

User Manual

DA14580 Range Extender v.2 Reference Application

UM-B-045

Abstract

This document describes the Bluetooth Range Extender v.2 module, based on the DA14580 SoC. Target hardware: 580 RD QFN40 Module_RF PA_vC – Board Number: 078-56-C.

DA14580 Range Extender v.2 Reference Application

Contents

Ab	stract			1
Co	ntents	5		2
Fig	jures			3
Ta	bles			4
1	Term	s and De	finitions	5
2				
-				
4			iew	
4	3yste		S	
	4.2		description	
			h SoC	
	4.3			
	4.4		end	
		4.4.1	Radio front end control signals	
		4.4.2	Power amplifier	
		4.4.3	Low pass filter	
		4.4.4	Antenna	
	4.5	-	ystem and requirements	
	4.6		g the 16MHz Xtal	
	4.7	-		-
	4.8	-	ment Mode-Peripheral Pin Mapping	
	4.9	Software		29
5	Meas	urements	S	34
	5.1	Basic pe	rformance measurements	34
		5.1.1	Receiver sensitivity (conducted)	34
		5.1.2	Transmitter output power (conducted)	36
		5.1.3	Current consumption	38
	5.2	FCC/ ET	SI Measurements	41
		5.2.1	Emission limitation conducted (transmitter)	41
		5.2.2	Emission limitation radiated (transmitter)	41
6	FCC/	IC Certifie	cation and CE marking	49
	6.1	Standard	ds and conformity assessment	49
	6.2	FCC req	uirements regarding the end product and end user	49
		6.2.1	End product marking	49
		6.2.2	End product literature	49
	6.3	Permissi	ive changes	49
	6.4	Industry	Canada requirements regarding the end product and end user	49
		6.4.1	End product marking	
		6.4.2	End product literature	
7	Appe	ndix A: R	Range Extender v.2 with SPI Data Flash	
8			ory	
0	IVE AIS		<i>,</i> , , ,	51

29-Dec-2021

Figures

	odule	
Figure 3: Skv66111-11 Power Amplifier		
Figure 4: DA14580 QFN40 SoC. Range Ex	ktender ver.2 module	
	nt and register settings	
	nal	
Figure 10: Detail from Tx En to Rx En sig	nal	
Figure 11: Low pass filter		
Figure 12: T- shaped, 3-poles, Low Pass F	ïlter	
	nse	
Figure 14: Range Extender v.2 on interpos	er	
Figure 15: Antenna geometry on Range Ex	tender v.2	
Figure 16: Measured S11 paramater for IF.	A	
	placed vertically on the short edge	
	placed horizontally	
	÷	
	placed vertically on the short edge	
	placed horizontally	
Figure 22: IFA antenna implementation		
	isement frame	
Figure 25: Schematic of DA14580 Range E	Extender v.2 Module	
	settings for peripherals, periph_setup.h	
	tender	
	xtender	
Figure 29: Step 3b of adding app_range_e	xtender	
Figure 32: Step 5a of adding app_range_e	xtender	
Figure 33: Step 5b of adding app_range_e	xtender	
Figure 34: Inserting app_range_extender in	n the production test tool	
Figure 35: Nominal conducted output power	er per channel	
Figure 36: Peak conducted output power p	er channel	
Figure 37: Supplu current during an Advert	tisement frame	
Figure 38: Supply current during a Connec	tion frame	
	Sleep mode	
	n the interposer board for radiated measurem	
Figure 41: FCC, Frequency Range from 30	MHz to 1 GHz, CH39	
	3GHz, CH00	
	3GHz, CH19	
	3GHz, CH39	
Figure 45: FCC, Frequency from 3GHz to 7	18GHz, CH00	45
	18GHz, CH19	
	18GHz, CH39	
	Hz to 2.39 GHz (Restricted band- CH00)	
	Hz to 2.39 GHz (Restricted band- CH19)	
	Hz to 2.39 GHz (Restricted band- CH39)	
	GHz to 2.5 GHz (Restricted band- CH00)	
	GHz to 2.5 GHz (Restricted band- CH19)	
Figure 53: FCC, Frequency Range 2.4385	GHz to 2.5 GHz (Restricted band-CH39)	
User Manual	Revision 1.2	29-Dec-2021

