1. Modify the period.

Define the period for both channels in nanoseconds. For example, to set the period to 100,000
nanoseconds, use the following command:

root@rzpi:/sys/class/pwm/pwmchip0/pwm0# echo 1000000 > period

2. Enable the PWM to start output

root@rzpi:/sys/class/pwm/pwmchip0/pwm0# echo 1 > enable

3. Modify the duty cycle for each channel.

Navigate to the device directory to configure the duty cycles for both channels.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 67 of 179
Jun.04.25

root@rzpi:/sys/class/pwm/pwmchip0/pwm0# cd /sys/class/pwm/pwmchip0/device
root@rzpi:/sys/class/pwm/pwmchip0/device# echo 1000000 > buffA0
root@rzpi:/sys/class/pwm/pwmchip0/device# echo 500000 > buffB0

In this example, channel A is set to a duty cycle of 1,000,000 nanoseconds, while channel B is set to
500,000 nanoseconds. Adjust these values as needed for the desired PWM output.

9.1.5 Wi-Fi 802.11 Module
RZ/G2L-SBC comes equipped with an onboard wireless 802.11 module. The image is ready with all
the necessary tools to connect to Wi-Fi. The Wi-Fi can be configured on the command line, which can
either be on the desktop UI or the UART tty from the host.

The following shows how to enable the 802.11 Wi-Fi module and connect to a network.

root@rzpi:~# connmanctl
connmanctl> enable wifi
Enabled wifi
connmanctl> agent on
Agent registered
connmanctl> scan wifi
Scan completed for wifi
connmanctl> services
 xDredme10zW wifi_0025ca329da3_78447265646d6531307a57_managed_psk
 wifi_0025ca329da3_hidden_managed_psk
 REL-GLOBAL wifi_0025ca329da3_52454c2d474c4f42414c_managed_ieee8021x
 R-GUEST wifi_0025ca329da3_522d4755455354_managed_none
 RVC-WLS wifi_0025ca329da3_5256432d574c53_managed_ieee8021x
connmanctl> connect wifi_0025ca329da3_78447265646d6531307a57_managed_psk
Agent RequestInput wifi_0025ca329da3_78447265646d6531307a57_managed_psk
 Passphrase = [Type=psk, Requirement=mandatory]
Passphrase? nFjey48aT9pk
connmanctl> exit
To confirm the Wi-Fi is connected, ping to the outside world:

root@rzpi:~# ping www.google.com
PING www.google.com(hkg07s39-in-x04.1e100.net (2404:6800:4005:813::2004)) 56 data bytes
64 bytes from hkg07s39-in-x04.1e100.net (2404:6800:4005:813::2004): icmp_seq=1 ttl=57
time=43.2 ms
64 bytes from hkg07s39-in-x04.1e100.net (2404:6800:4005:813::2004): icmp_seq=2 ttl=57
time=81.1 ms
64 bytes from hkg07s39-in-x04.1e100.net (2404:6800:4005:813::2004): icmp_seq=3 ttl=57 time=124
ms
Note: The ethernet interfaces may potentially interfere with the routing of the communication through
Wi-Fi. If issues start appearing, use the following commands to disable the ethernet ports.

root@rzpi:~# ifconfig eth0 down

root@rzpi:~# ifconfig eth1 down

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 68 of 179
Jun.04.25

9.1.5.1 Generic USB Bluetooth Framework
The RZG2L-SBC supports the generic USB Bluetooth framework, which is back-ported from the Linux
kernel mainline. TP-Link UB500 Bluetooth 5.0 Nano USB Adapter (Realtek chipset) has been tested
and proven to work on the board.

(1) Establishing a Bluetooth Connection
Note: Ensure you have internet access before running the commands. If the firmware is downloaded
for the first time, a reboot of the board is required to ensure the TP-Link UB500 adapter functions
properly.

The following steps will guide you on how to enable the TP-Link UB500 adapter:

1. Download the appropriate firmware for the TP-Link UB500 adapter and store it on the RZG2L-SBC.
This will ensure it is loaded each time the board boots (one-time setup).

root@rzpi:~# mkdir -p /lib/firmware/rtl_bt
root@rzpi:~# curl -s https://raw.githubusercontent.com/Realtek-
OpenSource/android_hardware_realtek/rtk1395/bt/rtkbt/Firmware/BT/rtl8761b_fw -o
/lib/firmware/rtl_bt/rtl8761bu_fw.bin

2. Verify whether the TP-Link UB500 adapter is properly attached.

Run the following command to ensure that the system has recognized the TP-Link UB500 adapter:

root@rzpi:~# hciconfig hci0 -a
hci0: Type: Primary Bus: USB
 BD Address: E8:48:B8:C8:20:00 ACL MTU: 1021:5 SCO MTU: 255:11
 UP RUNNING PSCAN
 RX bytes:2264 acl:0 sco:0 events:211 errors:0
 TX bytes:32795 acl:0 sco:0 commands:211 errors:0
 Features: 0xff 0xff 0xff 0xfe 0xdb 0xfd 0x7b 0x87
 Packet type: DM1 DM3 DM5 DH1 DH3 DH5 HV1 HV2 HV3
 Link policy: RSWITCH HOLD SNIFF PARK
 Link mode: SLAVE ACCEPT
 Name: 'rzpi'
 Class: 0x000000
 Service Classes: Unspecified
 Device Class: Miscellaneous,
 HCI Version: 5.1 (0xa) Revision: 0x9dc6
 LMP Version: 5.1 (0xa) Subversion: 0xd922
 Manufacturer: Realtek Semiconductor Corporation (93)

The TP-Link UB500 adapter is now ready to connect.

3. Connect the Bluetooth device.

Use bluetoothctl to connect to a Bluetooth device:
root@rzpi:~# bluetoothctl
[bluetooth]# power on
[bluetooth]# pairable on
[bluetooth]# agent on
[bluetooth]# default-agent

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 69 of 179
Jun.04.25

Set the RZG2L-SBC to be discoverable by other Bluetooth devices:

[bluetooth]# discoverable on
Enable and disable scan function:
[bluetooth]# scan on
[bluetooth]# scan off
Pair and connect the device:
[bluetooth]# pair FC:02:96:A5:80:97
[bluetooth]# trust FC:02:96:A5:80:97
[bluetooth]# connect FC:02:96:A5:80:97

‘FC:02:96:A5:80:97’ is the address of the Bluetooth device. Change it to match your device’s address.

Exit bluetoothctl.
[bluetooth]# exit

(2) Transferring Files over Bluetooth
To share files between the RZG2L-SBC and the target Bluetooth device, run the obexctl daemon and
connect:
root@rzpi:~# export $(dbus-launch)

root@rzpi:~# /usr/libexec/bluetooth/obexd -r /home/root -a -d & obexctl
[1] 595
[NEW] Client /org/bluez/obex
[obex]#
[obex]# connect FC:02:96:A5:80:97
Attempting to connect to FC:02:96:A5:80:97
[NEW] Session /org/bluez/obex/client/session0 [default]
[NEW] ObjectPush /org/bluez/obex/client/session0
Connection successful
‘FC:02:96:A5:80:97’ is the address of the Bluetooth device. Change it to match your device’s address.

Then, to send files, use the ‘send’ command while connected to the OBEX Object Push profile.
[FC:02:96:A5:80:97]# send /boot/uEnv.txt
Attempting to send /boot/uEnv.txt to /org/bluez/obex/client/session0
[NEW] Transfer /org/bluez/obex/client/session0/transfer0
Transfer /org/bluez/obex/client/session0/transfer0
 Status: queued
 Name: uEnv.txt
 Size: 2069
 Filename: /boot/uEnv.txt
 Session: /org/bluez/obex/client/session0
[CHG] Transfer /org/bluez/obex/client/session0/transfer0 Status: complete
[DEL] Transfer /org/bluez/obex/client/session0/transfer0
[FC:02:96:A5:80:97]# quit

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 70 of 179
Jun.04.25

9.1.6 Onboard Audio Codec with Stereo Jack
The RZ/G2L-SBC comes equipped with an onboard audio codec: Renesas DA7219. The audio codec
is connected to the DAI interface (SSI 1) of the SoC configured to I2S data format for the audio data,
while the control interface is on the I2C 0 interface.

The SBC board has a 3.5mm headset Jack labeled J8. It uses a 6-pin connector.

You can play and record audio directly using ALSA tools. However, it is restricted to PCM wave files
only. The image comes equipped with a fully configured GStreamer that lets you play other types of
audio files like MP3.

The following shows the two commands to play audio files.

root@rzpi:~# aplay /home/root/audios/04_16KH_2ch_bgm_maoudamashii_healing01.wav
root@rzpi:~# gst-play-1.0 /home/root/audios/COMMON6_MPEG2_L3_24KHZ_160_2.mp3
`aplay` command supports only `wav` format audio files.

`gst-play-1.0` command supports `wav`, `mp3`, and `aac` formats.

The following shows commands to record an audio.

root@rzpi:~# arecord -f S16_LE -r 48000 audio_capture.wav
Press Ctrl+C if you want to stop recording.

In the above command:

-f S16_LE : audio format (signed 16 bit little endian)

-r 48000 : sample rate of the audio file (48KHz)

To verify the recorded file, you can play it with the following command:

root@rzpi:~# aplay audio_capture.wav
To adjust the level of the audio record/playback, use the following command to open the ALSA mixer
GUI:

root@rzpi:~# alsamixer

Figure 14. ALSA Mixer GUI on RZ/G2L-SBC

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 71 of 179
Jun.04.25

9.1.7 MIPI DSI Display Touch Panel
RZ/G2L-SBC has an MIPI DSI interface that supports both a display module and a touch interface.
The DSI port supports dual-channel DSI and one I2C interface in the connector.

9.1.7.1 Hardware Interfacing
Given below are pictures of Waveshare 5” DSI display panel with touch screen assembly. The
pictures are self-explanatory.

Figure 15. Waveshare 5" DSI touch panel read side picture with flat ribbon cable.

FPC connector locking and unlocking is done by pulling up the black notch or pushing it down. Unlock
the connector by pulling up the notch, as shown below.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 72 of 179
Jun.04.25

Figure 16. DSI port notch lock open by pulling it up

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 73 of 179
Jun.04.25

Figure 17. Waveshare DSI touch display DSI port interfacing cable orientation.

Mount the RZ/G2L-SBC onto the rear end of the display panel.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 74 of 179
Jun.04.25

Figure 18. RZ/G2L-SBC mounted to the Waveshare DSI panel and interfaced.
Insert the other end of the FPC cable into the RZ/G2L-SBC DSI port and lock it. The locking
mechanism is shown below.

Figure 19. DSI port notch in the lock position. The cable is not shown to keep the notch in
clear view.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 75 of 179
Jun.04.25

Figure 20. Metal support screws supplied by Waveshare
The Waveshare DSI display panel comes with four metal supports that raise the display, along with the
rear-attached SBC, off the surface to provide sturdy support with clearance. However, these are not
high enough for the RZ/G2L-SBC due to the SBC having dual Ethernet ports, where one port is too
high, sitting on top of the two USB ports. We still recommend that you use a support stand, even an off-
market custom one, to ensure that the DSI cable is off the ground.

Remember that the DSI port includes an I2C two-wire interface that supports a touch panel interface
without any extra cabling.

Note: The dark, solid stripe on the flat cable always faces the black locking mechanism of the
connector. Do not insert the cable in reverse, as this could potentially damage the board due to
incorrect electrical connections.

9.1.7.2 Enabling DSI Panel Drivers
The Linux distribution supports the Waveshare 5-inch Touchscreen MIPI-DSI LCD capacitive touch
panel.

By default, the video output is directed toward the mini-HDMI port. To enable the panel drivers and
reroute the display to the DSI panel, you need to enable the panel driver DT overlay in uEnv.txt.

Open the `uEnv.txt` and change the following line:

#enable_overlay_dsi=1
To

enable_overlay_dsi=1
Reboot the SBC board.

Note: Enabling the MIPI DSI panel overlay disables the HDMI display. You can only use one at a
time.

9.1.8 Playing Video Files on RZ/G2L-SBC
Use gst-launch-1.0 to play video files. The playbin element in GStreamer makes it easy to play
multimedia content. Run the following command:

root@rzpi:~# gst-launch-1.0 playbin uri=file:///<path/to/your/video/path>

We have prepared some test videos in the /home/root/videos folder. You can use these for testing. For
example:

root@rzpi:~# gst-launch-1.0 playbin uri=file:///home/root/videos/h264-hd-30.mp4

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 76 of 179
Jun.04.25

This will start an MP4 video and display it on the screen.

Figure 21. Playing an MP4 video on the RZ/G2L-SBC

9.1.9 MIPI CSI2 with Arducam 5MP OV5640 Camera Module
RZ/G2L-SBC supports the MIPI CSI-2 camera interface. The Linux distribution supports the Arducam
5MP MIPI OV5640 image sensor-based module.

9.1.9.1 Hardware Interfacing
The Arducam OV5640 camera module is easily installed into the RZ/G2L-SBC.

Figure 22. Orientation of the camera module. Blue stripe upward.

The black notch must be pulled up to unlock it.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 77 of 179
Jun.04.25

Figure 23. Pull the notch up to unlock it.

Insert the flat cable in the correct orientation, as depicted in the pictures.

Figure 24. The CSI module is inserted.

Push down on the notch to lock it with the flat cable inserted.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 78 of 179
Jun.04.25

Figure 25. Push down the notch to lock it when you have inserted the flat cable

9.1.9.2 Enabling CSI Camera Drivers
To enable the camera, edit the uEnv.txt and enable the following line:

#enable_overlay_csi_ov5640=1
To

enable_overlay_csi_ov5640=1
Reboot the board.

9.1.9.3 Accessing the Camera
Before initializing the camera capture, it needs to be enabled and configured. The Linux distribution
has a helper script (v4l2-init.sh) in the /home/root directory to enable and configure the camera.

root@rzpi:~# cd /home/root/
root@rzpi:~# ./v4l2-init.sh <resolution>
The argument <resolution> specifies the resolution for the camera. Valid resolutions are:

• 1280x720

• 1280x960

• 1600x900

• 1920x1080

• 1920x1200

• 2560x1080

If no resolution is specified or an invalid resolution is provided, the default resolution, 1280x960, will
be used. For example:

When using a valid resolution:

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 79 of 179
Jun.04.25

root@rzpi:~# ./v4l2-init.sh 1920x1080
Link CRU/CSI2 to ov5640 1-003c with format UYVY8_2X8 and resolution 1920x1080
When no resolution is specified:

root@rzpi:~# ./v4l2-init.sh
No resolution specified. Using default resolution: 1280x960
Link CRU/CSI2 to ov5640 1-003c with format UYVY8_2X8 and resolution 1280x960
The `v4l2-init.sh` script helps enable the CSI-2 module and select the camera's supported display
resolution.

Run the following to initiate a video capture session and preview the video on the screen.

root@rzpi:~# gst-launch-1.0 v4l2src device=/dev/video0 ! videoconvert !
waylandsink
This will start a continuous stream of camera feed to the active video display.

9.1.10 Package Management
The distribution comes with the Debian package manager ‘apt-get’ and ‘dpkg’ for binary package
handling.

9.1.10.1 Setting Up Debian as A Backend Source
Follow the steps below to modify the Debian package repository and install packages according to
your needs.

1. Add/modify sources.list file to address the packages repository:
The ‘sources.list’ is a critical configuration file for package installation and updates used by
package managers on Debian-based Linux distributions. The ‘sources.list’ file contains a list
of URLs for repository addresses where the package manager can find software packages.
These repositories may be maintained by the Linux distribution itself or by third-party
individuals or organizations.

Currently, the default `sources.list`, which is located in /etc/apt/sources.list.d/sources.list/
directory is as below.

deb http://deb.debian.org/debian bullseye main contrib non-free
deb http://deb.debian.org/debian bullseye-updates main contrib non-free
deb http://deb.debian.org/debian bullseye-backports main contrib non-free
deb http://security.debian.org/debian-security/ bullseye-security main contrib non-
free

2. Update the defined package index for apt-get.
root@rzpi:~# apt-get update

Ensure you have internet access before running apt-get update.
In the contents of sources.list file, each line has [arch=arm64]. This is because the RZ/G2L
SoC is an ARM 64 (aarch64) core. This can be verified by the lscpu command:

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 80 of 179
Jun.04.25

root@rzpi:~# lscpu
Architecture: aarch64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 2
...
Vendor ID: ARM

By specifying [arch=arm64] in sources.list file, apt-get will filter for the proper binary packages
in the repository. This will limit the existing APT sources to arm64 only. However, if we use a
repository which is entirely hosting ARM 64 bit (aarch64) packages, we do not need to
specify [arch=arm64] in the sources.list entry. For example:
deb http://deb.debian.org/debian bullseye main contrib non-free
Remember that sources do not have to be a single origin. It is very common to add multiple
repositories and sources for packages and manage them using keys.
The source management is beyond the scope of this document.

3. Installing packages using apt-get:
To install a package using apt-get, use the following command:
root@rzpi:~# apt-get install <package-name>

9.1.10.2 Docker Installation Setup
This guide walks you through enabling Docker support at the kernel level, installing Docker, configuring
firewall compatibility, and verifying the installation.

Step 1: Enable Docker support in kernel build

Docker support is disabled by default for Yocto images. To enable Docker integration at the kernel
level, set the following option in your `local.conf` build as below:

DOCKER_SUPPORT = "1" # Set to "1" to enable; "0" to disable (default)

Step 2: Install Docker

Ensure the device has internet access, then update package lists and install Docker:

root@rzpi:~# apt-get update
root@rzpi:~# apt-get install docker.io

Step 3: Configure firewall compatibility, Docker supports only iptables-legacy and iptables-nft. Directly
using nftables firewall rules is incompatible. Switch to legacy iptables with:

Note: The release currently uses Debian Bullseye as the default APT repository source.
Modifying the APT sources (e.g., switching to Ubuntu or using third-party repositories) may
break the boot or cause installation issues for some applications due to changes in package
versions, availability, or dependencies. Proceed with caution if you plan to alter the default APT
configuration.

Note: After enabling Docker support, you must rebuild the kernel and replace the existing kernel
image with the newly built one for the changes to take effect.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 81 of 179
Jun.04.25

root@rzpi:~# update-alternatives --set iptables /usr/sbin/iptables-legacy
root@rzpi:~# update-alternatives --set ip6tables /usr/sbin/ip6tables-legacy

Restart Docker to apply these changes:

root@rzpi:~# systemctl restart docker

Step 4: Verify Docker Installation by running:

root@rzpi:~# docker run hello-world

A successful run will display a message confirming Docker is working properly.

9.1.10.3 Using DPKG to Install Packages
The utility ‘dpkg’ is the low-level package manager for Debian-based systems. It is the local system-
wide package manager. It handles installation, removal, provisioning, indexing, and other aspects of
packages installed on the system. However, it does not perform any cloud operations. Dpkg also does
not handle dependency resolution. This is another task handled by a high-level manager like ‘apt-get’.
In fact, ‘dpkg’ is the backend for ‘apt-get’. While ‘apt-get’ handles fetching and indexing, the local
installations and management of the packages are performed by the ‘dpkg’ manager.

Basic dpkg commands:

• dpkg -i <package.deb>: Installs a package.deb package.
• dpkg -r <package>: Removes a package.
• dpkg -l <pattern>: Lists installed packages matching <pattern>.
• dpkg -s <package>: Provides information about an installed package.