Figure 54: Range Extender v.2 Module with external SPI Flash
--

Tables

Table 1: Electrical characteristics	7
Table 2: BLE_ DIAGCNTL_REG (0x40000050) register specification	11
Table 3: BLE_CNTL2_REG (0x40000200) register specification	12
Table 5: Suggested pin assignment for extracting all RF control signals	13
Table 6: Antenna gain Range Extender v.2 with interposer	18
Table 7: Antenna gain Range Extender v.2 stand-alone	20
Table 8: Module Pin assignment	23
Table 9: Bill of Materials	26
Table 10: Development/ testing mode pin mapping	26
Table 11: Conducted Rx sensitivity	35
Table 12: Tx output power	37
Table 13: Peak current during Advertisement mode	38
Table 14: Peak current during Connection mode	39
Table 15: Average current in Extended Sleep mode	39
Table 16: Conducted Tx harmonics at VBAT_3V = 3.0 V @ CH00, CH19, CH39	41

DA14580 Range Extender v.2 Reference Application

1 Terms and Definitions

BLE	Bluetooth [®] Low Energy
BOM	Bill Of Materials
DUT	Device Under Test
ERP	Effective Radiated Power
FW	Firmware
LPF	Low Pass Filter
PA	Power Amplifier
PCBA	Printed Circuit Board Assembled
PCB	Printed Circuit Board
RF	Radio Frequency
SoC	System on Chip
SPDT	Single Pole Double Throw

2 References

- [1] DA14580 Low Power Bluetooth Smart SoC, Datasheet, Dialog Semiconductor
- [2] SKY66111-11 Datasheet
- [3] AN-B-020 End product testing and programming guidelines.(This document is susceptible to be replaced)
- [4] UM-B-012 DA14580/581/583 Creation of a secondary boot loader

3 Introduction

The DA14580 Range Extender v.2 module design is based on the Dialog Semiconductor DA14580 BLE Smart SoC, where enhanced RF transmitted power is presented. This module serves as reference design to potential customers requesting BLE functionality with Nominal RF Output power up to +9.3 dBm (Peak RF Output Power +9.8 dBm). From physical perspective, the module is a two layer PCBA where the digital and power interfaces of the DA14580 are accessible to the user. This document presents the system, technical specifications, physical dimensions and test results.

Figure 1: DA14580 Range Extender v.2 module

4 System overview

4.1 Features

- Highly integrated Dialog Semiconductor DA14580 Bluetooth ® Smart SoC
- Module can be used as either stand-alone or as a data pump on a system with an external processor
- Module satisfies all Bluetooth requirements
- No external crystal or additional passive components are required for module operation, as the module is equipped with two crystal oscillators one at 16MHz (XTAL16M) and a second at 32.738KHz (XTAL32K). The 32.738 KHz is used as the clock of Extended/ Deep Sleep modes.
- Access to processor via JTAG, SPI, UART or I2C
- 22 GPIOs available on module at a 1.27 mm pitch, suitable for keyboard designs
- Operating voltage: 2.4 V to 3.3 V. Suitable for operation from a single coin cell battery.
- On-board printed inverted F-type antenna (Figure 1)
- RF connector for conducted measurements(Figure 1)
- Up to +9.3 dBm Nominal Maximum Output Power (+9.8dBm Peak Maximum Output Power).
- Rx sensitivity: better than -90 dBm
- Supply current:
 - -Tx : less than 17 mA peak current @ 3.0 V
 - -Rx: less than 6 mA peak current @ 3.0 V
 - -Extended Sleep current: less than 1.6 $\mu A @ 3.0 \ V$
- 15.25 mm x 24 mm, 37 pins, two layer PCBA
- Operating temperature: -40 °C to +85 °C
- Test FW based on DA14580_581_583_SDK_3.0.10.1