You can install any <package>.deb (where ‘<package>’ is a placeholder for the name of the real
package being installed) using dpkg with the following command:

root@rzpi:~# dpkg -i <package>.deb
After installing a package using dpkg, if you need to resolve dependency issues, use the following
command:

root@rzpi:~# apt-get install -f

9.1.11 Install Packages Using Python3-Pip
The distribution includes Python 3 along with useful libraries/modules/packages such as Pip3, Numpy,
Pandas, PySerial, Matplotlib, etc. This section will focus on using Pip3, the package installer for Python
3, to manage additional packages.

Python3-pip allows you to install, update, and manage Python packages from the Python Package
Index (PyPI) and other repositories.

To install a new package using pip3, use the following command:

root@rzpi:~# pip3 install <package_name>
For example, to install the `requests` package, you would run:

root@rzpi:~# pip3 install requests

To verify that the `requests` package (or any other installed package) is correctly installed, you can
use:

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 82 of 179
Jun.04.25

root@rzpi:~# pip3 show requests

This command provides details about the requests package, including its version and installation
location.

Alternatively, you can list all installed packages and check if the `requests` package is included:

root@rzpi:~# pip3 list

This will confirm that the package is installed and available for use.

9.1.12 Python GUI Programming with Tkinter
This section provides a step-by-step guide on creating a basic graphical user interface (GUI) application
using Tkinter; the standard Python interface to the Tk GUI toolkit. Tkinter is included with Python, so

you do not need to install any additional libraries. It is a great choice for building desktop applications
due to its simplicity and ease of use.

The following steps will show how to create a new Tkinter application:

1. Create a working directory on the RZ/G2L-SBC where you will develop and store your Python
application.

root@rzpi:~# mkdir ~/python_apl
root@rzpi:~# cd ~/python_apl

2. Create a new Python file (For example, main.py) in your work directory.

root@rzpi:~/python_apl# vi main.py

3. Develop a Simple Python GUI Application with tkinter.

- Import the tkinter module:
import tkinter as tk
This imports the Tkinter module and gives you access to its classes and functions.

- Create a main window.
root = tk.Tk()
This creates the main application window.

- Change the window title and resolution as desired.
root.title(“Sample application”)
root.geometry(“200x100”)

- Create and place a label.
label = tk.Label(root, text="Press the button", width=20, height=2)
label.pack()

- Create and place a button.
button = tk.Button(root, text="Click Me", command=on_button_click, width=10,height=2)
button.pack()
This creates a button with the text "Click Me" and associates it with the on_button_click function.

When the button is pressed, the function is called.

- Define a user function which helps to handle on click event and shows “Hello, Tkinter!” on the
application’s window.
def on_button_click():
 label.config(text="Hello, Tkinter!")

- Run the application

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 83 of 179
Jun.04.25

root.mainloop()
This starts the Tkinter event loop, which waits for user interactions and updates the UI
accordingly.

- The completed Python program: “main.py”.

import tkinter as tk

def on_button_click():
 label.config(text="Hello, Tkinter!")

root = tk.Tk()
root.title("Sample application")
root.geometry("200x100")

Create a label
label = tk.Label(root, text="Press the button", width=20, height=2)
label.pack()

Create a button
button = tk.Button(root, text="Click Me", command=on_button_click, width=10,height=2)
button.pack()

Run the application
root.mainloop()

4. Run the application

- Ensure the RZ/G2L SBC is connected to an external display. If you are using an environment
where the display is not automatically set, you may need to set the DISPLAY environment
variable as follows:
root@rzpi:~# export DISPLAY=:0

- Run the Python application:
root@rzpi:~# python3 main.py

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 84 of 179
Jun.04.25

Figure 26. Initial GUI layout

Figure 27. After the button ‘Click me’ is
clicked

9.1.13 Chromium Web Browser
The distro image in this release comes with an open-source Chromium browser. It is a fully featured
version.

You can use the following command line to launch a Chromium window with a URL that it will load on
launch.

root@rzpi:~# chromium --no-sandbox --in-process-gpu https://google.com

Note: It is a must to have an input device (USB mouse or touchscreen) plugged in before you start the
browser. The lack of an input device will cause a segmentation fault.

Chromium can be launched from the taskbar at the top of the screen as shown below:

Figure 28. Chromium web browser on RZ/G2L-SBC

9.2 Supported Features in Ubuntu Images
Before accessing the features available in both the Ubuntu Core and Ubuntu LXDE images
on the supported platforms, please log in using the default credentials:

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 85 of 179
Jun.04.25

• Username: rzpi

• Password: 1

After logging in, the supported features can be explored and interacted with, as detailed below.

9.2.1 Accessing Supported Features in Ubuntu LXDE

9.2.1.1 Selecting LXDE session
To use the LXDE desktop environment, manual selection is required during the initial login:

1. At the login screen, look for a gear ����� icon in the bottom-right corner.
2. Click it and select "LXDE" from the list of available sessions.
3. Enter your password and log in.

The chosen session will be remembered for subsequent logins.

Skipping this step results in logging into the default desktop environment, which may not provide the
full LXDE experience.

9.2.1.2 Audacity
Audacity is a free, open-source, cross-platform audio software that is used for recording, editing, and
producing audio. It allows users to capture live audio, convert tapes and records into digital recordings,
and edit audio files in a variety of formats. Audacity is widely used for tasks such as podcasting, music
production, and audio analysis due to its user-friendly interface and powerful editing tools. It supports
multi-track editing, numerous audio effects, and plugins, making it a popular choice for both amateurs
and professionals.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 86 of 179
Jun.04.25

Figure 29. Audacity graphic user interface

To use Audacity, select audio-da7219 for both the microphone and audio hardware options. Set the
Project Rate to 48000 to accommodate hardware limitations. Then, click the red circle button to begin
recording.

To export the recording as an MP3, follow the steps outlined in the images below.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 87 of 179
Jun.04.25

Figure 30. Audacity export video as MP3

Then, metadata can be filled for the audio as follows:

Figure 31. Audacity metadata tags to fill for the audio

Select OK to finish editing the metadata tags.

Once the audio file is edited, it can be renamed (e.g., song.mp3). Then, choose the desired directory
and click Save to store the file.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 88 of 179
Jun.04.25

Figure 32. Saving the recorded audio

9.2.1.3 VLC Media Player
VLC Media Player is a free and open-source multimedia player that supports a wide range of audio
and video formats. To play music, simply open VLC and follow these steps:

1. Launch VLC Media Player

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 89 of 179
Jun.04.25

Figure 33. VLC Media Player

2. Click on “Media” in the top Menu, then select “Open File”

Figure 34. Open file in VLC Media Player

3. Browse to the location of the MP3/MP4 file, select it, and click Open to start playing.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 90 of 179
Jun.04.25

Figure 35. Select MP3/MP4 file to play in VLC Media Player

4. Now, the media can be played using VLC.

Figure 36. Video playback in VLC Media Player

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 91 of 179
Jun.04.25

9.2.1.4 Using CSI Camera with VLC
CSI (Camera Serial Interface) is an interface standard used to connect cameras to a device, commonly
used in embedded systems like Raspberry Pi and other single-board computers. It allows for high-
speed data transfer between the camera and the system, enabling the capture of high-quality video and
images.

You can use VLC Media Player to capture and view live videos from a CSI camera. Here's how you can
do it:

1. Connect the Camera: Make sure your CSI camera is connected to the CSI port on your device.

2. Open VLC Media Player:

o Launch VLC from the application menu.

Figure 37. Capture Device in VLC Media Player

3. Open Capture Device:

- In VLC, click on the Media menu and select Open Capture Device....
- In the Capture Device tab, choose Video device name that corresponds to your CSI camera (it

might be listed as /dev/video0 or something similar).

4. Configure the Capture Settings:

- Choose the desired video format (e.g., MJPEG or YUY2) and resolution (e.g., 640x480,
1280x720) based on your camera capabilities.

5. Click Play:

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 92 of 179
Jun.04.25

- Once you've selected the correct capture device and settings, click Play to start viewing the live
video feed from your CSI camera.

Live video from the CSI camera should now be visible in VLC.

9.2.1.5 Web Browser
Ubuntu LXDE comes with a default web browser pre-installed. This browser provides essential features
for browsing the internet and is lightweight, making it suitable for low-resource systems.

Figure 38. Ubuntu LXDE web browser pre-installe

9.2.1.6 LXTerminal
LXTerminal is a VTE-based terminal emulator with support for multiple tabs. It is completely desktop-
independent and does not have any unnecessary dependencies. In order to reduce memory usage and
increase performance, all instances of the terminal share a single process.

Features:

- Lightweight and fast terminal emulator.
- Supports multiple tabs.
- Desktop-independent, reducing resource consumption.
- Optimized for performance with a single shared process for all instances.

Example Usage: Monitor Swap Memory with htop while browsing renesas.com

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 93 of 179
Jun.04.25

Figure 39. Htop in Ubuntu-LXDE

9.2.1.7 Ethernet
Ethernet, also known as a wired network, is a widely used method to connect a device to a Local Area
Network (LAN) or the internet using physical cables. On Ubuntu LXDE, connecting to an Ethernet
network can be easily done through the Network Manager, a powerful and user-friendly network
management tool.

Follow these simple steps to connect to an Ethernet network using the Network Manager UI:

1. Open the Network Manager:

- At the bottom-right corner of the screen, click on the network icon, choose Edit connection....

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 94 of 179
Jun.04.25

Figure 40. Bluetooth icon Ubuntu-LXDE taskbar

2. Choose Your Ethernet Network:
- In the Network Manager menu, you should see Wired Networks listed. Simply click on your

Ethernet connection, or manually configure it as described below (if not automatically
connected).

Figure 41. Choose Network Connections

3. Configure the Connection:
- If the connection is not automatically established, you can configure network settings such as

IP addresses, DNS servers, etc.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 95 of 179
Jun.04.25

Figure 42. Edit Ethernet connection 1

4. Connect: Once the connection settings are confirmed, the Ethernet connection should be
ready for use. The network icon will update to indicate a successful connection.

9.2.1.8 Wi-Fi Network
Ubuntu LXDE provides an easy way to connect to WiFi networks. Follow these simple steps to get
connected:

1. Click on the Network Icon: In the lower-right corner of the screen, you will find the network
icon. Click on this icon.

2. Choose Your WiFi Network: A list of available WiFi networks will appear. Find and click on
your desired WiFi network from the list.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 96 of 179
Jun.04.25

Figure 43. Wi-Fi selection in Ubuntu-LXDE

3. Enter the Password: After selecting the network, a prompt will appear asking for the WiFi
password. Type in the password and click Connect.

4. Connected: Once the password is verified, your system will be connected to the WiFi network.

9.2.1.9 Bluetooth
Ubuntu LXDE provides an easy way to connect to Bluetooth devices. Follow these simple steps to get
connected:

1. Click on the Bluetooth Icon: Locate the Bluetooth icon (usually a "B" symbol) in the lower-right
corner of the screen. Click on the icon and select Devices.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 97 of 179
Jun.04.25

Figure 44. Bluetooth icon in Ubuntu LXDE taskbar

2. Enable Bluetooth: If Bluetooth is not already enabled, click the “Turn Bluetooth On” option to
activate it.

3. Search for Devices: Select Adapter and click Search to view a list of available Bluetooth
devices.

Figure 45. Search for available Bluetooth devices

4. Select the device: From the list of available Bluetooth devices, select the desired device to
connect to.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 98 of 179
Jun.04.25

Figure 46. Select a Bluetooth device

Figure 47. Connect to a Bluetooth device

5. Pair the Device: If prompted, confirm the pairing request and enter the required pairing code or
PIN if necessary. After confirming, the devices will be paired.

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 99 of 179
Jun.04.25

Figure 48. Bluetooth connection confirmation

6. Connection Established: Once the pairing process is complete, the device will be successfully
connected.

9.2.2 Accessing Supported Features in Ubuntu Core
Ubuntu Core provides similar feature support as Yocto-based images, offering a headless environment
for command-line operations. Feature usage and functionality align closely with those available in Yocto
images. For details on supported features and their usage, refer to 9.1 Supported Features in Yocto
Images

9.2.2.1 Configure the Network in Ubuntu Core
The Ubuntu installer configures the system to obtain network settings via DHCP by default. To switch
to a static IP address, modify the network configuration using Netplan. The configuration file
/etc/network/interfaces is no longer used. Instead, edit /etc/netplan/00-installer-config.yaml to set a
static IP address. For example, the following configuration assigns the IP address 192.168.0.100 and
specifies the DNS servers 8.8.4.4 and 8.8.8.8.

To open the network configuration file, use:

root@rzpi:~# sudo vi /etc/netplan/00-installer-config.yaml

After installation, the system uses DHCP, and the network configuration file appears as follows:

This is the network config written by 'subiquity'

network:
 ethernets:
 ens33:
 dhcp4: true
 version: 2

To assign a static IP address (192.168.0.100), modify the file as follows:

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 100 of 179
Jun.04.25

This file describes the network interfaces available on your system

For more information, see netplan(5).
network:
 version: 2
 renderer: networkd
 ethernets:
 ens33:
 dhcp4: no
 dhcp6: no
 addresses: [192.168.0.100/24]
 routes:
 - to: default
 via: 192.168.0.1
 nameservers:
 addresses: [8.8.8.8,8.8.4.4]
Then the hosts file needs to be updated to reflect the new hostname and IP address:

root@rzpi:~# sudo vi /etc/hosts
Modify the file by adding the following entries:

127.0.0.1 localhost

192.168.0.100 rzpi.example.com rzpi

The following lines are desirable for IPv6 capable hosts
::1 localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

Next, change the hostname, run the following commands:

root@rzpi:~# sudo echo rzpi > /etc/hostname
root@rzpi:~# sudo hostname rzpi

The first command updates /etc/hostname, which is read during boot. The second command applies
the change immediately without requiring a reboot.

As an alternative to the two commands above. Instead of manually updating the hostname file, the
hostnamectl command (part of systemd) can be used:

root@rzpi:~# sudo hostnamectl set-hostname rzpi

Afterward, run:

root@rzpi:~# hostname
root@rzpi:~# hostname -f

The first command returns the short hostname, while the second command shows the fully qualified
domain name:

RZ Family / RZ/G Series 9. Accessing Supported Features

R12UZ0177EU0110 Rev.1.10 Page 101 of 179
Jun.04.25

root@rzpi:/home/root# hostname
rzpi

root@rzpi:/home/root# hostname -f
rzpi.example.com

root@rzpi:/home/root#

RZ Family / RZ/G Series 10. Network Boot and TFTP

R12UZ0177EU0110 Rev.1.10 Page 102 of 179
Jun.04.25

10. Network Boot and TFTP
This section outlines the process for network booting using TFTP (Trivial File Transfer Protocol). It
includes configuration steps and commands necessary for a successful setup.

Network booting allows devices to boot from an image stored on a network server rather than relying
on local storage. In this setup, the MMC SD card is not required for booting Linux.

10.1 TFTP Server Setup
This subsection covers the setup of a TFTP server on the host side. This is necessary for the device to
retrieve the boot images over the network. We use an x86-based pc for this, but the instructions are the
same for any server.

Prerequisites:

• x86 based PC or rack server (non x86 systems can be used at user discretion).
• An Ubuntu / Debian-based OS loaded onto the server.
• A router that performs DHCP.
• RZ/G2L-SBC
• FTDI-based USB-UART cable.
• Ethernet cables.

Note: This requires a wired connection and cannot be performed on Wi-Fi.

1. Install a TFTP server using the following command:

$ sudo apt update
$ sudo apt install tftpd-hpa
2. Create a TFTP directory and set the appropriate permissions.

$ sudo mkdir /tftpboot
$ sudo chmod 755 /tftpboot
3. Edit the TFTP configuration file (typically found at /etc/default/tftpd-hpa) and set it up as follows:

$ vi /etc/default/tftpd-hpa
Paste the following content into the file.

/etc/default/tftpd-hpa

TFTP_USERNAME="tftp"
TFTP_DIRECTORY="/tftpboot"
TFTP_ADDRESS="0.0.0.0:69"
TFTP_OPTIONS="--secure"/tftpd-hpa
4. Restart the TFTP service to apply the changes.

$ sudo systemctl restart tftpd-hpa
Make sure the tftpd-hpa service is running:

$ sudo systemctl status tftpd-hpa

RZ Family / RZ/G Series 10. Network Boot and TFTP

R12UZ0177EU0110 Rev.1.10 Page 103 of 179
Jun.04.25

10.2 NFS Server Setup
NFS (Network File System) is a protocol that allows clients to access files over a network as if they
were local. It enables multiple clients to share files from a central server, simplifying file management
across machines.

In this setup, NFS will share the root filesystem (rootfs) with clients booting over the network. This allows
client devices to dynamically retrieve their operating system files and configurations, making it ideal for
embedded systems that require consistent file access without local storage.

1. Install the NFS server and NFS client packages if it is not already installed on your host PC:

$ sudo apt update
$ sudo apt install nfs-kernel-server nfs-common

2. Edit the /etc/exports file to specify the directories to be shared and their access permissions.

$ vi /etc/exports

For example, to share the /tftpboot directory, add the following line:

/tftpboot *(rw,no_root_squash,async)

Here, * allows access from any client. Consider replacing it with specific client IP addresses for better
security.

3. After editing /etc/exports, run the following command to export the directories:

$ sudo exportfs -a

4. Start the NFS server and enable it to run at boot:

$ sudo systemctl start nfs-kernel-server
$ sudo systemctl enable nfs-kernel-server

10.3 U-Boot DHCP IP Configuration
In this subsection, the U-Boot environment will be configured for network settings, including the
specification of the Ethernet device and the configuration of the server and device IP addresses.

1. Enter the U-Boot interactive command prompt for configuration by pressing any key when
prompted with Hit any key to stop autoboot:

RZ Family / RZ/G Series 10. Network Boot and TFTP

R12UZ0177EU0110 Rev.1.10 Page 104 of 179
Jun.04.25

U-Boot 2021.10 (May 24 2024 - 07:26:08 +0000)

CPU: Renesas Electronics CPU rev 1.0
Model: RZpi
DRAM: 896 MiB
MMC: sd@11c00000: 0
Loading Environment from SPIFlash... SF: Detected is25wp256 with page size 256
Bytes, erase size 4 KiB, total 32 MiB

In: serial@1004b800
Out: serial@1004b800
Err: serial@1004b800
Net: eth0: ethernet@11c20000, eth1: ethernet@11c30000
Hit any key to stop autoboot: 0
=>

2. Enter Specify the Ethernet device (eth1) to use for the network connection.
For example:

=> setenv ethact ethernet@11c30000
3. Configure server and device IPs:

=> setenv serverip <server_ip>
=> setenv ipaddr <device_ip>

For example:

=> setenv serverip 192.168.5.86
=> setenv ipaddr 192.168.5.30

10.4 TFPT Boot
In this subsection, the boot arguments and commands for U-Boot will be configured to load the kernel
image and device tree from the TFTP server.

Ensure all hardware connections are properly set up, as shown in Figure 49. TFTP boot setup:

RZ Family / RZ/G Series 10. Network Boot and TFTP

R12UZ0177EU0110 Rev.1.10 Page 105 of 179
Jun.04.25

Figure 49. TFTP boot setup

1. After setting up the TFTP server and ensuring the hardware connections are correct, place the
required boot images, such as the kernel image, device tree blob (DTB), device tree overlay
(DTBO), and root file system in the TFTP directory (/tftpboot). These files will be loaded during
the boot process.