Characteristic	Value	Comments
Battery voltage (V _{BAT_3V})	2.4 V to 3.3 V	Specification tested at typical voltage of 3.0 V
Operating frequency range	2400 MHz to 2483.5 MHz	
Conducted output power	+9.3 dBm	$V_{BAT_{3V}} = 3 V, T_A = +15 \text{ to } +35 \text{ °C}$
Maximum bypass loss	0.6 dB	$V_{BAT_{3V}}$ = 3 V, T_A = +15 to +35 °C
Receiver sensitivity	Better than -90 dBm	$V_{BAT_{3V}} = 3 V, T_A = +15 \text{ to } +35 \text{ °C}$
Peak Tx current	<17mA	Tx Power = +9.3 dBm, V _{BAT_3V} = 3 V, T _A = +15 to +35 °C
Peak extended-sleep current	<1.6µA	V _{BAT_3V} = 3 V, T _A = +15 to +35 °C

RENESAS

Table 1: Electrical characteristics

4.2 General description

The system consists of the DA14580 Bluetooth Low power SoC, the SKY6611-11 Front-end module and a discrete low pass filter. The radio front end is connected to a PCB trace antenna as Figure 2 shows.

The power amplifier is controlled by the CTRL1 and CTRL2 signals. CTRL1 is generated from pin P0_3 and CTRL2 is generated from P0_2 of the DA14580. On pin P0_3 and pin P0_2 the internal Radio_TXEN and Radio_RXEN signals are software allocated.

Figure 2: Block diagram

The amplifier circuit is the SKY66111-11 from Skyworks. The CTX pin is used as the TX control signal and amplifier bias voltage. CTX pin is connected to the amplifier BIAS pin via resistor RBIAS. The resistor value is adjusted in order to get a Nominal RF Output Power of +9.3 dBm. More information for the power output adjustment can be found in Sky66111-11 datasheet².

User	Manual	

Figure 3: Sky66111-11 Power Amplifier

4.3 Bluetooth SoC

The DA14580 integrated circuit has a fully integrated radio transceiver and baseband processor for Bluetooth ® Smart. It can be used as an application processor as well as a data pump in systems with an external processor.

The DA14580 contains an embedded One-Time-Programmable (OTP) memory for storing Bluetooth profiles as well as custom application code. The qualified *Bluetooth® Smart* protocol stack, which is stored in a dedicated ROM, and the customer application software which is stored in system RAM, run on the embedded ARM Cortex M0 processor. Low leakage Retention RAM is used to store sensitive data and connection information while in Deep Sleep mode.

The Radio Transceiver implements the RF part of the Bluetooth Smart protocol. Together with the Bluetooth 4.0 PHY layer, it provides a 93 dB RF link budget for reliable wireless communication. All RF blocks are supplied by on-chip low drop out regulators (LDOs). The RF port is single ended 50 Ω , so no external balun is required.

The DA14580 has dedicated hardware for the Link Layer implementation of *Bluetooth*® *Smart* and interface controllers for enhanced connectivity capabilities.

The reset line of the DA14580 (pin RST) is active high. On this module the RST pin is available on module pin 21.

Main debug port for the DA14580 is the JTAG. JTAG consists of two signals, SWDIO and SWCLK.

The frequency tolerance specification for BLE is 50 ppm. In order to compensate ageing and offset effects, an external crystal shall have an accuracy of ±15 ppm or better. The DA14580 crystal (Y1) has a fundamental frequency of 16 MHz and load capacitance not higher than 10 pF. The crystal is located on the module itself. Also, an internal programmable capacitance bank is available in the DA14580. In this way, the crystal oscillator frequency can be tuned.

For sleep mode the on chip RCX oscillator is utilized. In addition, a 32 kHz crystal (Y2) with a tolerance of 50 ppm (500 ppm max) can be assembled on the module. The crystal load capacitance shall not be higher than 10 pF.

The external digital interfaces available for the module are:

- 2 UARTs with hardware flow control up to 1 MBd
- SPI interface
- I2C bus at 100 kHz, 400 kHz

Revision 1.2

• 3-axis capable Quadrature Decoder

There is also a 4-channel 10-bit ADC available externally to the module.

The module includes 22 GPIOs (including JTAG signals) that are available externally. The interfaces are multiplexed with the GPIOs and can be enabled by appropriate programming.

The DA14580 is equipped with a DC-DC converter that can be configured as either Buck or Boost. For this module, the DC-DC converter is configured as a Buck converter (C5, C2, L1, C3).

The DA14580 is available in three packages: WLCSP34, QFN40 and QFN48. In this reference application the QFN40 has been used.

Figure 4: DA14580 QFN40 SoC, Range Extender ver.2 module

4.4 RF front end

This part of the design is implementing the amplification of the RF transmitted signal while the transmitted harmonics as well as the Tx spurious emissions remain within the FCC/ETSI specification.

The operation of the RF front end is controlled by the DA14580. There are two RF paths: one through the amplifier and one bypass path. The amplifier path is enabled during transmission. The RF signal passes through the PA, the low pass filter and the RF matching network. In the bypass path, the RF signal received at the antenna is driven directly to the BLE transceiver.

lleor	Manual	
User	Manual	

Figure 5: RF front end signal paths

DA14580 Range Extender v.2 Reference Application

4.4.1 Radio front end control signals

4.4.1.1 Radio front end control signals

In general, three different radio control signal can be extracted from DA14580:

- extrc_txen, it can be used as Tx_En control signal of the RF front end.
- extrc_rxen or radcntl_rxen radio. Both signals are of the same duration. They can be used as Rx_En control signals for the RF front end.
- event_in_process that can be used for wlan co-existence signal.

The signals are extracted by using the BLE diagnostic port. Two registers need to be programmed:

 BLE_DIAGCNTL_REG where it is defined which signals will be extracted from each port. Register specification of BLE_DIAGCNTL_REG

Bit	Mode	Symbol	Description	Reset		
31	R/W	DIAG3_EN	0: Disable diagnostic port 3 output. All outputs are set to 0. 1: Enable diagnostic port 3 output.	0x0		
30	2	2	Reserved	0x0		
29:24	R/W	DIAG3	Only relevant when DIAGEN3 = 1. Selection of the outputs that must be driven to the diagnostic port 3.	0x0		
23	RAW	DIAG2_EN	0: Disable diagnostic port 2 output. All outputs are set to 0. 1: Enable diagnostic port 2 output.	0x0		
22	14	+	Reserved	0x0		
21:16	R/W	DIAG2	Only relevant when DIAGEN2 = 1. Selection of the outputs that must be driven to the diagnostic port 2. See chapter 2.15 for a detailed description.			
15	R/W	DIAG1_EN	0: Disable diagnostic port 1 output. All outputs are set to 0. 1: Enable diagnostic port 1 output.			
14	+	-	Reserved			
13:8	R/W	DIAG1	Only relevant when DIAGEN1 = 1. Selection of the outputs that must be driven to the diagnostic port 1. See chapter 2.15 for a detailed description.			
7	R/W	DIAG0_EN	0: Disable diagnostic port 0 output. All outputs are set to 0. 1: Enable diagnostic port 0 output.			
6	+	-	Reserved			
5:0	R/W	DIAGO	Only relevant when DIAGEN0 = 1. Selection of the outputs that must be driven to the diagnostic port 0.	0x0		

Table 2: BLE_ DIAGCNTL_REG (0x40000050) register specification

 BLE_CNTL2_REG where the BLE diagnostic port is enabled and the straight or reverse pin assignment is defined. This function is controlled by two register bit-fields, DIAGPORT_SEL and DIAGPORT_REVERSE. Description presented below on Table 3.