RZ Family / RZ/G Series 10. Network Boot and TFTP

R12UZ0177EU0110 Rev.1.10 Page 106 of 179
Jun.04.25

renesas@builder-pc:/tftpboot/rzsbc/$ tree -L 2
.
├── Image
├── overlays
│ ├── rzpi-can.dtbo
│ ├── rzpi-dsi.dtbo
│ ├── rzpi-ext-i2c.dtbo
│ ├── rzpi-ext-spi.dtbo
│ └── rzpi-ov5640.dtbo
├── rootfs
│ ├── bin -> usr/bin
│ ├── boot
│ ├── dev
│ ├── etc
│ ├── home
│ ├── lib -> usr/lib
│ ├── media
│ ├── mnt
│ ├── opt
│ ├── proc
│ ├── root
│ ├── run
│ ├── sbin -> usr/sbin
│ ├── snap
│ ├── srv
│ ├── sys
│ ├── tmp
│ ├── usr
│ └── var
└── rzpi.dtb

2. Define the boot arguments to specify the network and root file system settings:

=> setenv bootargs 'consoleblank=0 strict-devmem=0
ip=<device_ip>:<server_ip>::::<eth_device> root=/dev/nfs rw
nfsroot=<server_ip>:</path/to/your/rootfs>,v3,tcp'

For example:

=> setenv setenv bootargs 'consoleblank=0 strict-devmem=0
ip=192.168.5.30:192.168.5.86::::eth1 root=/dev/nfs rw
nfsroot=192.168.5.86:/tftpboot/rzsbc/rootfs,v3,tcp'

3. Configure the boot command to load the kernel image and device tree files.

=> setenv bootcmd 'tftp <load_address_kernel> <path/to/kernel_image>; tftp
<load_address_dtb> <path/to/device_tree_blob>; tftp <load_address_dtbo>
<path/to/dtbo file>; booti <load_address_kernel> - <load_address_dtb> -
<load_address_dtbo>'

RZ Family / RZ/G Series 10. Network Boot and TFTP

R12UZ0177EU0110 Rev.1.10 Page 107 of 179
Jun.04.25

For example, load ‘Image’, ‘rzpi.dtb’ and ‘rzpi-ext-spi.dtbo’ files.

=> setenv bootcmd 'tftp 0x48080000 rzsbc/Image; tftp 0x48000000 rzsbc/rzpi.dtb;
tftp 0x48010000 rzsbc/overlays/rzpi-ext-spi.dtbo; booti 0x48080000 - 0x48000000 -
0x48010000'

4. Save the changes to the environment variables so they persist across reboots:

=> saveenv
5. Initiate the boot progress by running bootcmd:

=> run bootcmd
If everything is set up correctly, the images will be booted from the network.

=> run bootcmd
Using ethernet@11c30000 device
TFTP from server 192.168.5.86; our IP address is 192.168.5.30
Filename rzsbc/Image'.
Load address: 0x48080000
Loading: ###
 ###
 ###
 19.6 MiB/s
done
Bytes transferred = 18035200 (1133200 hex)
Using ethernet@11c30000 device
TFTP from server 192.168.5.86; our IP address is 192.168.5.30
Filename 'rzsbc/rzpi.dtb'.
Load address: 0x48000000
Loading: ####
 8.6 MiB/s
done
Bytes transferred = 44855 (af37 hex)
Using ethernet@11c30000 device
TFTP from server 192.168.5.86; our IP address is 192.168.5.30
Filename 'rzsbc/overlays/rzpi-ext-spi.dtbo'.
Load address: 0x48010000
Loading: #
 455.1 KiB/s
done
Bytes transferred = 932 (3a4 hex)
Moving Image from 0x48080000 to 0x48200000, end=493a0000
Flattened Device Tree blob at 48000000
 Booting using the fdt blob at 0x48000000
 Loading Device Tree to 000000007bf1a000, end 000000007bf27f36 ... OK

Starting kernel ...
...

RZ Family / RZ/G Series 11. Using SSH and SCP for Remote Access and File Transfers

R12UZ0177EU0110 Rev.1.10 Page 108 of 179
Jun.04.25

11. Using SSH and SCP for Remote Access and File Transfers
This section explains how to use SSH (Secure Shell) for secure remote access to the RZ/G2L-SBC and
how to utilize SCP (Secure Copy Protocol) for file transfers. By default, OpenSSH is employed as it is
a feature-rich and widely used SSH implementation that offers advanced capabilities for secure
communication. While OpenSSH serves as the default option, Dropbear SSH can be considered for
lightweight, resource-constrained environments, making it particularly suitable for embedded systems.

11.1 Differences Between Dropbear and OpenSSH
- Resource Usage: Dropbear is optimized for lower resource usage, making it ideal for

embedded systems.
- Feature Set: OpenSSH has a more extensive feature set, including advanced options for

authentication and configuration.
- Key Authentication: OpenSSH requires the use of SSH keys for authentication, while

Dropbear can operate with both keys and passwords.

11.2 Using OpenSSH
OpenSSH is a widely used, full-featured SSH implementation that provides encrypted communication
between hosts. It supports advanced authentication methods and secure remote administration, making
it ideal for robust network security.

The RZ/G2L-SBC supports both password and key-based authentication methods. To enhance security
by enforcing SSH key-based login, follow these steps to switch to key-based authentication:

1. Generate an SSH key pair on the local machine. Run the following command to generate a secure
SSH key pair:
$ ssh-keygen -t rsa -b 4096
2. Copying an SSH public Key to the board using SSH, transfer your public key to the board with this
command:

$ cat ~/.ssh/id_rsa.pub | ssh username@remote_host "mkdir -p ~/.ssh && cat >>
~/.ssh/authorized_keys"

For example:

$ cat ~/.ssh/id_rsa.pub | ssh root@192.168.5.30 "mkdir -p ~/.ssh && cat >>
~/.ssh/authorized_keys"

3. Authenticate using SSH keys:

$ ssh root@192.168.5.30

If this is the first time connecting to this host (as mentioned in the previous method), a message like the
following may appear:

$ The authenticity of host 192.169.5.30 (192.168.5.30)' can't be established.
ED25519 key fingerprint is SHA256:esQPI0Ip9HZH9A6dvTsA9+k7eLjT4sqzpiF7znl0tyw.
This key is not known by any other names
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

This indicates that the local computer does not recognize the remote host. Type yes and press ENTER
key to proceed.

RZ Family / RZ/G Series 11. Using SSH and SCP for Remote Access and File Transfers

R12UZ0177EU0110 Rev.1.10 Page 109 of 179
Jun.04.25

Step 4: Disable password authentication. If logging in to your account using SSH is successful without
a password, SSH key-based authentication has been correctly configured. However, password-based
authentication remains active, which leaves the server vulnerable to brute-force attacks.

Once the SSH connection is established, open the SSH daemon's configuration file:

$ vi /etc/ssh/sshd_config

Inside the file, search for a directive called PasswordAuthentication. This may be commented out.
Uncomment the line by removing any ‘#’ at the beginning of the line, and set the value to no. This will
disable the ability to log in through SSH using account passwords: /etc/ssh/sshd.

PasswordAuthentication no

Step 5: Restart the SSH service to apply the changes:

$ systemctl restart ssh

11.3 SSH Access
After configuring the authentication key, access to the RZ/G2L-SBC via SSH can be achieved using
various tools available on both Windows and Linux platforms.

11.3.1 SSH from Windows Host
1. Using Git Bash.

o Install Git for Windows if you have not already.
o Open and use the following command:

$ ssh username@<device_ip>
For example:
$ ssh root@192.168.5.30
o Type yes to confirm the host's authenticity when prompted.
$ ssh root@192.168.5.30
The authenticity of host '192.168.5.30 (192.168.5.30)' can't be established.
RSA key fingerprint is SHA256:v39PhjNp4F7HcQpwJmfNOYcC+ZZ3Yw8i1ICsL2mXUgg.
This key is not known by any other names.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '192.168.5.30' (RSA) to the list of known hosts.

2. Use MobaXTerm.

o Download and install MobaXterm if you have not already.
o Select "Session" > "SSH" and enter the device's IP address

RZ Family / RZ/G Series 11. Using SSH and SCP for Remote Access and File Transfers

R12UZ0177EU0110 Rev.1.10 Page 110 of 179
Jun.04.25

Figure 50. SSH settings in Mobaxterm

o Click ‘OK’ to save the setting.
o Click on the session to initiate an SSH connection.

Figure 51. Connect to SSH session in Mobaxterm

11.3.2 SSH from Linux Host
1. Open a terminal and run.

$ ssh username@<device_ip>
For example:

$ ssh root@192.168.5.30
2. Type yes to confirm the host's authenticity when prompted.

RZ Family / RZ/G Series 11. Using SSH and SCP for Remote Access and File Transfers

R12UZ0177EU0110 Rev.1.10 Page 111 of 179
Jun.04.25

$ ssh root@192.168.5.30
The authenticity of host '192.168.5.30 (192.168.5.30)' can't be established.
RSA key fingerprint is SHA256:v39PhjNp4F7HcQpwJmfNOYcC+ZZ3Yw8i1ICsL2mXUgg.
This key is not known by any other names.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '192.168.5.30' (RSA) to the list of known hosts.

11.4 SCP (Secure copy protocol)
To securely transfer files between local and remote systems, SCP can be used on both Windows and
Linux.

11.4.1 SCP from Windows Host
1. Using Git bash:

o Install Git for Windows if you have not already.
o Use the following command:

$ scp <local_file> username@<device_ip>:<remote_path>
For example:
$ scp hello-world root@192.168.5.30:home/root

o Type yes to confirm the host's authenticity when prompted.
2. Use WinSCP.

o Open WinSCP and select “New Session”.
o Choose SCP as the protocol, then enter the remote device's IP address and the hostname.

Figure 52. Setting up WinSCP for SSH session

o Click ‘Login’ and select yes to confirm the host's authenticity when prompted.
o Drag and drop files between your local machine (Left) and the target board (Right) to transfer.

RZ Family / RZ/G Series 11. Using SSH and SCP for Remote Access and File Transfers

R12UZ0177EU0110 Rev.1.10 Page 112 of 179
Jun.04.25

Figure 53. Using WinSCP to transfer files

11.4.2 SCP from Linux Host
1. Open a terminal and run.

$ scp <local_file> username@<device_ip>:<remote_path>
For example:

$ scp hello-world root@192.168.5.30:/home/root
2. Type yes to confirm the host's authenticity when prompted.

$ scp hello-world root@192.168.5.30:/home/root
The authenticity of host '192.168.5.30 (192.168.5.30)' can't be established.
RSA key fingerprint is SHA256:v39PhjNp4F7HcQpwJmfNOYcC+ZZ3Yw8i1ICsL2mXUgg.
This key is not known by any other names.
Are you sure you want to continue connecting (yes/no/[fingerprint])? yes
Warning: Permanently added '192.168.5.30' (RSA) to the list of known hosts.

11.5 Switching from OpenSSH to Dropbear
By default, the RZ/G2L-SBC uses OpenSSH. To switch from OpenSSH to Dropbear, follow these steps
to modify the local.conf:

1. Open the local.conf file in Yocto build configuration.

2. Comment the following lines in the local.conf.

IMAGE_FEATURES_remove = "ssh-server-dropbear"
IMAGE_FEATURES_append = "ssh-server-openssh"
This will remove OpenSSH and enable Dropbear for the board.

3. Rebuild and deploy the image to apply the changes.

RZ Family / RZ/G Series 12. Building the eSDK

R12UZ0177EU0110 Rev.1.10 Page 113 of 179
Jun.04.25

12. Building the eSDK
The extensible SDK makes it easy to add new applications and libraries to an image, modify the source
for an existing component, test changes on the RZ/G2L-SBC, and ease integration into the rest of the
OpenEmbedded Build System.

The eSDK build generates an installer, which you will use to install the eSDK on the same PC where
your Yocto environment is set up.

In Section 6.2, the support script was copied from the release package, which helped commence the
image build. The script can also support eSDK build, run the following command to start the build with
specific images:

renesas@builder-pc:~/renesas/rz-cmn-srp$ IMAGE=<target-images> ./rzsbc_builder.sh
build-sdk

For example, to build the core-image-qt eSDK:

renesas@builder-pc:~/renesas/rz-cmn-srp$ IMAGE=core-image-qt ./rzsbc_builder.sh
build-sdk

To build the eSDK for all supported images, run the following command:

renesas@builder-pc:~/renesas/rz-cmn-srp$ IMAGE=all-supported-
images ./rzsbc_builder.sh build-sdk

The resulting eSDK installer will be in `~/renesas/rz-cmn-srp/yocto_rzsbc_board/build/tmp/deploy/sdk`.

The eSDK installer will have the extension “.sh”.

renesas@builder-pc:~/renesas/rz-cmn-srp/yocto_rzsbc_board/build/tmp/deploy/sdk$ ls
poky-glibc-x86_64-core-image-bsp-aarch64-rzpi-toolchain-ext-3.1.26.host.manifest
poky-glibc-x86_64-core-image-bsp-aarch64-rzpi-toolchain-ext-3.1.26.sh
poky-glibc-x86_64-core-image-bsp-aarch64-rzpi-toolchain-ext-3.1.26.target.manifest
poky-glibc-x86_64-core-image-bsp-aarch64-rzpi-toolchain-ext-3.1.26.testdata.json
poky-glibc-x86_64-core-image-minimal-aarch64-rzpi-toolchain-ext-3.1.26.host.manifest
poky-glibc-x86_64-core-image-minimal-aarch64-rzpi-toolchain-ext-3.1.26.sh
poky-glibc-x86_64-core-image-minimal-aarch64-rzpi-toolchain-ext-3.1.26.target.manifest
poky-glibc-x86_64-core-image-minimal-aarch64-rzpi-toolchain-ext-3.1.26.testdata.json
poky-glibc-x86_64-core-image-qt-aarch64-rzpi-toolchain-ext-3.1.26.host.manifest
poky-glibc-x86_64-core-image-qt-aarch64-rzpi-toolchain-ext-3.1.26.sh
poky-glibc-x86_64-core-image-qt-aarch64-rzpi-toolchain-ext-3.1.26.target.manifest
poky-glibc-x86_64-core-image-qt-aarch64-rzpi-toolchain-ext-3.1.26.testdata.json
poky-glibc-x86_64-core-image-weston-aarch64-rzpi-toolchain-ext-3.1.26.host.manifest
poky-glibc-x86_64-core-image-weston-aarch64-rzpi-toolchain-ext-3.1.26.sh
poky-glibc-x86_64-core-image-weston-aarch64-rzpi-toolchain-ext-3.1.26.target.manifest
poky-glibc-x86_64-core-image-weston-aarch64-rzpi-toolchain-ext-3.1.26.testdata.json
poky-glibc-x86_64-renesas-core-image-cli-aarch64-rzpi-toolchain-ext-
3.1.26.host.manifest

Note: SDK build support is provided only for Yocto-based images. Ubuntu images are not
associated with an SDK in the build system. For Ubuntu, the development environment must be
set up manually using standard Ubuntu tools. The SDK generated by the build scripts applies
exclusively to Yocto.

RZ Family / RZ/G Series 12. Building the eSDK

R12UZ0177EU0110 Rev.1.10 Page 114 of 179
Jun.04.25

poky-glibc-x86_64-renesas-core-image-cli-aarch64-rzpi-toolchain-ext-3.1.26.sh
poky-glibc-x86_64-renesas-core-image-cli-aarch64-rzpi-toolchain-ext-
3.1.26.target.manifest
poky-glibc-x86_64-renesas-core-image-cli-aarch64-rzpi-toolchain-ext-
3.1.26.testdata.json
poky-glibc-x86_64-renesas-core-image-weston-aarch64-rzpi-toolchain-ext-
3.1.26.host.manifest
poky-glibc-x86_64-renesas-core-image-weston-aarch64-rzpi-toolchain-ext-3.1.26.s
poky-glibc-x86_64-renesas-core-image-weston-aarch64-rzpi-toolchain-ext-
3.1.26.target.manifest
poky-glibc-x86_64-renesas-core-image-weston-aarch64-rzpi-toolchain-ext-
3.1.26.testdata.json
poky-glibc-x86_64-renesas-quickboot-cli-aarch64-rzpi-toolchain-ext-
3.1.26.host.manifest
poky-glibc-x86_64-renesas-quickboot-cli-aarch64-rzpi-toolchain-ext-3.1.26.sh
poky-glibc-x86_64-renesas-quickboot-cli-aarch64-rzpi-toolchain-ext-
3.1.26.target.manifest
poky-glibc-x86_64-renesas-quickboot-cli-aarch64-rzpi-toolchain-ext-
3.1.26.testdata.json
poky-glibc-x86_64-renesas-quickboot-wayland-aarch64-rzpi-toolchain-ext-
3.1.26.host.manifest
poky-glibc-x86_64-renesas-quickboot-wayland-aarch64-rzpi-toolchain-ext-3.1.26.sh
poky-glibc-x86_64-renesas-quickboot-wayland-aarch64-rzpi-toolchain-ext-
3.1.26.target.manifest
poky-glibc-x86_64-renesas-quickboot-wayland-aarch64-rzpi-toolchain-ext-
3.1.26.testdata.json

Note: The SDK build may fail depending on the build environment. At that time, run the build
again after a period of time.

RZ Family / RZ/G Series 13. Application Building, Packaging, and Running

R12UZ0177EU0110 Rev.1.10 Page 115 of 179
Jun.04.25

13. Application Building, Packaging, and Running
The SDK allows you to develop and test custom applications for the RZ/G2L-SBC on different systems.
This section covers setting up your development environment and running your applications.

13.1 How to extract the eSDK
To get started, extract the eSDK and install the toolchain on your host PC. This step provides the
necessary tools for cross compiling your applications.

To set up your environment:

1. Install the toolchain on a Host PC.

For example, to install Qt toolchain, run the following command.

renesas@builder-pc:~/renesas/rz-cmn-srp/yocto_rzsbc_board
$ sh ./build/tmp/deploy/sdk/poky-glibc-x86_64-core-image-qt-aarch64-rzpi-
toolchain-ext-3.1.26.sh

Note: You cannot install the eSDK as root because BitBake will not run with root privileges. Therefore,
attempting to install the extensible SDK as root is counterproductive.

If the installation is successful, the following messages will appear:

renesas@builder-pc:~/renesas/rz-cmn-srp/yocto_rzsbc_board
$ sh ./build/tmp/deploy/sdk/poky-glibc-x86_64-core-image-qt-aarch64-rzpi-
toolchain-ext-3.1.26.sh
Poky (Yocto Project Reference Distro) Extensible SDK installer version 3.1.26
==
Enter target directory for SDK (default: ~/poky_sdk): ~/esdk/3.1.26
You are about to install the SDK to "/home/renesas/esdk/3.1.26". Proceed [Y/n]? Y
Extracting SDK..............done
Setting it up...
Extracting buildtools...
Preparing build system...
Parsing recipes: 100% |##| Time: 0:00:52
Initialising tasks: 100% |#######################################| Time: 0:00:00
Checking sstate mirror object availability: 100% |###############| Time: 0:00:00
Loading cache: 100% |##| Time: 0:00:00
Initialising tasks: 100% |#######################################| Time: 0:00:00
done

SDK has been successfully set up and is ready to be used.
Each time you wish to use the SDK in a new shell session, you need to source the
environment setup script e.g.
$. ~/esdk/3.1.26/environment-setup-aarch64-poky-linux
$. ~/esdk/3.1.26/environment-setup-armv7vet2hf-neon-vfpv4-pokymllib32-linux-
gnueabi

2. Set up cross-compile environment. The following command assumes that you installed the SDK in
`~/esdk/3.1.26`

RZ Family / RZ/G Series 13. Application Building, Packaging, and Running

R12UZ0177EU0110 Rev.1.10 Page 116 of 179
Jun.04.25

renesas@builder-pc:~$ source ~/esdk/3.1.26/environment-setup-aarch64-poky-linux
SDK environment now set up; additionally you may now run devtool to perform
development tasks.
Run devtool --help for further details.