U	lser	Μ	an	ual	Ľ
U	301		an	ua	

Bit	Mode	Symbol	Description	Reset
5	R/W	DIAGPORT_REVERS E	BLE/RADIO Diagnostic Port Reverse order. When this bit is "1", the mapping of the diagnostic bus DIAG-PORT[7:0] (controlled by DIAGPORT_SEL) to GPIOs (controlled by Pxy_MODE_REG[PID]) is reversed. The mapping is: If "0" then DIAGPORT[7] is mapped to P0[7], etc. DIAGPORT[4] is mapped to P0[3] and P1[3], etc. and DIAGPORT[7] is mapped to P0[0] and P1[0]. If "1" then DIAGPORT[7] is mapped to P0[0] and P1[0], etc. DIAGPORT[4] is mapped to P0[3] and P1[3], etc. and DIAGPORT[4] is mapped to P0[3] and P1[0]. If "1" then DIAGPORT[7] is mapped to P0[0] and P1[0], etc. DIAGPORT[4] is mapped to P0[3] and P1[3], DIAGPORT[4] is mapped to P0[3] and P1[3], DIAGPORT[4] is mapped to P0[3] and P1[3], DIAGPORT[3] is mapped to P0[3] and P1[3], DIAGPORT[4] is mapped to P0[3] and P1[3], DIAGPORT[3] is mapped to P0[3] and P1[3], DIAGPORT[6] is mapped to P0[7].	0
4:3	R/W	DIAGPORT_SEL	BLE/RADIO Diagnostic Port Selection. Controls the multiplexing of the internal diagnostic signals towards the 8-bit diagnostic bus DIAGPORT[7:0]. The DIAG- PORT[7:0] bit order may or may not be reversed by using the DIAGPORT_REVERSE bitfield and then it will be directed to the GPIOs P0[7:0] and P1[3:0]. (Note that the P1[3:0] diag- nostic signals are the same with P0[3:0] signals.) The DIAGPORT[7:0] value, depending on the DIAGPORT_SEL value, is: 00: {BLE_DIAG2[7:5], BLE_DIAG1[4:3], BLE_DIAG0[2:0]} 01: {BLE_DIAG2[7:5], BLE_DIAG1[4:3], BLE_DIAG0[2] , wakeup_lp_irq, deep_sleep_stat_32k} 10: RADIO_DIAG0[7:0] 11: RADIO_DIAG1[7:0]	0x0

In BLE_CNTL2_REG the port and the pins assignment order is defined. Only port 0 (P0_[0:7]) and port 1 (P1_[0:3]) of the chip can be utilized.

Figure 7: Diagnostic port to pins assignment and register settings

lleor	Manual
USCI	Manuai

```
29-Dec-2021
```

For having all pins extracted in parallel, a combination of register setting and pin availability must be arranged. For example it is preferable to avoid assigning P0_4 and P0_5 to RF control signals. P0_4 and P0_5 are used for UART ports in testing and production tests.

The available pins are presented below:

Function	Diagnostic port settings		DA14580 assigned Pins		
	BLE_DIAGC	NTL_REG	BLE_CNTL2_REG		
	DIAG port	DIAGx	DIAGPORT_ REVERSE = 0	DIAGPORT_ REVERSE = 1	
Tx_Enable	DIAG1	0x28	P0_3	P0_4	
	DIAG1	0x28	P0_4	P0_3	
By Enchlo	DIAG2	0x08	P0_5	P0_2	
Rx _Enable	DIAG2	0x0c	P0_6	P0_1, P1_1	
	DIAG0	0x1F	P0_2	P0_5	
			•		
	DIAG2	0x08	P0_7	P0_0, P1_0	
Wlan coexist	DIAG2	0x0D	P0_7	P0_0, P1_0	
	DIAG2	0x1F	P0_6	P0_1, P1_1	

Table 4: Diagnostic port availability and settings for control pins

4.4.1.2 Suggested pin assignment

A suggested pin assignment for extracting all rf control signals at the same time is presented below

function	Signal used	Diagnostic port settings		DA14580 assigned Pins
		BLE_DIAGCNTL_REG		BLE_CNTL2_REG
		DIAG port	DIAGx	DIAGPORT_ REVERSE = 0
PA_ Tx Enable	extrc_txen	DIAG1	0x28	P0_3
PA_ Rx Enable	radcntl_rxen	DIAG0	0x1F	P0_2
Wlan coexist	event_in_ process	DIAG2	0x08	P0_7

For more options on the pin assignment please read paragraph 4.8: Development mode-peripheral pin mapping.

Below, screenshots from the radio control signals during operation are presented. The proximity reporter_fh application was used.

1.1.2.2.2.2		
User	Manual	

Figure 8: The RF control signals

Figure 9: Rising edge of Tx_En control signal

Figure 10: Detail from Tx_En to Rx_En signal

4.4.2 **Power amplifier**

The amplifier circuit is the SKY66111-11² from Skyworks. The VBIAS pin is connected to the bias voltage via resistor R7. The resistor value is adjusted so that the +9.3 dBm output power is achieved at maximum 16.15 mA current consumption.

There are two Low Pass Filters options for the power amplifier. The first one is at the input of the Skyworks amplifier and is formed by C6, C7 and L3 and the second is at the output of the Skyworks amplifier and is formed by L4, L5, C18 and C19. The second LPF is used in the current design.

The power amplifier is supplied from pin VBAT_3V directly.

User	Manu	al

4.4.3 Low pass filter

The low pass filter is placed after the amplifier matching network in order to suppress the harmonics generated due to the amplifier's nonlinearity. The filter presents low losses in the 2.4 GHz to 2.5 GHz frequency range (max. loss: 0.5 dB). The ripple on the pass band was chosen equal to 0.1dB.

Figure 11: Low pass filter

The filter is a T- type Chebyshev 3rd order low pass filter. The filter configuration is presented in Figure 12.

Component value:

- 2,7nH : LQG15HN2N7S02 / Murata
- 1.2pF: GRM1555C1H1R2CZD1/ Murata

Frequency response measurements are presented in Figure 13.

	r Ma	nual	
USEI	IVIA	iiuai	

Figure 13: Simulation results of LPF response

4.4.4 Antenna

4.4.4.1 Range Extender v.2 on Interposer

The antenna is a printed Inverted F Antenna (IFA). The antenna was designed according to the size of the module and the available antenna space (15.24 mm x 24 mm). The measurements for the characterization of the antenna radiation pattern were performed with Range Extender v.2 module mounted on an interposer board. The matching components values for the antenna measurement are: C20= 1.2pF and L6=3.3nH.

Figure 14: Range Extender v.2 on interposer

Figure 16: Measured S11 paramater for IFA

Gain measurements were performed in an anechoic chamber. The maximum gain was measured at 0 dBi.

Table 5: Antenna gain Range Extender v.2 with interposer

Parameter	G (dBi)
Maximum gain	0

Figure 17: Radiation diagram for the board placed vertically on the short edge

Figure 18: Radiation diagram for the board placed horizontally

DA14580 Range Extender v.2 Reference Application

4.4.4.2 Range Extender v.2 stand alone

Measurements for the characterization of the antenna radiation pattern were also performed with Range Extender v.2 not soldered on interposer. In this case the matching components values differ from the values of the module on the interposer. The matching values of the components are: C20= 1.2pF and C16=1pF.

Figure 19: Range Extender v.2 stand-alone

Gain measurements were performed in an anechoic chamber. The maximum gain was measured at

-10 dBi.

Table 6: Antenna gain Range Extender v.2 stand-alone

Parameter	G (dBi)
Maximum gain	-10

Figure 20: Radiation diagram for the board placed vertically on the short edge

User	Manual
0001	manadi

Figure 21: Radiation diagram for the board placed horizontally

Figure 22: IFA antenna implementation

The dimensions above are given for a typical FR1 PCB substrate, 1mm thick. The antenna length is adjusted for resonance including a 1mm plastic enclosure placed in contact with the PCB antenna. The red outline indicates the antenna footprint, i.e. required allocation of PCB space. The footprint of the antenna is available per request in dxf format.

Legend (Figure 22):

Clearance between antenna arm and GND plane right a.

Antenna width b.

Antenna height c.

Clearance between the antenna arm and GND plane below d.

Minimum GND plane size required for correct operation of the antenna e.

Antenna traces width f.

		_
User	Man	ual

Revision 1.2

4.5 **Power system and requirements**

The Range Extender v.2 module is supplied by a single power supply through pins VBAT_3V. For the DA14580 SoC, the VBAT_3V voltage variations are handled by the internal DC-DC converter. The DC-DC converter's external components are an inductor L1 (2.2 uH) and three capacitors C3, C1 and C2 (all three capacitors are equal to 1 uF).

The RF power amplifier and its circuitry are supplied directly from the external power source. The module is intended for use with a +3 V coin cell battery (e.g CR2450 type). The $V_{BAT_{3V}}$ voltage range is 2.4 V to 3.0 V, whereas the absolute maximum voltage is 3.6 V.