Note: The user needs to run the above command once for each shell session. In addition, source’ is a
bash specific call. The POSIX convention is to use‘. ~/esdk/3.1.26/environment-setup-aarch64-poky-
linux’. Bash equates ‘source’ to ‘.’.

To begin working with the Extensible Software Development Kit (eSDK) in Yocto, consult the official
documentation provided by the Yocto Project. This guide offers comprehensive instructions on
configuring and utilizing the eSDK effectively.

Access the official eSDK documentation by following this URL: Using the Extensible SDK.

13.2 Build a sample application using the eSDK with CMake
CMake is cross-platform, free, and open-source software for building automation, testing, packaging,
and installation of software by using a compiler-independent method.

If the host PC does not have CMake installed, it can install using the following command:

renesas@builder-pc:~$ sudo apt-get install cmake

The following steps will include instructions for setting up the project, editing the CMakeLists.txt file, and
performing the build and installation.

1. Create the project structure:

renesas@builder-pc:~$ mkdir ~/cmake_helloworld
renesas@builder-pc:~$ cd ~/cmake_helloworld
renesas@builder-pc:~/cmake_helloworld$ mkdir build src

2. Organize the project structure as shown below:
renesas@builder-pc:~/cmake_helloworld$ tree
.
├── build
├── CMakeLists.txt
└── src
 └── helloworld.c

`CMakeLists.txt` and `helloworld.c` will be created later.

3. Create your application.

renesas@builder-pc:~/cmake_helloworld$ vi src/helloworld.c

Then, copy the contents below to the file:

https://docs.yoctoproject.org/3.1.33/sdk-manual/sdk-extensible.html
https://cmake.org/cmake/help/latest/index.html
https://cmake.org/cmake/help/latest/index.html

RZ Family / RZ/G Series 13. Application Building, Packaging, and Running

R12UZ0177EU0110 Rev.1.10 Page 117 of 179
Jun.04.25

#include <stdio.h>

int main(int argc, char** argv)
{
 printf("\nHello World!\n");
 return 0;
}

4. Create CMake configuration file.

renesas@builder-pc:~/cmake_helloworld$ vi CMakeLists.txt

Edit the following configuration file to match the SDK paths, The eSDK installation as described in
13.1 How to extract the eSDK is a prerequisite for this operation.

cmake_minimum_required(VERSION 3.10)
project(HelloWorld C)

Set the path to your C compiler
set(CMAKE_C_COMPILER /path/to/your/sdk/bin/gcc)

Set the path to your C++ compiler (if needed)
set(CMAKE_CXX_COMPILER /path/to/your/sdk/bin/g++)

Define the sysroot path for cross-compilation
set(CMAKE_SYSROOT /path/to/your/sysroot)

Add the executable target “helloworld”
add_executable(helloworld src/helloworld.c)

For example, if the SDK is installed in ̀ /home/renesas/esdk/3.1.26`, the completed configuration file will
resemble the following:

cmake_minimum_required(VERSION 3.10)
project(HelloWorld C)

set(CMAKE_C_COMPILER
/home/renesas/esdk/3.1.26/tmp/sysroots/x86_64/usr/bin/aarch64-poky-linux/aarch64-
poky-linux-gcc)
set(CMAKE_CXX_COMPILER
/home/renesas/esdk/3.1.26/tmp/sysroots/x86_64/usr/bin/aarch64-poky-linux/aarch64-
poky-linux-g++)

Sysroot path
set(CMAKE_SYSROOT /home/renesas/esdk/3.1.26/tmp/sysroots/rzpi)

add_executable(helloworld src/helloworld.c)

RZ Family / RZ/G Series 13. Application Building, Packaging, and Running

R12UZ0177EU0110 Rev.1.10 Page 118 of 179
Jun.04.25

5. Build the application.

renesas@builder-pc:~/cmake_helloworld$ cd build/
renesas@builder-pc:~/cmake_helloworld/build$ cmake ../
-- The C compiler identification is GNU 9.4.0
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working C compiler: /usr/bin/cc - skipped
-- Detecting C compile features
-- Detecting C compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /home/renesas/cmake_helloworld/build
renesas@builder-pc:~/cmake_helloworld/build$ cmake --build .
[50%] Building C object CMakeFiles/hello.dir/src/helloworld.c.o
[100%] Linking C executable helloworld
[100%] Built target helloworld

After completing, confirm that the execute application `helloworld` is generated in the build folder.

renesas@builder-pc:~/cmake_helloworld/build$ ls
CMakeCache.txt CMakeFiles cmake_install.cmake CPackConfig.cmake
CPackSourceConfig.cmake helloworld Makefile

Also, this application must be cross-compiled for aarch64.

renesas@builder-pc:~/cmake_helloworld/build$ file helloworld
helloworld: ELF 64-bit LSB pie executable, ARM aarch64, version 1 (SYSV),
dynamically linked, interpreter /lib64/ld-linux-aarch64.so.1,
BuildID[sha1]=436a40422c25d0eb57771b5cda061b49e5c197e7, for GNU/Linux 3.14.0,
with debug_info, not stripped

13.3 Package Programs with Cpack
This section provides a step-by-step guide on how to configure CMake to package your application into
a .deb file, which is a Debian package file. You can install them on the RZ/G2L SBC as an application.
CPack is a CMake module that handles packaging.

13.3.1 Package a C Program
The following steps provide detailed instructions for using CPack to package a C program into a .deb
file, including configuring CMake and preparing the necessary files for packaging.

1. Add CPack configuration to CMakeLists.txt from the previous chapter: 13.2 Build a sample application
with Cmake.

renesas@builder-pc:~/cmake_helloworld$ vi CMakeLists.txt

Then, edit your CMakelists.txt file to include CPack configuration

https://cmake.org/cmake/help/latest/index.html
https://cmake.org/cmake/help/latest/module/CPack.html

RZ Family / RZ/G Series 13. Application Building, Packaging, and Running

R12UZ0177EU0110 Rev.1.10 Page 119 of 179
Jun.04.25

cmake_minimum_required(VERSION 3.10)
project(HelloWorld C)

set(CMAKE_C_COMPILER
/home/renesas/esdk/3.1.26/tmp/sysroots/x86_64/usr/bin/aarch64-poky-linux/aarch64-
poky-linux-gcc)
set(CMAKE_CXX_COMPILER
/home/renesas/esdk/3.1.26/tmp/sysroots/x86_64/usr/bin/aarch64-poky-linux/aarch64-
poky-linux-g++)

Sysroot path
set(CMAKE_SYSROOT /home/renesas/esdk/3.1.26/tmp/sysroots/rzpi)

add_executable(helloworld src/helloworld.c)

Specify the installation path
install(TARGETS helloworld DESTINATION /usr/local/bin)

CPack configuration
set(CPACK_GENERATOR "DEB")
set(CPACK_PACKAGE_NAME "helloworld")
set(CPACK_PACKAGE_VERSION "1.0.0")
set(CPACK_DEBIAN_PACKAGE_ARCHITECTURE "arm64")
set(CPACK_PACKAGE_CONTACT "Your Name <your.email@example.com>")
set(CPACK_DEBIAN_PACKAGE_MAINTAINER "Your name")

include(CPack)

2. Package the C program into a Debian package installer.

RZ Family / RZ/G Series 13. Application Building, Packaging, and Running

R12UZ0177EU0110 Rev.1.10 Page 120 of 179
Jun.04.25

renesas@builder-pc:~/cmake_helloworld$ cd build/
renesas@builder-pc:~/cmake_helloworld$ cmake ../
-- Toolchain file defaulted to
'/home/renesas/esdk/3.1.26/tmp/sysroots/x86_64/usr/share/cmake/OEToolchainConfig.
cmake'
-- The C compiler identification is GNU 9.5.0
-- Check for working C compiler:
/home/renesas/esdk/3.1.26/tmp/sysroots/x86_64/usr/bin/aarch64-poky-linux/aarch64-
poky-linux-gcc
-- Check for working C compiler:
/home/renesas/esdk/3.1.26/tmp/sysroots/x86_64/usr/bin/aarch64-poky-linux/aarch64-
poky-linux-gcc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Detecting C compile features
-- Detecting C compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /home/renesas/cmake_helloworld/build
renesas@builder-pc:~/cmake_helloworld/build$ cpack
CPack: Create package using DEB
CPack: Install projects
CPack: - Run preinstall target for: HelloWorld
CPack: - Install project: HelloWorld []
CPack: Create package
-- CPACK_DEBIAN_PACKAGE_DEPENDS not set, the package will have no dependencies.
CPack: - package: /home/renesas/cmake_helloworld/build/helloworld-1.0.0-Linux.deb
generated.

After completing, confirm that the Debian package (.deb) is generated in the build folder.

renesas@builder-pc:~/cmake_helloworld/build$ ls
CMakeCache.txt cmake_install.cmake _CPack_Packages helloworld
install_manifest.txt CMakeFiles CPackConfig.cmake
CPackSourceConfig.cmake helloworld-1.0.0-Linux.deb Makefile

3. Ship the Debian package installer to RZ/G2L-SBC.

The Debian package installer “helloworld-1.0.0-Linux.deb” can be transferred to the RZ/G2L-SBC using
the SCP tool as below, or other methods, such as a USB drive or NFS (Network File System).

renesas@builder-pc:~/cmake_helloworld/build$ scp helloworld-1.0.0-Linux.deb
root@<board_IP_address>:<destination>

For example:

renesas@builder-pc:~/cmake_helloworld/build$ scp helloworld-1.0.0-Linux.deb
root@192.168.5.58:/home/root

RZ Family / RZ/G Series 13. Application Building, Packaging, and Running

R12UZ0177EU0110 Rev.1.10 Page 121 of 179
Jun.04.25

13.3.2 Package a Python Program
This section explains how to package Python scripts into a .deb file using CPack, focusing on the
necessary configurations and packaging steps.

Two options are available for running a Python script:

1. Directly with Python: Use the command `python3 script.py` to execute the script directly.
2. By shell script: Use a shell script to run the Python script. This approach can be useful for

adding additional setup or configuration steps.

To run the application without invoking the python3 command directly, create a shell script that contains
the command to execute the Python script.

The steps below are similar to those for packaging a C program, with differences primarily in the source
code and CPack configuration within the CMakeLists.txt file.

1. Create a workspace for CMake.

renesas@builder-pc:~$ mkdir ~/cmake_python
renesas@builder-pc:~$ cd ~/cmake_python
renesas@builder-pc:~/cmake_python$ mkdir build src
2. Organize the project structure as shown below:
renesas@builder-pc:~/cmake_python$ tree
.
├── build
├── CMakeLists.txt
└── src
 ├── tkinter_wrapper.sh
 └── main.py
`CMakeLists.txt`, `tkinter_wrapper.sh`, and `main.py` will be created later in the next steps.

3. Modify the python program, this program is the same as Tkinter example in section 9.13 Python GUI
programming with Tkinter.

Copy this example content and paste it into this Python file.

renesas@builder-pc:~/cmake_python$ vi src/main.py
4. Create a Tkinter wrapper shell script to run the application.

renesas@builder-pc:~/cmake_python$ vi src/tkinter_wrapper.sh
Then, copy the content below to the script.

#!/bin/bash

python3 /usr/local/share/tkinter_example/main.py
5. Configure the CMakeLists.txt for packaging a Python program.

renesas@builder-pc:~/cmake_python$ vi CMakeLists.txt

Then, copy the contents below to the file:

RZ Family / RZ/G Series 13. Application Building, Packaging, and Running

R12UZ0177EU0110 Rev.1.10 Page 122 of 179
Jun.04.25

cmake_minimum_required(VERSION 3.10)
project(TkinterExample)

Define script and wrapper
set(SCRIPT_NAME "src/main.py")
set(WRAPPER_SCRIPT "src/tkinter_wrapper.sh")
set(EXEC_NAME "tkinter_example")

Define installation paths
set(INSTALL_DIR "/usr/local/bin")
set(INSTALL_SCRIPT_DIR "/usr/local/share/tkinter_example")

Install the wrapper script
configure_file(${CMAKE_SOURCE_DIR}/${WRAPPER_SCRIPT} ${CMAKE_BINARY_DIR}/${EXEC_NAME} @ONLY)
install(PROGRAMS ${CMAKE_BINARY_DIR}/${EXEC_NAME} DESTINATION ${INSTALL_DIR})
install(FILES ${CMAKE_SOURCE_DIR}/${SCRIPT_NAME} DESTINATION ${INSTALL_SCRIPT_DIR})

Packaging configuration
set(CPACK_GENERATOR "DEB")
set(CPACK_PACKAGE_NAME "tkinter_example")
set(CPACK_PACKAGE_VERSION "1.0.0")
set(CPACK_PACKAGE_CONTACT "your-email@example.com")
set(CPACK_DEBIAN_PACKAGE_ARCHITECTURE "arm64")
include(CPack)

RZ Family / RZ/G Series 13. Application Building, Packaging, and Running

R12UZ0177EU0110 Rev.1.10 Page 123 of 179
Jun.04.25

6. Packaging the program.

renesas@builder-pc:~/cmake_python$ cd build/
renesas@builder-pc:~/cmake_python/build$ cmake ../
-- The C compiler identification is GNU 11.4.0
-- The CXX compiler identification is GNU 11.4.0
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working C compiler: /usr/bin/cc - skipped
-- Detecting C compile features
-- Detecting C compile features - done
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Check for working CXX compiler: /usr/bin/c++ - skipped
-- Detecting CXX compile features
-- Detecting CXX compile features - done
-- Configuring done
-- Generating done
-- Build files have been written to: /home/renesas/cmake_python/build
renesas@builder-pc:~/cmake_python/build$ cpack
CPack: Create package using DEB
CPack: Install projects
CPack: - Run preinstall target for: TkinterExample
CPack: - Install project: TkinterExample []
CPack: Create package
-- CPACK_DEBIAN_PACKAGE_DEPENDS not set, the package will have no dependencies.
CPack: - package: /home/renesas/cmake_python/build/tkinter_example-1.0.0-
Linux.deb generated.

After completing, confirm that the Debian package (.deb) is generated in the build folder.

renesas@builder-pc:~/cmake_python/build$ ls
CMakeCache.txt cmake_install.cmake _CPack_Packages
install_manifest.txt tkinter_example
CMakeFiles CPackConfig.cmake CPackSourceConfig.cmake Makefile
tkinter_example-1.0.0-Linux.deb

Then, the Debian package installer “tkinter_example-1.0.0-Linux.deb” can be transferred to the
RZ/G2L-SBC using the SCP tool as below or other methods, such as a USB drive or NFS (Network File
System).

renesas@builder-pc:~/cmake_python/build$ scp tkinter_example-1.0.0-Linux.deb
root@192.168.5.58:/home/root

13.4 Run Sample Applications
Power on the RZ/G2L-SBC and start the system. Once the system has booted, transfer the binary
package that is built using the SDK with CMake, which is mentioned in chapter 13.2 Build a sample
application with CMake. Then, run the sample application as follows:

RZ Family / RZ/G Series 13. Application Building, Packaging, and Running

R12UZ0177EU0110 Rev.1.10 Page 124 of 179
Jun.04.25

NOTICE: BL2: <version>
NOTICE: BL2: Built : <date>
NOTICE: BL2: Booting BL31
NOTICE: BL31: <version>
NOTICE: BL31: Built : <date>
…
rzpi login: root
root@rzpi:~# ./helloworld

Hello, World!
root@rzpi:~#

13.5 Install and Run Debian application packages by using DPKG
After shipping the Debian package installer to RZ/G2L-SBC, the package can be installed using dpkg.

The steps are:

1. List out all available .deb files to make sure all .deb files have been shipped to the RZ/G2L-
SBC.

2. Install the C program by running `dpkg -i helloworld-1.0.0-Linux.deb`.
3. Install the Python program by running `dpkg -i tkinter_example-1.0.0-Linux.deb`.

NOTICE: BL2: <version>
NOTICE: BL2: Built : <date>
NOTICE: BL2: Booting BL31
NOTICE: BL31: <version>
NOTICE: BL31: Built : <date>
…
rzpi login: root
root@rzpi:~# ls
audios demo helloworld-1.0.0-Linux.deb tkinter_example-1.0.0-Linux.deb images
info v4l2-init.sh videos
root@rzpi:~# dpkg -i helloworld-1.0.0-Linux.deb
Selecting previously unselected package helloworld.
(Reading database ... 4 files and directories currently installed.)
Preparing to unpack helloworld-1.0.0-Linux.deb ...
Unpacking helloworld (1.0.0) ...
Setting up helloworld (1.0.0) ...
root@rzpi:~#
root@rzpi:~# dpkg -i tkinter_example-1.0.0-Linux.deb
Selecting previously unselected package tkinter_example.
(Reading database ... 4 files and directories currently installed.)
Preparing to unpack tkinter_example-1.0.0-Linux.deb ...
Unpacking tkinter_example (1.0.0) ...
Setting up tkinter_example (1.0.0) ...

After installation, confirm that the package is correctly installed by running the following.

RZ Family / RZ/G Series 13. Application Building, Packaging, and Running

R12UZ0177EU0110 Rev.1.10 Page 125 of 179
Jun.04.25

root@rzpi:~# dpkg -l
ii helloworld 1.0.0 arm64 HelloWorld built using CMake
ii tkinter_example 1.0.0 arm64 TkinterExample built using CMake

This completes the installation. The applications are ready for use.

There are a few ways to run the application:

1. Directly from installation location.
2. Call it from /usr/local/bin/<your_application>.
3. Call it directly from anywhere if it is installed within the PATH search.

The following command lists all the files that were installed with their full paths:

root@rzpi:~# dpkg -L helloworld
/usr
/usr/local
/usr/local/bin
/usr/local/bin/hello
root@rzpi:~# /usr/local/bin/hello
Hello, World!

For applications that have a graphical interface, the display id needs to be set in the environment. For
this reason, export the DISPLAY if you are using an environment where the display is not automatically
set, as shown below:

root@rzpi:~# export DISPLAY=:0
root@rzpi:~# dpkg -L tkinter_example
/usr
/usr/local
/usr/local/bin
/usr/local/bin/tkinter_example
/usr/local/share
/usr/local/share/tkinter_example
/usr/local/share/tkinter_example/main.py
root@rzpi:~# /usr/local/bin/tkinter_example

RZ Family / RZ/G Series 14. Remote debugging using GDBServer

R12UZ0177EU0110 Rev.1.10 Page 126 of 179
Jun.04.25

14. Remote Debugging using GDBServer
 GDBServer is utilized to facilitate remote debugging on the RZ/G2L-SBC. GDBServer enables the
debugging process to run on the RZ/G2L-SBC (the target machine) while being controlled from a
different system (the host machine) via a network connection.

This setup is particularly beneficial for application development, as it allows the execution and
debugging of programs on the RZ/G2L-SBC while providing the capability to view and control the
process from the host machine.

To ensure that all necessary tools and libraries for debugging are available, preparations must be made
on both the host and target machines. With this preparation complete, the next step is to proceed with
the remote debugging process.

14.1 Prepare GDB on the Host Machine

GDB has two components to work with. One is the host side ‘gdb’ debugger. The other is the target
side ‘gdbserver’. The GDB (GNU debugger) is executed on the host side. It is executed on your host
system to connect to the target system. It is always available within the eSDK. The eSDK installation
as described in Section 13.1 is a prerequisite for this operation. To set up the environment that would
use the GDB targeting the RZ/G2L-SBC from the eSDK, simply run the poky environment script as
follows:

renesas@builder-pc:~$ source ~/esdk/3.1.26/environment-setup-aarch64-poky-linux
SDK environment now set up; additionally you may now run devtool to perform
development tasks.
Run devtool --help for further details.

Note: The user needs to run the above command once for each shell session. In addition, source’ is a
bash specific call. The POSIX convention is to use. ~/esdk/3.1.26/environment-setup-aarch64-poky-
linux’. Bash equates ‘source’ to ‘.’.

To confirm GDB is ready to use, run the following command and check the result:

renesas@builder-pc:~$ echo ${GDB}

aarch64-poky-linux-gdb

14.2 Install GDBServer on RZ/G2L-SBC

By default, GDBServer is not installed on the RZ/G2L-SBC. It is necessary to install it using APT.
Execute the following commands to install GDBServer:

root@rzpi:~# apt-get update

root@rzpi:~# apt-get install gdbserver

Ensure that internet access is available before executing apt-get update.

This concludes the preparation of the basic host environment. The next section will discuss the
remote debugging process.

RZ Family / RZ/G Series 14. Remote debugging using GDBServer

R12UZ0177EU0110 Rev.1.10 Page 127 of 179
Jun.04.25

14.3 Remote Debugging Example

14.3.1 Remote Debugging on CLI
CLI (Command Line Interface) is a text-based user interface used to interact with computer programs
and operating systems. Unlike graphical user interfaces (GUIs), where users interact with visual
elements (like buttons and icons), a CLI requires users to input commands in text form. This is basically
a shell environment used in all operating systems as a foundational method of interacting with the
system. For the purposes of this section, we assume Ubuntu bash as the interactive application.

Firstly, run GDBServer with a specific network port (`2000` is the assigned port in this case) and the
program `hello-gdbserver` as a parameter on the target as follows:

root@rzpi:~# gdbserver localhost:2000 hello-gdbserver

Process /home/root/hello-gdbserver created; pid = 358

Listening on port 2000

The content before compiling of the `hello-gdbserver` program:

#include <stdio.h>

int main() {

 int i;

 printf("Program to demonstrate gdbserver debugging!\n");
 printf("Print from 1 to 10\n");

 for (i = 1;i <= 10;i++)
 printf("%d\n", i);

 printf("Program completed!\n");

 return 0;
}

RZ Family / RZ/G Series 14. Remote debugging using GDBServer

R12UZ0177EU0110 Rev.1.10 Page 128 of 179
Jun.04.25

The target's IP address is required for use on the host later. In this example, the IP address
169.254.43.30 will be used.

root@rzpi:~# ifconfig eth1

eth1: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500 metric 1

 inet 169.254.43.30 netmask 255.255.0.0 broadcast 169.254.255.255

 inet6 fe80::1ea0:d3ff:fe20:119b prefixlen 64 scopeid 0x20<link>

 ether 1c:a0:d3:20:11:9b txqueuelen 1000 (Ethernet)

 RX packets 34497 bytes 2657706 (2.5 MiB)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 68954 bytes 97379412 (92.8 MiB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

 device interrupt 133

Next, launch GDB on the host.

renesas@builder-pc:~$ aarch64-poky-linux-gdb

GNU gdb (GDB) 9.1

Copyright (C) 2020 Free Software Foundation, Inc.

License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>

This is free software: you are free to change and redistribute it.

There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "--host=x86_64-pokysdk-linux --target=aarch64-poky-
linux".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:

 <http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word".

(gdb)

RZ Family / RZ/G Series 14. Remote debugging using GDBServer

R12UZ0177EU0110 Rev.1.10 Page 129 of 179
Jun.04.25

Use `target remote` with the IP address and the assigned network port to connect to the target.

(gdb) target remote 169.254.43.30:2000
Remote debugging using 169.254.43.30:2000
Reading /home/root/hello-gdbserver from remote target...
warning: File transfers from remote targets can be slow. Use "set sysroot" to
access files locally instead.
Reading /home/root/hello-gdbserver from remote target...
Reading symbols from target:/home/root/hello-gdbserver...
Reading /lib64/ld-linux-aarch64.so.1 from remote target...
Reading /lib64/ld-linux-aarch64.so.1 from remote target...
Reading symbols from target:/lib64/ld-linux-aarch64.so.1...
Reading /lib64/ld-2.31.so from remote target...
Reading /lib64/.debug/ld-2.31.so from remote target...
Reading /lib64/.debug/ld-2.31.so from remote target...
Reading symbols from target:/lib64/.debug/ld-2.31.so...
0x0000fffff7fcd0c0 in _start () from target:/lib64/ld-linux-aarch64.so.1

Then, add a break point at `main` function to stop the program at that function in the next step:

(gdb) b main

Breakpoint 1 at 0xaaaaaaaa07cc: file hello-gdbserver.c, line 7.

At this point, the `continue` command can be used to resume execution and jump to the main
function.

(gdb) continue

Continuing.

Reading /lib64/libc.so.6 from remote target...

Reading /lib64/libc-2.31.so from remote target...

Reading /lib64/.debug/libc-2.31.so from remote target...

Reading /lib64/.debug/libc-2.31.so from remote target...

Breakpoint 1, main () at hello-gdbserver.c:7

warning: Source file is more recent than executable.

7 printf("Program to demonstrate gdbserver debugging!\n");

Then, type `continue` to execute the remainder of the program.

(gdb) continue

Continuing.

[Inferior 1 (process 342) exited normally]

RZ Family / RZ/G Series 14. Remote debugging using GDBServer

R12UZ0177EU0110 Rev.1.10 Page 130 of 179
Jun.04.25

Eventually, run `quit` to exit GDB and stop the debugging section.

(gdb) quit

In parallel, the output can be monitored on the target device.

Remote debugging from host ::ffff:169.254.43.86, port 40666

Program to demonstrate gdbserver debugging!

Print from 1 to 10

1

2

3

4

5

6

7

8

9

10

Program completed!

Child exited with status 0

root@rzpi:~#

14.3.2 Remote Debugging on Visual Studio Code

In the previous subsection, remote debugging using the command line was discussed, specifically with
GDB and GDBServer. While this method is effective, it can be complex and challenging, particularly for
developers who may not be familiar with command-line operations.

This section describes how to set up and use Visual Studio Code (VSCode) for remote debugging with
the GDB (GNU Debugger) extension. Using VSCode simplifies the debugging process by providing a
user-friendly graphical interface that streamlines the workflow, making it easier to troubleshoot and test
C/C++ applications running on RZ-G2L/SBC.

Here’s how to get started:

1. Install the C/C++ Extension (If it has not been installed yet):

- Open VSCode.
- Go to the Extensions tab on the left side (or press Ctrl + Shift + X).
- Search for C/C++.
- Click Install to add the extension.

RZ Family / RZ/G Series 14. Remote debugging using GDBServer

R12UZ0177EU0110 Rev.1.10 Page 131 of 179
Jun.04.25

Figure 54. C/C++ Extension in VSCode

2. Create a Workspace:

- Create a new workspace (you can name it remote debugging).
- Create a folder within this workspace and place your program file, hello-gdbserver.c in it.
- Build the execution file using eSDK, we assume that you have sourced the environment.

renesas@builder-pc:~/remote-debugging/program$ $CC $CFLAGS hello-gdbserver.c -o
hello-gdbserver

3. Set Up Debug Configuration:

- Open the Run and Debug view in VSCode (or press Ctrl + Shift + D).
- Click on create a launch.json file to configure the debugger.

Figure 55. Create a launch.json file in VSCode Debugger

- Select the C++ (GDB) option and customize the configuration as needed.

Figure 56. Select C++ GDB as Debugger

- Place the content below in launch.json file:

RZ Family / RZ/G Series 14. Remote debugging using GDBServer

R12UZ0177EU0110 Rev.1.10 Page 132 of 179
Jun.04.25

{
 "version": "0.2.0",
 "configurations": [
 {
 "name": "gdb",
 "type": "cppdbg",
 "request": "launch",
 "program": "</local/path/to/the/executable>",
 "cwd": "${workspaceFolder}",
 "stopAtEntry": true,
 "stopAtConnect": true,
 "MIMode": "gdb",
 "miDebuggerPath": "</path/to/gdb>",
 "miDebuggerServerAddress": "<target_addr>:<port>",
 "setupCommands": [
 {
 "description": "Enable pretty-printing for gdb",
 "text": "enable-pretty-printing",
 "ignoreFailures": true
 }
]
 }
]
}

 For example:

{
 "version": "0.2.0",
 "configurations": [
 {
 "name": "gdb",
 "type": "cppdbg",
 "request": "launch",
 "program": "/home/renesas/remote-debugging/program/hello-gdbserver",
 "cwd": "${workspaceFolder}",
 "stopAtEntry": true,
 "stopAtConnect": true,
 "MIMode": "gdb",
 "miDebuggerPath":
"/home/renesas/esdk/3.1.26/tmp/sysroots/x86_64/usr/bin/aarch64-poky-
linux/aarch64-poky-linux-gdb",
 "miDebuggerServerAddress": "169.254.43.30:2000",
 "setupCommands": [
 {
 "description": "Enable pretty-printing for gdb",
 "text": "enable-pretty-printing",
 "ignoreFailures": true
 }
]
 }
]
}

RZ Family / RZ/G Series 14. Remote debugging using GDBServer

R12UZ0177EU0110 Rev.1.10 Page 133 of 179
Jun.04.25

- Ensure your workspace appears as follows:

renesas@builder-pc:~/remote-debugging$ tree -a

.
├── program
│ ├── hello-gdbserver
│ └── hello-gdbserver.c
└── .vscode
 └── launch.json

2 directories, 4 files

4. Connect to the Remote Target:

- As with the CLI section, start the GDBServer on the remote device and specify the target
application.

root@rzpi:~# gdbserver localhost:2000 hello-gdbserver

Process /home/root/hello-gdbserver created; pid = 358

Listening on port 2000

5. Start the debugging.

- Back in VSCode, select your launch configuration.
- Place the breakpoint within the hello-gdbserver.c file in VSCode.
- Click the Start Debugging button (green play icon) to begin the debugging session.

Figure 57. Running the Debugger for Remote Debugging in VSCode

- Use F5 to continue execution, F10 to step over the current line, and F11 to step into functions.

RZ Family / RZ/G Series 14. Remote debugging using GDBServer

R12UZ0177EU0110 Rev.1.10 Page 134 of 179
Jun.04.25

Figure 58. Step through each step in Debug Mode in VSCode

14.3.3 Remote Debugging on Eclipse IDE
In the previous section, the use of VSCode for remote debugging with GDB and GDBServer was
discussed. While VSCode offers a modern and user-friendly environment, many developers prefer
Eclipse IDE for its comprehensive toolset and robust support for C/C++ development. This section
explains how to set up and use Eclipse IDE for remote debugging with GDB.

1. Install the Eclipse IDE (if not already installed) by following the official instructions on the Eclipse
website: Eclipse Installer 2024-09 R | Eclipse Packages

2. Create a C/C++ project:
- Open Eclipse and navigate to File > New > C/C++ Project.
- Create a new C Empty Project, choose Cross GCC.

Figure 59. Create a C Project in Eclipse

https://www.eclipse.org/downloads/packages/installer

RZ Family / RZ/G Series 14. Remote debugging using GDBServer

R12UZ0177EU0110 Rev.1.10 Page 135 of 179
Jun.04.25

Click Next, then Finish and paste the content from hello-gdbserver.c into the C file.
3. Configure the Cross Toolchain.
- Go to Project > Properties.
- In the left pane, select C/C++ Build > Settings.

Figure 60. Configuring the cross toolchain in Eclipse project properties

- Under the Tool Settings tab, configure the Cross Settings as follows:
o Prefix: aarch64-poky-linux.
o Path: </path/to/your/aarch64-poky-linux>.

 For example:

o Prefix: aarch64-poky-linux.
o Path: /home/renesas/esdk/3.1.26/tmp/sysroots/x86_64/usr/bin/aarch64-poky-linux.

Figure 61. Configuring cross compiler settings in Eclipse tool settings
- In the Includes section, specify the include paths:

o Include paths: /home/renesas/esdk/3.1.26/tmp/sysroots/rzpi/usr/include

RZ Family / RZ/G Series 14. Remote debugging using GDBServer

R12UZ0177EU0110 Rev.1.10 Page 136 of 179
Jun.04.25

Figure 62. Configuring includes path in Eclipse tool settings

- In the Cross GCC Linker section, go to Libraries and specify the library search path:
o Library search path: /home/renesas/esdk/3.1.26/tmp/sysroots/x86_64/usr/lib

Figure 63. Configuring library paths in Eclipse tool settings

- In the Miscellaneous section, specify the linker flags:
o Linker flags: --sysroot=/home/renesas/esdk/3.1.26/poky_sdk/tmp/sysroots/rzpi

Figure 64. Configuring linker flags for Sysroot in Eclipse tool settings

4. Configure Eclipse to connect to the GDB Server:
- In Eclipse, go to the Run menu and select Debug Configurations.
- Under the Debugger tab, select C/C++ Remote Application.

RZ Family / RZ/G Series 14. Remote debugging using GDBServer

R12UZ0177EU0110 Rev.1.10 Page 137 of 179
Jun.04.25

- In the Main tab, in Connection Type, select Remote and click Edit.

Figure 65. Debug configuration settings in Eclipse

o Host: Enter the IP address of RZ/G2L-SBC.
o User: Enter the username of RZ/G2L-SBC (typically root).
o Authentication: Choose between key-based authentication or password-based

authentication, depending on your preference.
o Finally, click Finish to complete the setup for the SSH session.

RZ Family / RZ/G Series 14. Remote debugging using GDBServer

R12UZ0177EU0110 Rev.1.10 Page 138 of 179
Jun.04.25

Figure 66. Configuring SSH connection settings in debug configurations

- In the Remote Absolute File Path field, specify the location where Eclipse will copy the program
on the RZ/G2L-SBC. Click Browse to connect via SSH and select the target location or
manually enter the path on the RZ/G2L-SBC.

Figure 67. Configuring remote absolute file path in debug configurations

- In the Debugger tab:
o In GDB Debugger: Provide the path to your cross-compiled GDB (For example.,

/home/renesas/esdk/3.1.26/tmp/sysroots/x86_64/usr/bin/aarch64-poky-linux/aarch64-
poky-linux-gdb).

RZ Family / RZ/G Series 14. Remote debugging using GDBServer

R12UZ0177EU0110 Rev.1.10 Page 139 of 179
Jun.04.25

Figure 68. Configuring GDB debugger in Eclipse debug configurations

5. Start the Debugging Session:
- After configuring the debug settings, click Apply and then Debug.
- Eclipse will attempt to connect to the GDB server running on the target device.
- If the connection is successful, it will be possible to set breakpoints, step through the code, and

inspect variables just as in a local debugging session.

Figure 69. Start the debugging session in Eclipse

Press F5 to step into, F6 to step over, or F8 to resume and monitor the variables.

RZ Family / RZ/G Series 14. Remote debugging using GDBServer

R12UZ0177EU0110 Rev.1.10 Page 140 of 179
Jun.04.25

Figure 70. Go through each step in the debug mode in Eclipse

The path of the compiler may need to be adjusted to reflect the specific system configuration.

14.4 Postmortem Analysis Example
This section provides an overview of postmortem analysis, a critical process for diagnosing application
crashes by examining core dump files. It details how developers can analyze these core dumps to
pinpoint the exact lines of code that led to an error, allowing for effective troubleshooting and resolution
of issues.

14.4.1 Postmortem Analysis on CLI
This subsection describes how to perform a postmortem analysis using the command-line interface
(CLI). It emphasizes the steps for loading core dump files with CLI tools, enabling developers to
navigate directly to the lines of code where errors occurred. The section highlights the efficiency of
command-line tools for diagnosing issues quickly.

1. Create a simple C program that intentionally causes a segmentation fault. For example, the file
name `segfault_example.` has the following content:

#include <stdio.h>

int main() {
 int *ptr = NULL;

 printf("Attempting to dereference a NULL pointer...\r\n");

 *ptr = 42;

 return 0;
}

RZ Family / RZ/G Series 14. Remote debugging using GDBServer

R12UZ0177EU0110 Rev.1.10 Page 141 of 179
Jun.04.25

2. Source the environment and compile the segfault_example.c program.

renesas@builder-pc:~$ source ~/esdk/3.1.26/environment-setup-aarch64-poky-linux
SDK environment now set up; additionally you may now run devtool to perform
development tasks.
Run devtool --help for further details.
renesas@builder-pc:~/remote-debugging/segfault_program$ $CC $CFLAGS
segfault_example.c -o segfault_example

3. Transfer the program to RZ/G2L-SBC.

renesas@builder-pc:~/remote-debugging/segfault_program$ scp segfault_example
root@169.254.43.30:/home/root

4. Ensure that the system allows core dumps. To set the core dump size to unlimited, run the
following command:

root@rzpi:~# ulimit -c unlimited

5. Run the program to generate a core dump file or use remote debugging to obtain it.

root@rzpi:~# ./segfault_example
Attempting to dereference a NULL pointer...
Segmentation fault (core dumped)

When the segmentation fault occurs, a core dump file will be generated, usually named core or
core.<pid>, for example, core.880 in my case.

root@rzpi:~# ls core*
core.880

Transfer the core dump file back to your host machine.

6. Using GDB to analyze the core dump file. Return to the remote machine and use the following
command.

renesas@builder-pc:~/remote-debugging/segfault_program$ aarch64-poky-linux-gdb
</path/to/local_program> </path/to/core/dump/file>

For example:

RZ Family / RZ/G Series 14. Remote debugging using GDBServer

R12UZ0177EU0110 Rev.1.10 Page 142 of 179
Jun.04.25

renesas@builder-pc:~/remote-debugging/segfault_program$ aarch64-poky-linux-gdb
segfault_example core.810

GNU gdb (GDB) 9.1
Copyright (C) 2020 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Type "show copying" and "show warranty" for details.
This GDB was configured as "--host=x86_64-linux --target=aarch64-poky-linux".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
 <http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".
Type "apropos word" to search for commands related to "word".
Reading symbols from segfault...
[New LWP 810]

warning: Could not load shared library symbols for 2 libraries, e.g.
/lib64/libc.so.6.
Use the "info sharedlibrary" command to see the complete listing.
Do you need "set solib-search-path" or "set sysroot"?
Core was generated by `./segfault.
Program terminated with signal SIGSEGV, Segmentation fault.
#0 0x0000aaaae3340794 in main () at segfault_example.c:8
--Type <RET> for more, q to quit, c to continue without paging--
8 *ptr = 42;
(gdb)
(gdb) quit

The segmentation fault occurred because the program attempted to dereference a NULL pointer at line
8 in segfault_example.c, where it tried to assign 42 to *ptr, resulting in an invalid memory access.

14.4.2 Postmortem Analysis on Visual Studio Code
In this subsection, the process of analyzing core dump files using Visual Studio Code (VSCode) is
explored. It explains how to load core dumps and utilize VSCode's debugging features to automatically
jump to the lines of code that caused the application to crash.

If subsection 14.3.2 Remote debugging on Visual Studio Code has been followed, the next step is to
analyze the core dump file. A key addition is to include a line in the `launch.json` file that specifies the
path to the core dump file for analysis. This adjustment enables full utilization of VSCode's features for
inspecting the crash details.

For example, in launch.json, add the following line to specify the core dump file path:

"coreDumpPath": "</path/to/core/dump/file>,

Here’s a complete example of a launch.json

RZ Family / RZ/G Series 14. Remote debugging using GDBServer

R12UZ0177EU0110 Rev.1.10 Page 143 of 179
Jun.04.25

{
 "version": "0.2.0",
 "configurations": [
 {
 "name": "gdb",
 "type": "cppdbg",
 "request": "launch",
 "program": "/home/renesas/remote-debugging/program/segfault_example",
 "cwd": "${workspaceFolder}",
 "stopAtEntry": true,
 "stopAtConnect": true,
 "MIMode": "gdb",
 "miDebuggerPath":
"/home/renesas/esdk/3.1.26/tmp/sysroots/x86_64/usr/bin/aarch64-poky-
linux/aarch64-poky-linux-gdb",
 "miDebuggerServerAddress": "169.254.43.30:2000",
 "coreDumpPath": "/home/renesas/remote-debugging/segfault/core.810",
 "setupCommands": [
 {
 "description": "Enable pretty-printing for gdb",
 "text": "enable-pretty-printing",
 "ignoreFailures": true
 }
]
 }
]
}

After running the debugging session with the core dump file, the IDE (Visual Studio Code) automatically
points to the exact line in the source code where the crash occurred.

Figure 71. Starting analysis of the Core dump file in VSCode debug mode

RZ Family / RZ/G Series 14. Remote debugging using GDBServer

R12UZ0177EU0110 Rev.1.10 Page 144 of 179
Jun.04.25

14.4.3 Postmortem Analysis on Eclipse
This subsection describes postmortem analysis using Eclipse IDE. Similar to Visual Studio Code,
Eclipse allows loading core dump to inspect the application's state at the time of a crash.

1. Configure Eclipse to connect to the GDB Server:
- In Eclipse, go to the Run menu and select Debug Configurations.
- Under the Debugger tab, select C/C++ Postmortem Debugger.
- In the Main tab, in Core file field, click and specify where core dump file is.

Figure 72. Specifying the Core File in Eclipse Debugger Settings

- In the Debugger tab:
o In GDB Debugger: Provide the path to your cross-compiled GDB (For example,

/home/renesas/esdk/3.1.26/tmp/sysroots/x86_64/usr/bin/aarch64-poky-linux/aarch64-
poky-linux-gdb).

Figure 72. Specifying the GDB Debugger in Eclipse Debugger settings

2. Start the Debugging Session:
- Once the debugging session starts, Eclipse will show the line of code that caused the

segmentation fault, along with the call stack.

RZ Family / RZ/G Series 14. Remote debugging using GDBServer

R12UZ0177EU0110 Rev.1.10 Page 145 of 179
Jun.04.25

Figure 73. Starting analysis of the Core dump file in Eclipse debug mode

- Inspect the values of variables at that point in time by hovering over them or using the Variables

view.
- Utilize the Expressions view to evaluate any expressions or check the state of specific

variables.
- Navigate through the call stack to see the sequence of function calls leading to the crash. This

can provide insight into how the program reached the faulting line.

RZ Family / RZ/G Series 15. Functional Overview

R12UZ0177EU0110 Rev.1.10 Page 146 of 179
Jun.04.25

15. Functional Overview

15.1 RZ/G2L-SBC Board
This section delves into the functional and design aspects of the RZ/G2L-SBC. The image below
highlights the key hardware components in the RZ/G2L SBC design.

Figure 74. RZ/G2L SBC System Overview
Table 15. Main Components on RZ/G2L-SBC

Component
Number Component Name Type (Manufacturer)

U1 Temperature Sensor Digital, Local -55°C
~ 125°C 11 b 8-HWSON (2x3)

CAT34TS02 (Onsemi)

U2 USB Controller UPD720115K8-611-BAK-A-ND
(Renesas Electronics)

U3 MPU RZ/G2L R9A07G044L23GBG (Renesas
Electronics)

U4 DDR4 SDRAM 512MB IS43QR16256A-093PBLI-TR
(ISSI)

U5 Ethernet Phy 10BASE-TE, 100BASE-TX,
1GBASE-T

PEF7071VV16 (MaxLinear)

U6 VersaClock® Programmable Clock
Generator

 5P35023B-000NLGI8 (Renesas
Electronics)

U7 HDMI Transmitter SiI9022A/4A – QFN (SiliconImage)
U8 PMIC RAA215300 (Renesas Electronics)
U9 AND GATE 2IN SOT-23-5 Vcc 1.65V to

5.5V
7UL1G08FS (Toshiba)

U10 Ethernet Phy 10BASE-TE, 100BASE-TX,
1GBASE-T

PEF7071VV16 (MaxLinear)

RZ Family / RZ/G Series 15. Functional Overview

R12UZ0177EU0110 Rev.1.10 Page 147 of 179
Jun.04.25

U11 Audio Codec with Advanced Accessory
Detect

DA7219 (Renesas Electronics)

U12 Dual USB Port Power Supply Controller -
Covering the Industrial Temperature
Range of -40C to +85C

ISL61852FIRZ (Renesas Electronics)

U13 QSPI Flash 512MBIT SPI/QUAD
8WSON

S25FS512SDSNFB010 (Infineon)

U14 Dual USB Port Power Supply Controller -
Covering the Industrial Temperature
Range of -40C to +85C

ISL61852FIRZ (Renesas Electronics)

M1 Integrated 802.11 b/g/n Wi-Fi Module

iWi-L-WB (Laird)

Y1 Crystal resonator for XIN XRCGB24M000F0L00R0 (Murata)
Y2 Crystal resonator for XIN ST3215SB32768H5HPWAA

(Kyocera-AVW)

Table 16. Primary connectors on RZ/G2L-SBC

Components
Number Component Name Type (Manufacturer)

J1 USB 2 & 3 USB-A-D-RA (Adam Tech)
J2 PMOD PPPC062LFBN-RC (Sullins)
J3 40-Pin Header (Raspberry Pi 3B

compliant)
-

J4 USB 0 &1, 10/100/1000 Ethernet 2 YKGU-6101NL (Ingke)
J5 MIPI-CSI 1-1734248-5 (TE Connectivity)
J6 MIPI-DSI 1-1734248-5 (TE Connectivity)
J7 10/100/1000 Ethernet 1 YKGD-8069NL (Ingke)
J8 Audio I/O (Speaker/Microphone) ASJ-192-Y (Adam Tech)
J9 Mini-HDMI 10029449-001RLF (FCI)
J10 USB-Type-C Power Input C-ARA1-AK515 (CNC Tech)
J11 20-pin JTAG connector 3221-10-0300-00 (CNC Tech)
J12 Expansion Connecter to Display

adapter & boot strapping pins
528850274 (Molex)

J13 Expansion Connecter to Display
adapter & boot strapping pins

528850274 (Molex)

P1 microSD card slot MEM2051-00-195-00-A (GCT)

RZ Family / RZ/G Series 15. Functional Overview

R12UZ0177EU0110 Rev.1.10 Page 148 of 179
Jun.04.25

15.1.1 RZ/G2L SoC MPU Architecture
The RZ/G2L MPU is a feature-packed SoC (System on Chip) that can support a variety of applications.
Below is an overview of SoCs.

Figure 75. RZ/G2L SoC (System on Chip) Overview

15.1.2 Overview
RZ/G2L-SBC Board is a power-efficient, graphics-enabled development board in a popular single-board
computer format with well-supported expansion interfaces. This Renesas RZ/G2L processor-based
platform is ideal for developing cost-efficient HMI, industrial, robotics, and a range of energy-efficient
design applications. The RZ/G2L processor has two 1.2GHz Arm® Cortex®-A55 cores, a 200MHz
Cortex-M33 core, a MALI 3D GPU, and an Image Scaling Unit. This processor SoC is equipped with
an on-chip plus H.264 video (1920 x 1080) encode/decode function in silicon, making it ideal for
implementing cost-effective embedded vision and display applications.

RZ/G2L-SBC is engineered in a compact Raspberry Pi form factor with a versatile set of expansion
interfaces, including Gigabit Ethernet, 801.11ac Wi-Fi, four USB 2.0 host ports, a MIPI DSI display with
touch and CSI camera interfaces, a CANFD interface, a PMOD interface, a Pi-HAT-compatible 40-pin
expansion header, and two expansion sockets for a daughter card.

The board supports analog audio applications via an audio codec and a stereo headphone jack. It also
pins out five 12-bit ADC inputs for interfacing with analog sensors through an expansion module (not
included). A 5V input power is sourced via a USB-C connector and managed via a single-chip Renesas
RAA215300 PMIC device.

The onboard memory includes 1GB DDR4, 64 MiB QSPI NOR flash memory, and a microSD slot for
removable boot media.

Software enablement includes CIP Kernel-based Linux BSP (maintained for 10 years+) plus reference
designs that highlight demo implementations of HMI applications. Onboard 10-pin JTAG/SWD mini-

RZ Family / RZ/G Series 15. Functional Overview

R12UZ0177EU0110 Rev.1.10 Page 149 of 179
Jun.04.25

SMT header (unpopulated) and 40-pin GPIO header enable the use of an external debugger and USB-
serial cable.

15.1.3 Physical View

Figure 76. Top-side view of the RZ/G2L-SBC

Figure 77. Bottom side of the RZ/G2L-SBC

RZ Family / RZ/G Series 15. Functional Overview

R12UZ0177EU0110 Rev.1.10 Page 150 of 179
Jun.04.25

15.1.4 Overview of Connectors
Given below is the basic positioning of the top-level connectors.

Figure 78. RZ/G2L-SBC top side connectors.

RZ Family / RZ/G Series 15. Functional Overview

R12UZ0177EU0110 Rev.1.10 Page 151 of 179
Jun.04.25

Figure 79. RZ/G2L-SBC Bottom view connectors.

Figure 80. RZ/G2L-SBC side view I/O ports.

RZ Family / RZ/G Series 15. Functional Overview

R12UZ0177EU0110 Rev.1.10 Page 152 of 179
Jun.04.25

15.1.5 Power Supply
This section delves into the RZ/G2L-SBC's power supply architecture. The RZ/G2L-SBC uses a simple
design with a 5V supply as the single external power source.

15.1.5.1 USB Type-C Power
This board has one USB Type-C receptacle for power input with USB Power Delivery. The USB Type–
C power connector is meant to connect to a 5V power supply. The RZ/G2L-SBC requires a minimum
of 3A power to prevent brownouts. However, we recommend a 4.5 -5A power supply as several ports
support peripherals that consume substantial power.

15.1.5.2 Power Rails
Given below is the basic power supply design. It is a simple design that uses an input power supply
from USB-C or one of the routed pins marked as 5V in the 40-pin GPIO or the adapter board and routes
it through a series of converters to generate different power lines.

RZ Family / RZ/G Series 15. Functional Overview

R12UZ0177EU0110 Rev.1.10 Page 153 of 179
Jun.04.25

Figure 81. Power supply rails.

The Input power of 5V is used to generate five independent power lines:

 Two independent 3.3 V lines for peripherals and Ethernet.
 A 1.8V master supply line
 A 1.2V master supply line
 A 1.1V master supply line

The 1.2V line is used by the RZ/G2L SoC and the DDR4 SDRAM, while the 1.1V line is exclusively
used by the RZ/G2L SoC. The RZ/G2L also draws power to its internal IP blocks from the 1.8V line.

This design is aimed at simplicity and hence omits the use of any power and reset switches. POR
behavior is strictly controlled by the PMIC and its passives.

RZ Family / RZ/G Series 15. Functional Overview

R12UZ0177EU0110 Rev.1.10 Page 154 of 179
Jun.04.25

15.1.5.3 Power Supply Regulation
The power supply is regulated by Renesas RAA215300, a low-cost nine-channel PMIC IC.

Figure 82. Block Diagram of Power Supply Regulation using RAA215300.

15.1.6 Power Management Integrated Circuit- PMIC
All LDOs are cycled as per the POR cycle. Any control is exercised by the RZ/G2L through the I2C
interface. However, the LDOs are always turned on post-POR.

Figure 83. Block diagram of PMIC interface to RZ/G2L

15.1.7 RESET Control
The RZ/G2L-SBC has simplified POR behavior. It is by default set up to boot from QSPI0, which is
achieved through external pull-up and pull-down resistors to a default code of 011. The default boot
mode of 011 is for booting from QSPI0 but setting the operating voltage to 1.8V. The bootstrapping
lines can be accessed externally through the J12 port at the bottom (through an adapter board). This
makes it possible to alter the boot flow using these pins.

RZ Family / RZ/G Series 15. Functional Overview

R12UZ0177EU0110 Rev.1.10 Page 155 of 179
Jun.04.25

In addition to the boot order, the SoC has two more lines: DEBUGEN (BE) & BSCANP (BS). These
lines control the boot mode, which can be JTAG boundary scan or debug mode. Figure 84. Reset
Control Logic below shows all the necessary information.

Note:

Figure 84. Reset Control Logic

15.1.8 Clock Configuration
The RZ/G2L-SBC design uses a Renesas VersaClock-3S as a singular programmable clock generator
as the master clock source for the entire board. It drives the source clock for not just the RZ/G2L-SoC
but all other devices that use an external clock input. This reduces the design complexity by reducing
the use of passives and PLLs per peripheral while using a single 24 MHz crystal XTALL.

Notes:

1. MIPI DSI interface supports operations up to FHD @60 fps rates.

2. SD Interface supports UHS-I mode of 50MBps (SDR50) and 104MBps (SDR104)

RZ Family / RZ/G Series 15. Functional Overview

R12UZ0177EU0110 Rev.1.10 Page 156 of 179
Jun.04.25

Figure 85. Block diagram of Clock interfacing.

15.1.9 Peripheral Interface

15.1.9.1 Gigabit Ethernet
The RZ/G2L-SBC comes with two Gigabit Ethernet ports. They are identified as Eth 0 and Eth 1 in the
Linux environment. They are both gigabit-capable. The Gigabit Ethernet Interface is controlled by the
Ethernet controller (E-MAC) that conforms to the definition of the MAC (Media Access Control) layer
that is built into the RZ/G2L. The Ethernet clock is sourced from a clock generator connected to the
Ethernet PHY.

This interface complies with IEEE802.3 PHY RGMII.

ETH0 is connected to PHY 2, and ETH1 is connected to PHY1. Take note of the order.

RZ Family / RZ/G Series 15. Functional Overview

R12UZ0177EU0110 Rev.1.10 Page 157 of 179
Jun.04.25

Figure 86. Ethernet 0 PHY interfacing.

RZ Family / RZ/G Series 15. Functional Overview

R12UZ0177EU0110 Rev.1.10 Page 158 of 179
Jun.04.25

Figure 87. Ethernet 1 PHY interfacing.

15.1.9.2 USB 2.0 Ports
The SBC has 4 USB 2.0 ports, which are of type A. The primary USB hub is the Renesas UPD720115
(µPD720115), which is a 4-port hub conforming to USB battery charging specification version 1.2. It
has one upstream port and four downstream ports. The USB hub is connected directly to the RZ/G2L
SoC’s USB 1 data ports. The RZ/G2L SoC has a single USB 2.0 Host Interface channel.

The USB 0 channel (OTG interface) is routed to the USB-C power supply port. However, the actual
OTG lines are not connected, and only the data lines are routed to the USB-C port. When the board is
powered through the 40-pin IO or the bottom expansion connectors, it frees up the USB-C port. It can
then be used for connecting peripherals.

Note: The USB-C has not been tested as a peripheral interface so far.

The power supply to the four USB 2.0 ports downstream is controlled through two external power
regulators: Renesas ISL6185. The ISL 6185 isolates and protects the internal circuit from the external
USB peripheral while providing higher levels of 5V power through supply sourcing.

https://www.renesas.com/us/en/products/interface/usb-switches-hubs/upd720115-usb-20-hub-controller#overview
https://www.renesas.com/us/en/products/interface/usb-switches-hubs/upd720115-usb-20-hub-controller#overview
https://www.renesas.com/us/en/document/dst/isl6185-datasheet

RZ Family / RZ/G Series 15. Functional Overview

R12UZ0177EU0110 Rev.1.10 Page 159 of 179
Jun.04.25

Figure 88. UPD720115 block diagram.

Figure 89. USB 2.0 Hub Block Diagram

RZ Family / RZ/G Series 15. Functional Overview

R12UZ0177EU0110 Rev.1.10 Page 160 of 179
Jun.04.25

15.1.9.3 MIPI CSI Interface
The RZ/G2L-SBC comes with a dual-channel MIPI CSI port labelled as J6. It is located right next to the
3.5 mm audio jack. The CSI port 15-pin camera port is verified to work with the OV5640 camera module.
It supports two data channels and one I2C channel. It is directly interfaced to the RZ/G2L SoC.

Figure 90. CSI Interface Schematic

15.1.9.4 MIPI DSI Interface
The RZ/G2L-SBC comes with a dual-channel MIPI DSI port labelled as J5. It is located toward the edge
of the board next to the Wi-Fi chipset. The 15-pin display port is verified to work with Waveshare 5” DSI
display with a capacitive touch interface module. It supports two data channels and one I2C channel. It
is directly interfaced to the RZ/G2L SoC.

Figure 91. DSI Schematic

15.1.9.5 Audio DAC with 3.5mm Jack
The RZ/G2L-SBC comes with an onboard audio DAC from Renesas: DA7219. The audio DAC is
interfaced to the RZ/G2L SoC to its SSI1 and I2C 0. The SSI 1 is used for audio streaming of I2S data,
while the I2C interface is used for mux and peripheral control.

RZ Family / RZ/G Series 15. Functional Overview

R12UZ0177EU0110 Rev.1.10 Page 161 of 179
Jun.04.25

Figure 92. Audio CODEC Interface Block Diagram

15.1.9.6 HDMI Display Subsystem
The RZ/G2L-SBC comes with an HDMI display output, which is derived from the RGB parallel interface
from RZ/G2L SoC through an RGB to HDMI converter interface IC. The physical HDMI port is a mini-
HDMI type (not micro). The HDMI signal source is the RGB parallel LVDS interface. An RGB to HDMI
bridge IC is used to convert RGB to the HDMI protocol. The bridge is fully supported, and the HDMI is
enabled with the EDID feature.

Note: The LVDS interface is the source for both the external HDMI bridge and the on-chip DSI IP
blocks. So, only one interface may be active at a time. Under no circumstances should both interfaces
be turned on at the same time, as there is a limitation with regard to the ISP unit.

RZ Family / RZ/G Series 15. Functional Overview

R12UZ0177EU0110 Rev.1.10 Page 162 of 179
Jun.04.25

Figure 93. HDMI Bridge and mini HDMI port interfacing.

15.1.9.7 40-pin I/O Header
The RZ/G2L-SBC comes with a 40-pin GPIO interface, which is broadly compliant with the Raspberry
Pi 3 40-pin GPIO interface and provides additional interfaces like two CAN ports. The diagram below
shows the pin configuration along with marking of the bottom I/O ports for reference to the orientation
of the board

RZ Family / RZ/G Series 15. Functional Overview

R12UZ0177EU0110 Rev.1.10 Page 163 of 179
Jun.04.25

Figure 94. 40 PIN GPIO map with orientation details.

15.1.9.8 PMOD Type 6A Standard Interface
The RZ/G2L-SBC is equipped with a 2x6-pin header routed to the PMOD Type-6A interface conforming
to the 1.3.0 specification of PMOD. It includes the alternate pin functions from the specification.

Figure 95. Schematic of PMOD Type 6 A pin header J2.

https://digilent.com/reference/_media/reference/pmod/pmod-interface-specification-1_3_0.pdf

RZ Family / RZ/G Series 15. Functional Overview

R12UZ0177EU0110 Rev.1.10 Page 164 of 179
Jun.04.25

Figure 96. PMOD Type 6A 2x6 0.1mm pin out with orientation details.

15.1.9.9 uSD-Card Interface
The RZ/G2L-SBC comes with a spring-loaded micro-SD card slot. This is intended to be the primary
storage as well as the OS boot device. The SD card is connected to channel 0 of the RZ/G2L SoC
SD/MMC interface. The SoC SDIO interface is compliant with memory card standard version 3.0 and
supports UHS-1 mode of 50 MB/s (SDR50) and 104 MB/s (SDR104).

Figure 97. uSD-Card interface block diagram.

15.1.9.10 JTAG SWD Debug
The JTAG/SWD interface is an SMT pin-out on the bottom side of the board marked J11. It uses the
standard 10-pin interface when populated. By default, this is not populated on the board. In addition to
populating the pins of J11, the use of the J12 port to set BSCANP is necessary to trigger the JTAG
boundary scan of the RZ/G2L SoC. The SBC by itself will not be able to initiate the JTAG boundary
scan mode. All the interface lines have pull-ups.

RZ Family / RZ/G Series 15. Functional Overview

R12UZ0177EU0110 Rev.1.10 Page 165 of 179
Jun.04.25

Figure 98. JTAG/SWD Block Diagram

15.1.9.11 Expansion Connector
The RZ/G2L-SBC has two connectors in the bottom, J12 and J13, that contain pinouts for the ADC
inputs, Bootstrapping (boot mode selection), and the QSPI1 interface, in addition to a few GPIOs. This
is meant to be used in conjunction with an adapter/daughter board. The primary uses of this are mostly
custom versions, where factory flashing and other manufacturing functions are controlled by these lines.
The ADC input lines are also mapped to the J13 connector.

Figure 99. Block diagram of Bottom Connectors.

Refer to the appendix for details on the adapter board and flashing tools.

15.1.10 Memory
The RZ/G2L-SBC design uses four types of memory.

1. QSPI NOR Flash
2. DDR4 SDRAM
3. EEPROM
4. SD-Card

15.1.10.1 QSPI Flash
The QSPI flash memory is controlled by the SPI multi-I/O bus controller (SPIBSC) that is built into the
RZ/G2L. This memory supports both single data rate (SDR) and double data rate (DDR) transfers at
66MHz and 50MHz clock frequency. QSPI0 interfaces to a Cyprus S25FS512SDSNFB010 64MiB NOR

RZ Family / RZ/G Series 15. Functional Overview

R12UZ0177EU0110 Rev.1.10 Page 166 of 179
Jun.04.25

Flash module. The QSPI is the default boot device, which contains the firmware: Arm Trusted Firmware
(ATF), OPTEE (loaded but disabled by default), and U-Boot.

Figure 100. QSPI interface.

Note:

15.1.10.2 DDR4 SDRAM
The DDR4 SDRAM is controlled by the DDD3L/DDR4 SDRAM Memory Controller (MEMC) that is built
into the RZ/G2L. This interface supports up to DDR4-1600 SDRAM, a data bus width of 16-bit, and
inline ECC.

This interface complies with JEDEC STANDARD JESD79-4C.

Figure 101. DDR4 SDRAM Interface

15.1.10.3 EEPROM with Temperature Sensor.
The RZ/G2L-SBC has an onboard CAT34TS02 I2C Temperature sensor with on-chip EEPROM, which
is meant to hold factory data like Serial number, manufacturer name, etc. It is currently only used to

https://www.onsemi.com/pdf/datasheet/cat34ts02-d.pdf

RZ Family / RZ/G Series 15. Functional Overview

R12UZ0177EU0110 Rev.1.10 Page 167 of 179
Jun.04.25

hold the Ethernet MAC ID’s. Each board has its own registered MAC ID, which is stored on the
EEPROM and read by u-boot during bootup. The EEPROM also has a built-in temperature sensor that
can be read over the I2C interface. The EEPROM is configured as 16 pages of 16 bytes each for a total
of 256 KiB (2 kilobits) of memory. Currently, two MAC IDs occupy 6 bytes of memory each for a total of
12 bytes.

Figure 102. I2C EEPROM Block Diagram

Table 17. EEPROM Parameters

Parameter Value Description
I2C speed 100KHz / 400

KHz
It supports the standard and fast modes of operation.

EEPROM
memory size

2 kib / 256
bytes

EEPROM
memory
ordering

16 pages of 16
bytes each

Page bank array configuration

Temperature
range

-20 °C to
+125 °C

Operating
Voltage

3.3V

Temperature
alarm

Programmable
over I2C

Three programmable trigger settings for high, low, and critical
temperatures to raise interrupt over line IRQ 7.

15.1.11 GPIO Internals
The RZ/G2L SoC has a unique way of GPIO organization. It is not the typical banked GPIO interface
that one might be used to. The RZ/G2L has individual GPIO LSI logic directly attached to the register
outputs. This creates a notation for GPIO pins attached to ports, which are basically bits in a register.

Px_y :

P= port a.k.a 8 bit register set number.

x= port number

y= port bit

RZ Family / RZ/G Series 15. Functional Overview

R12UZ0177EU0110 Rev.1.10 Page 168 of 179
Jun.04.25

Each bit in a port control register corresponds to a single gpio logic module. While each port has 8 bits,
most of the ports (registers) are only using the lower two to three bits for gpio line outs. The upper bits
are used for other special functions at times. Table 18. GPIO-supported pins in RZ/G2L maps all the
available ports to bits.

Figure 103. Multiplexed peripheral functions configuration diagram for GPIO pins

RZ/G2L can support up to 123 general-purpose I/O pins from 49 ports in Table 18. GPIO-supported
pins in RZ/G2L:

Table 18. GPIO-supported pins in RZ/G2L

Port name External Terminal Name
Bit7-5 Bit4 Bit3 Bit2 Bit1 Bit0

PORT 10 - - - - P0_1 P0_0
PORT 11 - - - - P1_1 P1_0
PORT 12 - - - - P2_1 P2_0
PORT 13 - - - - P3_1 P3_0
PORT 14 - - - - P4_1 P4_0
PORT 15 - - - P5_2 P5_1 P5_0
PORT 16 - - - - P6_1 P6_0
PORT 17 - - - P7_2 P7_1 P7_0
PORT 18 - - - P8_2 P8_1 P8_0
PORT 19 - - - - P9_1 P9_0
PORT 1A - - - - P10_1 P10_0
PORT 1B - - - - P11_1 P11_0
PORT 1C - - - - P12_1 P12_0
PORT 1D - - - P13_2 P13_1 P13_0
PORT 1E - - - - P14_1 P14_0
PORT 1F - - - - P15_1 P15_0
PORT 20 - - - - P16_1 P16_0
PORT 21 - - - P17_2 P17_1 P17_0
PORT 22 - - - - P18_1 P18_0
PORT 23 - - - - P19_1 P19_0
PORT 24 - - - P20_2 P20_1 P20_0
PORT 25 - - - - P21_1 P21_0
PORT 26 - - - - P22_1 P22_0
PORT 27 - - - - P23_1 P23_0
PORT 28 - - - - P24_1 P24_0
PORT 29 - - - - P25_1 P25_0
PORT 2A - - - - P26_1 P26_0

RZ Family / RZ/G Series 15. Functional Overview

R12UZ0177EU0110 Rev.1.10 Page 169 of 179
Jun.04.25

PORT 2B - - - - P27_1 P27_0
PORT 2C - - - - P28_1 P28_0
PORT 2D - - - - P29_1 P29_0
PORT 2E - - - - P30_1 P30_0
PORT 2F - - - - P31_1 P31_0
PORT 30 - - - - P32_1 P32_0
PORT 31 - - - - P33_1 P33_0
PORT 32 - - - - P34_1 P34_0
PORT 33 - - - - P35_1 P35_0
PORT 34 - - - - P36_1 P36_0
PORT 35 - - - P37_2 P37_1 P37_0
PORT 36 - - - - P38_1 P38_0
PORT 37 - - - P39_2 P39_1 P39_0
PORT 38 - - - P40_2 P40_1 P40_0
PORT 39 - - - - P41_1 P41_0
PORT 3A - P42_4 P42_3 P42_2 P42_1 P42_0
PORT 3B - - P43_3 P43_2 P43_1 P43_0
PORT 3C - - P44_3 P44_2 P44_1 P44_0
PORT 3D - - P45_3 P45_2 P45_1 P45_0
PORT 3E - - P46_3 P46_2 P46_1 P46_0
PORT 3F - - P47_3 P47_2 P47_1 P47_0
PORT 40 - P48_4 P48_3 P48_2 P48_1 P48_0

-: unused pins

Note: The RZ/G2L has only one GPIO chip interface to control all the supported pins mentioned in
Table 4. Public repositories for system release package

RZ Family / RZ/G Series 16. Appendix

R12UZ0177EU0110 Rev.1.10 Page 170 of 179
Jun.04.25

16. Appendix

16.1 Factory Firmware Flashing Using Serial Downloader (SCIF) Mode
In most cases, the RZ/G2L-SBC comes preloaded with the latest firmware. The preferred method of
updating the firmware is through the SD card flashing method, as described in 8. Programming /
Flashing Firmware.

The firmware part of this release contains the secure world Trusted firmware images:

Table 19. Firmware description

Module Binary Stack
layer

Description

ROM
code

N/A BL1 This is the internal ROM code that the Arm
Cortex SoC’s primary core executes at POR.

Flash
writer

Flash_Writer_SCIF_rzpi.mot BL2 This is meant for serial load in factory
environments, which is directly loaded onto
the SRAM by the BL1 (ROM code) through
UART SCIF0. It is then executed to acquire
another image on UART SCIF0 to directly
flash onto qspi or emmc into the boot sector. It
provides a command-based ui.

Arm
trusted
Firmware-
A

bl2_bp-<board>.bin
bl2_bp-<board>.srec

BL2 Trusted Firmware-A implementation binary. Its
job is to load BL31, BL32, and u-boot (BL33)
binaries into memory.
It comes in two formats:
.bin – for raw flashing for native in-system
flashing
• .srec – motorola srec format for flash

writer
Firmware
Image
Package
(FIP)

fip-<board>.bin
fip-<board>.srec

BL3
to
EL3

This image is also a standard trusted firmware
package that is a unified image containing:
• BL31 – Trusted Firmware-A Secure

monitor
• BL32 – Trusted Firmware-A Optee
• BL33 – U-boot

It comes in two formats:
• .bin – for raw flashing for native in-system

flashing
• .srec – motorola srec format for flash

writer
16.2 RZ/G2L-SBC
However, there are cases where you might require the use of a serial downloader. This is more common
in a factory environment where the boards are being programmed for the first time or in cases where
the board is bricked.

This is considered hardware flashing because it requires the board to be put into the SCIF, also
known as serial download mode, by altering the bootstrapping pins.

Note: The RZ/G2L-SBC does not have any interfaces on the main board to alter the boot mode. The
bootstrapping pins are routed through the bottom connectors J12 & J13. Hence, the process requires
the use of an adapter board, which is not included in the package.

RZ Family / RZ/G Series 16. Appendix

R12UZ0177EU0110 Rev.1.10 Page 171 of 179
Jun.04.25

16.2.1 Required Hardware
This flashing process requires the use of boot mode change, which is achieved using an adapter
board which is not included in the package.

Figure 104. Adaptor board

16.2.2 Flashing Bootloader/Firmware Using Linux Host
The building contains a support script, `bootloader_flash.py`, for flashing the bootloader on Linux. The
script is part of the Yocto build. The official release is a qualified Yocto build from Renesas and is a
full package with all tools and scripts.

The Python script is present at the root of the release directory.

Run the following command to learn how to use the script:

$./bootloader_flash.py -h
Before performing a flashing:

 Make sure the board is powered off,

 Connect the debug serial port (SCIF0 - TXD, RXD, GND) to your Linux PC

 Connect the adapter board with the jumpers set to serial load boot mode.

By default, the script uses /dev/ttyUSB0 when no arguments are passed.

Here are the steps:

1. Ensure that the hardware setup is accurate.

2. Start the script.

3. Power on the board

renesas@builder-
pc:~/yocto/yocto_rzsbc_board/build/tmp/deploy/images/rzpi/host/tools/bootloade
r-flasher/linux$./bootloader_flash.py
Please power on board. Make sure you changed switches to SCIF download mode.
 SCIF Download mode
 (C) Renesas Electronics Corp.

RZ Family / RZ/G Series 16. Appendix

R12UZ0177EU0110 Rev.1.10 Page 172 of 179
Jun.04.25

-- Load Program to System RAM ---------------
please send !
Writing Flash Writer application...

Flash writer for RZ/G2 Series V1.06 Aug.10,2022
 Product Code : RZ/G2L
>
Elapsed time: Flash Writer: 23.976105 seconds
true
command not found
>
SUP
Scif speed UP
Please change to 921.6Kbps baud rate setting of the terminal.

>

>
>XLS2
===== Qspi writing of RZ/G2 Board Command =============
Load Program to Spiflash
Writes to any of SPI address.
 ISS : IS25WP256
Program Top Address & Qspi Save Address
===== Please Input Program Top Address ============
 Please Input : H
'11E00
===== Please Input Qspi Save Address ===
 Please Input : H
'
 Please Input : H'00000
Work RAM(H'50000000-H'53FFFFFF) Clear....
please send !
Writing BL2...
 ('.' & CR stop load)
SPI Data Clear(H'FF) Check :H'00000000-0000CFFF,Clear OK
H'00000000-0000CFFF Erasing..............Erase Completed
SAVE SPI-FLASH.......
======= Qspi Save Information =================
 SpiFlashMemory Stat Address : H'00000000
 SpiFlashMemory End Address : H'0000CB28
===

>

>XLS2

RZ Family / RZ/G Series 16. Appendix

R12UZ0177EU0110 Rev.1.10 Page 173 of 179
Jun.04.25

===== Qspi writing of RZ/G2 Board Command =============
Load Program to Spiflash
Writes to any of SPI address.
 ISS : IS25WP256
Program Top Address & Qspi Save Address
===== Please Input Program Top Address ============
 Please Input : H
'00000
===== Please Input Qspi Save Address ===
 Please Input : H
'1D200
Work RAM(H'50000000-H'53FFFFFF) Clear....
please send !
Writing fip ...
 ('.' & CR stop load)
SPI Data Clear(H'FF) Check :H'0001D000-000D7FFF,Clear OK
H'0001D000-000D7FFF
Erasing...
..
Closed serial port.
Elapsed time: 81.550220 seconds

Power cycle the board after the script is completed.

16.2.3 Flashing Bootloader/Firmware Using Windows Host
The subdirectory `windows` from Yocto build output/release directory contains the Windows scripts.
The Windows tool has its own `Readme.md` file with the necessary information about the scripts.

Before performing a flashing:

 Make sure the board is powered off,

 Connect the debug serial port (SCIF0 - TXD, RXD, GND) to your Linux PC

 Connect the adapter board with the jumpers set to serial load boot mode.

 Ensure that Teraterm application is installed on your Windows pc.

To boot firmware using Windows Host:

1. Ensure that the hardware setup is accurate.

2. Edit config.ini and set the correct com port number.

3. Start the script flash_bootloader.bat.

4. Power on the board.

The script uses Tera Term’s TTL to complete the flashing of the firmware. Upon completion, it will
disconnect the port.

Power cycle the SBC to boot new firmware.

RZ Family / RZ/G Series 16. Appendix

R12UZ0177EU0110 Rev.1.10 Page 174 of 179
Jun.04.25

16.3 How To Get the Console After Bootup
Once the RZ/G2L-SBC has booted, on the UART terminal, you will be able to login using the default
user ‘root’. There is no password. Leave the password field empty and just hit the return / enter key.

Figure 105. Root login of Linux console over UART 0.

RZ Family / RZ/G Series 17. Troubleshooting

R12UZ0177EU0110 Rev.1.10 Page 175 of 179
Jun.04.25

17. Troubleshooting

17.1 Unable To Support Scripts for Bootloader/Firmware Flashing On Linux
Not all Linux distributions ship with the Python3 package and its modules, which are required to run the
support scripts described in the Programming/Flashing Firmware to RZ/G2L-SBC section ‘Flash
bootloader on u-boot console and in the appendix section ‘Flashing Bootloader/Firmware using Linux
host’.

To make sure your Linux machine can run the support scripts successfully, execute the following
commands (This example is for Ubuntu 20.04):

$ sudo apt update
$ sudo apt install -y python3 python3-pip
$ pip3 install pyserial==3.5 argparse==1.4.0
The above commands try to update packages on your Linux machine to the latest. Then, they install
the python3 package and the python3 pip tool, which is used to install python3’s modules. And finally,
they install the necessary modules (‘pyserial’ and ‘argparse’) with the specific versions for running the
support scripts.

17.2 Flashing Tools Failing Halfway
The flashing tools are used to update the core firmware in the QSPI memory, which forms the core part
of the booting process. This should never fail. When a firmware flashing tool fails, the result is often an
unbootable ‘bricked’ device. The only way to recover from this is to use a SCIF boot and the respective
flashing process described in the appendix section Factory Firmware Flashing Using Serial Downloader
(SCIF) Mode.

17.3 Running Many Qt Demo Apps Slow Down the System
QT applications are generally RAM-heavy, and their memory requirement is scaled up with display
characteristics and object complexity. The Qt demo applications in the Linux distro image have been
validated to work on the RZ/G2L-SBC over a 10” 1080p HDMI and the Waveshare 5” DSI touch display
units. However, some applications can freeze or stutter, especially when other processes are running,
the screen size is large, or the frame rates are high. One of the limitations in this regard is the 1GiB
DDR memory, which limits usable memory for GFX.

Methods to enhance QT application performance:

1. Reduce the application's memory consumption by optimizing QT for using the MALI GPU for
animations and reducing the number of objects to be rendered. Simply reducing the frame rate
can often achieve better performance.

2. Custom board for a custom application: The RZ/G2L SoC supports 2 GiB DDR4 SDRAM. If the
application requires it, we recommend a custom version of the board with 2 GiB DDR SDRAM
memory. The existing board is still highly capable of running high-GFX applications, as seen in
the demos.

17.4 DHCP Failure
DHCP depends on the network infrastructure and sometimes takes over 30 seconds or fails completely.
When the DHCP fails, the SBC will self-assign an IP address from the address range 169.254.x.y
pattern series. This series of addresses is called the automatic private IP addresses.

This is often a network issue. At times, eth0 can take longer to get the IP address. If eth0 is not
responding, recheck with eth1. Your individual network topology will affect the board's ability to get an
IP address through DHCP.

https://pyserial.readthedocs.io/en/latest/pyserial.html
https://docs.python.org/3/library/argparse.html

RZ Family / RZ/G Series 17. Troubleshooting

R12UZ0177EU0110 Rev.1.10 Page 176 of 179
Jun.04.25

17.5 ‘Ifconfig’ doesn’t list the Wi-Fi interface
The Wi-Fi is not active by default at boot. While all the drivers and subsystems are loaded, the Wi-Fi
must be enabled with the command ‘enable Wi-Fi’ in conmanctl utility as described in Wi-Fi 802.11
Module.

17.6 IP Configuration
An IP address is a bit tricky to get right. It often won’t show up unless the port is powered up, and it gets
complicated to identify the interface name and ensure there is an address on it. There is some trial and
error involved in this step for flashing the system image. You can manually assign the IP address to
your host if necessary. Refer to the following for more info on Windows IP settings:

1. How to configure a static IP on Windows 10 or 11 | Windows Central

2. Change TCP/IP settings - Microsoft Support

17.7 Stuck in U-boot with error “Bad Linux ARM64 Image magic!”
There is a very rare situation in which a board might refuse to boot the Linux image. It usually displays
the following in the uart:

NOTICE: BL2: v2.5(release):
NOTICE: BL2: Built : 14:13:21, Aug 7 2023
NOTICE: BL2: Booting BL31
NOTICE: BL31: v2.5(release):
NOTICE: BL31: Built : 22:50:40, Aug 27 2023

U-Boot 2020.10 (Sep 08 2023 - 17:04:31 -0400)

CPU: Renesas Electronics E rev 15.4
Model: RZpi
DRAM: 896 MiB
MMC: sh-sdhi: 0
Loading Environment from SPIFlash... SF: Detected is25wp256 with page size 256 Bytes, erase size 4 KiB,
total 32 MiB
*** Warning - bad CRC, using default environment

In: serial@1004b800
Out: serial@1004b800
Err: serial@1004b800
Net: eth0: ethernet@11c20000, eth1: ethernet@11c30000
Hit any key to stop autoboot: 0
Failed to load 'boot/Image.gz'
44855 bytes read in 20 ms (2.1 MiB/s)
Error: Bad gzipped data
Bad Linux ARM64 Image magic!
=>

This is a board not updated with the newest U-Boot. This is also your chance to try the steps from
section 8.1.2 Flash bootloader on u-boot console. Once “u-boot” is updated, this issue will be
resolved.

https://www.windowscentral.com/software-apps/windows-11/how-to-configure-a-static-ip-on-windows-10-or-11
https://support.microsoft.com/en-us/windows/change-tcp-ip-settings-bd0a07af-15f5-cd6a-363f-ca2b6f391ace

RZ Family / RZ/G Series 18. References

R12UZ0177EU0110 Rev.1.10 Page 177 of 179
Jun.04.25

18. References

18.1 Git Repositories
Build scripts: Renesas-SST/rz-build-scripts: Build scripts for rz projects (github.com)

Yocto board meta layer: Renesas-SST/meta-renesas: Yocto meta layer for Renesas System
Solutions (github.com)

Linux Kernel: Renesas-SST/linux-rz: Linux kernel for System and Solutions Products (github.com)

Arm trusted firmware – A: Renesas-SST/rz-atf: Arm Trusted Firmware implementation for System &
Solutions products (github.com)

u-boot: Renesas-SST/u-boot: A u-boot suporting System & Solutions Products (github.com)

flash-writer: Renesas-SST/flash-writer: Serial flashing utility to load into blank boards supporting
System & Solutions Products (github.com)

18.2 RZ/G2L SoC
Product page: RZ/G Series (Linux-based MPU) | Renesas

Wiki: RZ/G Series 32/64-bit MPU - Renesas-wiki

Other RZ topics: RZ Topics - Renesas-wiki

18.3 External Resources

18.3.1 QT Development
Qt official page: Qt | Tools for Each Stage of Software Development Lifecycle

Qt documentation: Qt Documentation | Home

18.3.2 Yocto Project
Official Yocto manual: Yocto Project Reference Manual — The Yocto Project ® 4.3.999
documentation

18.3.3 Linux Kernel Documentation
The Linux Kernel Documentation — The Linux Kernel documentation

18.3.4 Arm Developer Documentation
Main page: https://developer.arm.com/documentation/

Armv8 Architecture manual: Arm Architecture Reference Manual for A-profile architecture

Generic Interrupt Controller (GIC) architecture specification: Arm Generic Interrupt Controller (GIC)
Architecture Specification

Armv8-A Register manual: Arm Armv8-A Architecture Registers

Armv8-A Known issues: Arm Architecture Reference Manual for A-profile architecture: Known issues

Arm Yocto SystemReady IR implimetnation: Deploying Yocto on SystemReady IR compliant
hardware (arm.com)

Arm TrustZone SMCC protocol: SMC Calling Convention (SMCCC) (arm.com)

Arm 64-bit ISA architecture: Arm A64 Instruction Set Architecture

https://github.com/Renesas-SST/rz-build-scripts
https://github.com/Renesas-SST/meta-renesas
https://github.com/Renesas-SST/meta-renesas
https://github.com/Renesas-SST/linux-rz
https://github.com/Renesas-SST/rz-atf
https://github.com/Renesas-SST/rz-atf
https://github.com/Renesas-SST/u-boot
https://github.com/Renesas-SST/flash-writer
https://github.com/Renesas-SST/flash-writer
https://www.renesas.com/us/en/products/microcontrollers-microprocessors/rz-mpus/rzg-series
https://jira-gasg.renesas.eu/confluence/pages/viewpage.action?pageId=184060061
https://jira-gasg.renesas.eu/confluence/display/REN/RZ+Topics
https://www.qt.io/
https://doc.qt.io/
https://docs.yoctoproject.org/ref-manual/index.html
https://docs.yoctoproject.org/ref-manual/index.html
https://docs.kernel.org/
https://developer.arm.com/documentation/
https://developer.arm.com/documentation/ddi0487/ka/?lang=en
https://developer.arm.com/documentation/ihi0069/hb/?lang=en
https://developer.arm.com/documentation/ihi0069/hb/?lang=en
https://developer.arm.com/documentation/ddi0595/2021-12/?lang=en
https://developer.arm.com/documentation/102105/ka-00/?lang=en
https://developer.arm.com/documentation/DUI1102/0101/?lang=en
https://developer.arm.com/documentation/DUI1102/0101/?lang=en
https://developer.arm.com/documentation/den0028/f/?lang=en
https://developer.arm.com/documentation/ddi0596/2021-12/?lang=en

RZ Family / RZ/G Series 18. References

R12UZ0177EU0110 Rev.1.10 Page 178 of 179
Jun.04.25

18.3.5 JEDEC DDR4
DDR4 SDRAM STANDARD | JEDEC

18.3.6 PMOD Specification
Wiki: Pmod Interface - Wikipedia

Specification document: pmod-interface-specification-1_3_1.pdf (digilent.com)

18.3.7 Essential Linux Tutorial
Linux/Unix Tutorial (geeksforgeeks.org)

Linux/Unix Tutorial - javatpoint

UNIX / LINUX Tutorial (tutorialspoint.com)

18.3.8 Packaging
CMake Reference Documentation — CMake 3.30.2 Documentation

CPack — CMake 3.30.2 Documentation

18.3.9 Using Extensible SDK
Using the Extensible SDK

18.3.10 Install Eclipse IDE
Eclipse Installer 2024-09 R | Eclipse Packages

18.3.11 Linux Kernel Development
HOWTO do Linux kernel development — The Linux Kernel documentation

Linux Kernel - GeeksforGeeks

The Linux Kernel Module Programming Guide (sysprog21.github.io)

A Beginner’s Guide to Linux Kernel Development (LFD103) - Linux Foundation - Training

18.3.12 Linux Kernel Driver Development
Basic intro: Device Drivers in Linux - GeeksforGeeks

Drive docs: Driver Basics — The Linux Kernel documentation

Kernel docs: Device Drivers — The Linux Kernel documentation

Lab: Character device drivers — The Linux Kernel documentation (linux-kernel-labs.github.io)

https://www.jedec.org/standards-documents/docs/jesd79-4a
https://en.wikipedia.org/wiki/Pmod_Interface
https://digilent.com/reference/_media/reference/pmod/pmod-interface-specification-1_3_1.pdf
https://www.geeksforgeeks.org/linux-tutorial/
https://www.javatpoint.com/linux-tutorial
https://www.tutorialspoint.com/unix/index.htm
https://cmake.org/cmake/help/latest/index.html
https://cmake.org/cmake/help/latest/module/CPack.html
https://docs.yoctoproject.org/3.1.33/sdk-manual/sdk-extensible.html
https://www.eclipse.org/downloads/packages/installer
https://www.kernel.org/doc/html/v4.18/process/howto.html
https://www.geeksforgeeks.org/the-linux-kernel/
https://sysprog21.github.io/lkmpg/
https://training.linuxfoundation.org/training/a-beginners-guide-to-linux-kernel-development-lfd103/
https://www.geeksforgeeks.org/device-drivers-in-linux/
https://www.kernel.org/doc/html/next/driver-api/basics.html
https://docs.kernel.org/driver-api/driver-model/driver.html
https://linux-kernel-labs.github.io/refs/heads/master/labs/device_drivers.html

RZ Family / RZ/G Series Revision History

R12UZ0177EU0110 Rev.1.10 Page 179 of 179
Jun.04.25

Revision History

Rev. Date
Description
Page Summary

1.00 Mar.03.25 — Initial release
1.10 Jun.04.25 — Ubuntu release

System Release Package, RZ Series – User Manual

Publication Date: Jun.04.25

Published by: Renesas Electronics Corporation

R12UZ0177EU0110

RZ Family/ RZ/G Series

	Introduction
	Package Contents
	Features
	Glossary
	1. Overview
	1.1 Supported Distributions
	1.1.1 Yocto Images
	1.1.2 Renesas Ccustom Iimages
	1.1.3 Ubuntu Images

	1.2 Supported Platforms

	2. Introduction
	2.1 Package Hierarchy
	2.2 Source Rrepositories

	3. Required Resources
	3.1 Development Tools and Software
	3.2 Hardware

	4. Quick Start
	4.1 SD-MMC Card Flashing
	4.2 RZ/G2L-SBC
	4.2.1 Hardware Requirements
	4.2.2 Essential Hardware Setup
	4.2.3 Complete Hardware Setup
	4.2.4 Booting
	4.2.5 Known Hardware and Functional Limitations on RZ/G2L-SBC
	4.2.5.1 Linux (CA55) Side Known Issues
	4.2.5.2 FreeRTOS/FSP (CM33) Side Known Issues

	5. General Operational Flow
	5.1 Arm Exception Levels
	5.2 Secure and Nnon-Ssecure Runtime
	5.3 Arm Trusted Firmware-A (TF-A)
	5.3.1 Components of Bboot
	5.3.1.1 BL1
	5.3.1.2 BL2
	5.3.1.3 BL31
	5.3.1.4 BL33

	5.3.2 Trusted Bboot Fflow

	6. OE Build
	6.1 Yocto OE Build
	6.1.1 Yocto Bbuild Host Environment Setup
	6.1.2 Initiate Yocto Build
	6.1.3 Collect the Bbuild Ooutput

	6.2 Ubuntu OE Build
	6.2.1 Ubuntu Bbuild Host Environment Setup
	6.2.2 Initial Ubuntu Bbuild
	6.2.3 Collect the Bbuild Ooutput

	7. Creating A Bootable SD Card On the Host Machine
	7.1 Linux Host
	7.2 Windows Host

	8. Programming / Flashing Firmware
	8.1 RZ/G2L-SBC
	8.1.1 Hardware Setup
	8.1.2 Flash Bbootloader on Uu-Bboot Cconsole
	8.1.2.1 Linux Host
	8.1.2.2 Windows Host

	9. Accessing Supported Features
	9.1 Supported Features in Yocto Images
	9.1.1 QT Demo Applications
	9.1.2 Quickboot Iimages and Nnetwork Cconfigurations
	9.1.2.1 Enable Networking Stack
	9.1.2.2 Disable Nnetworking Sstack
	9.1.2.3 Kernel Ooptimization

	9.1.3 40-Pin IO Expansion Interface
	9.1.3.1 U-Boot Environment
	9.1.3.2 GPIO (General Purpose I/O pins)
	(1) Setting I/O Ppin Ddirection
	(2) Reading the GPIO
	(3) Setting the GPIO

	9.1.3.3 Enabling I2C Ffunction (Cchannel 3 – RIIC3)
	9.1.3.4 SPI function (Cchannel 0 – RSPI0)
	9.1.3.5 CAN Ffunction (Cchannel 0,1 - CAN 0,CAN 1)

	9.1.4 Accessing PWM Timers
	9.1.4.1 Overview
	9.1.4.2 Enabling GPT Channels for PWM Use
	9.1.4.3 Enable PWM channels
	9.1.4.4 Configuring PWM

	9.1.5 Wi-Fi 802.11 Module
	9.1.5.1 Generic USB Bluetooth Fframework
	(1) Establishing a Bluetooth Cconnection
	(2) Transferring Ffiles over Bluetooth

	9.1.6 Onboard Audio Codec with Stereo Jack
	9.1.7 MIPI DSI Display Touch Panel
	9.1.7.1 Hardware Interfacing
	9.1.7.2 Enabling DSI Ppanel Ddrivers

	9.1.8 Playing Video Files on RZ/G2L-SBC
	9.1.9 MIPI CSI2 with Arducam 5MP OV5640 Camera Module
	9.1.9.1 Hardware Interfacing
	9.1.9.2 Enabling CSI Camera Drivers
	9.1.9.3 Accessing tThe Camera

	9.1.10 Package Management
	9.1.10.1 Setting Up Debian as A Backend Source
	9.1.10.2 Docker Installation Setup
	9.1.10.3 Using DPKG to Install Packages

	9.1.11 Install Packages Using Python3-Pip
	9.1.12 Python GUI Programming with Tkinter
	9.1.13 Chromium Web Browser

	9.2 Supported Features in Ubuntu Images
	9.2.1 Accessing Supported Features in Ubuntu LXDE
	9.2.1.1 Selecting LXDE session
	9.2.1.2 Audacity
	9.2.1.3 VLC Media Player
	9.2.1.4 Using CSI Ccamera with vlcVLC
	9.2.1.5 Web Bbrowser
	9.2.1.6 LXTerminal
	9.2.1.7 Ethernet
	9.2.1.8 Wi-Fi Nnetwork
	9.2.1.9 Bluetooth

	9.2.2 Accessing Supported Features in Ubuntu Core
	9.2.2.1 Configure the Network in Ubuntu Core

	10. Network Boot and TFTP
	10.1 TFTP Server Setup
	10.2 NFS Server Setup
	10.3 U-Boot DHCP IP Cconfiguration
	10.4 TFPT Bboot

	11. Using SSH and SCP for Remote Access and File Transfers
	11.1 Differences Between Dropbear and OpenSSH
	11.2 Using OpenSSH
	11.3 SSH Aaccess
	11.3.1 SSH from Windows Hhost
	11.3.2 SSH from Linux Hhost

	11.4 SCP (Secure copy protocol)
	11.4.1 SCP from Windows Hhost
	11.4.2 SCP from Linux Hhost

	11.5 Switching from OpenSSH to Dropbear

	12. Building the eSDK
	13. Application Building, Packaging, and Running
	13.1 How to extract the eSDK
	13.2 Build a sample application using the eSDK with CMake
	13.3 Package Programs with Cpack
	13.3.1 Package a C Pprogram
	13.3.2 Package a Python Program

	13.4 Run Ssample Aapplications
	13.5 Install and Run Debian application packages by using DPKG

	14. Remote Ddebugging using GDBServer
	14.1 Prepare GDB on the Hhost Mmachine
	14.2 Install GDBServer on RZ/G2L-SBC
	14.3 Remote Ddebugging Eexample
	14.3.1 Remote Ddebugging on CLI
	14.3.2 Remote Ddebugging on Visual Studio Code
	14.3.3 Remote Ddebugging on Eclipse IDE

	14.4 Postmortem Aanalysis Eexample
	14.4.1 Postmortem Aanalysis on CLI
	14.4.2 Postmortem Aanalysis on Visual Studio Code
	14.4.3 Postmortem Analysis on Eclipse

	15. Functional Overview
	15.1 RZ/G2L-SBC Board
	15.1.1 RZ/G2L SoC MPU Architecture
	15.1.2 Overview
	15.1.3 Physical View
	15.1.4 Overview of Connectors
	15.1.5 Power Supply
	15.1.5.1 USB Type-C Power
	15.1.5.2 Power Rails
	15.1.5.3 Power Supply Regulation

	15.1.6 Power Management Integrated Circuit- PMIC
	15.1.7 RESET Control
	15.1.8 Clock Configuration
	15.1.9 Peripheral Interface
	15.1.9.1 Gigabit Ethernet
	15.1.9.2 USB 2.0 Ports
	15.1.9.3 MIPI CSI Interface
	15.1.9.4 MIPI DSI Interface
	15.1.9.5 Audio DAC with 3.5mm Jack
	15.1.9.6 HDMI Display Subsystem
	15.1.9.7 40-pin I/O Header
	15.1.9.8 PMOD Type 6A Standard Interface
	15.1.9.9 uSD-Card Interface
	15.1.9.10 JTAG SWD Debug
	15.1.9.11 Expansion Connector

	15.1.10 Memory
	15.1.10.1 QSPI Flash
	15.1.10.2 DDR4 SDRAM
	15.1.10.3 EEPROM with Ttemperature Ssensor.

	15.1.11 GPIO Internals

	16. Appendix
	16.1 Factory Firmware Flashing Using Serial Downloader (SCIF) Mode
	16.2 RZ/G2L-SBC
	16.2.1 Required Hardware
	16.2.2 Flashing Bootloader/Firmware Using Linux Host
	16.2.3 Flashing Bootloader/Firmware Using Windows Host

	16.3 How To Get the Console After Bootup

	17. Troubleshooting
	17.1 Unable To Support Scripts for Bootloader/Firmware Flashing On Linux
	17.2 Flashing Tools Failing Halfway
	17.3 Running Many Qt Demo Apps Slow Down the System
	17.4 DHCP Failure
	17.5 ‘Ifconfig’ doesn’t list the Wi-Fi interface
	17.6 IP Cconfiguration
	17.7 Stuck in U-boot with error “Bad Linux ARM64 Image magic!”

	18. References
	18.1 Git Repositories
	18.2 RZ/G2L SoC
	18.3 External Rresources
	18.3.1 QT Ddevelopment
	18.3.2 Yocto Project
	18.3.3 Linux Kernel Documentation
	18.3.4 Arm Developer Documentation
	18.3.5 JEDEC DDR4
	18.3.6 PMOD Specification
	18.3.7 Essential Linux Tutorial
	18.3.8 Packaging
	18.3.9 Using the ExtensibleExtensible SDK
	18.3.10 Install Eclipse IDE
	18.3.11 Linux Kernel Development
	18.3.12 Linux Kernel Driver Development

	Revision History