The overall current consumption in Tx mode does not exceed 17 mA @ 3.0 V supply. The current consumption by the front end circuits (amplifier) does not exceed 11 mA, whereas in extended- sleep mode the consumption of the system is expected to be in less than 1.6 uA.

Figure 23: Current consumption for Advertisement frame

4.6 Trimming the 16MHz Xtal

For ensuring best operation of the Module, the 16MHz XTAL must be trimmed. The frequency is trimmed by two on-chip variable capacitor banks. Both capacitor banks are controlled by the same register. For trimming the XTAL apply procedure described on AN-B-020³: End product testing and programming guidelines.

4.7 **PCBA**

A 2-layer FR4 PCB with 1.024 mm standard thickness is used. The PCB size is 15.25x24 mm. There are 37 connection pads which are made as castellation (1/2 open drill) with 1.27 mm pitch.

The connection pad assignment is shown in Table 7 below. The pin numbering is counter clockwise, as seen from the PCB top starting in the top left corner. Schematic and BOM are presented in Figure 25 and Table 8.

Figure 24: Top view of PCBA

Table 7	: Module	Pin	assignment
---------	----------	-----	------------

Pin	Signal name (Left side of the PCB seen from the top)	Pin	Signal name (Bottom side of the PCB seen from the top)	Pin	Signal name (Right side of the PCB seen from the top)
1	GND	15	P0_7	29	SWCLK
2	P2_7	16	GND	30	GND
3	P2_8	17	GND	31	P1_2
4	VPP	18	P2_2	32	P1_3
5	P2_9	19	VBAT_3V	33	GND
6	P2_0	20	GND	34	P2_5
7	P0_0	21	RST	35	P2_6
8	P0_1	22	P2_3	36	GND
9	GND	23	P2_4	37	GND
10	GND	24	GND		
11	P0_4	25	P1_0		

User Manual

Revision 1.2

29-Dec-2021

DA14580 Range Extender v.2 Reference Application

Pin	Signal name (Left side of the PCB seen from the top)	Pin	Signal name (Bottom side of the PCB seen from the top)	Pin	Signal name (Right side of the PCB seen from the top)
12	P0_5	26	GND		
13	P2_1	27	P1_1		
14	P0_6	28	SWDIO		

User Manual

Figure 25: Schematic of DA14580 Range Extender v.2 Module

DA14580 Range Extender v.2 Reference Application

Table 8: Bill of Materials

Ref.	Value	Description	Manuf.	MPN	Footpr.
U1	DA1458 0_QFN4 0	BT Low Energy System on a Chip	Dialog Semiconductor	DA14580-01AT1	QFN40
U2	SKY661 11	Front-End Module, 2.4GHz- 2.485GHz	Skyworks Solutions, Inc.	SKY66111-11	МСМ
L3, R3, R5, R6	0	RES 0.0 OHM 1/20W 0201 SMD	Vishay/Dale	CRCW02010000Z0ED	0201
R7	3.3K	RES 3.3K OHM 50mW 1% 0201 SMD	Vishay/Dale	CRCW02013K30FKED	0201
Y1	16.000M Hz	CRYSTAL 16MHZ 10PF SMD	TXC Corporation	7M-16.000MEEQ-T	
Y2	32.768k Hz	CRYSTAL 32.768KHZ 7PF SMD	Abracon Corporation	ABS07-32.768KHZ-7-T	
C1, C2, C3, C5, C14	1.0uF	CAP MLCC 1.0uF 10V X5R 10%	TDK Corporation	C1005X5R1A105K050BB	0402
C8, C9, C13, C17	10pF	CAP MLCC 0201 10pF 25volts C0G	Murata	GRM0335C1E100JA01D	0201
C18, C20	1.2pF	CAP MLCC 0201 1.2pF 25volts C0G +/-0.25pF	Murata	GRM0335C1E1R2CA01D	0201
L1	2.2uH	INDUCTOR Power 2.2uH, 500mA, 400MHz	Taiyo Yuden	BRL1608T2R2M	0603
L4,L5	2.7nH	Fixed Inductors 2.7 NH +1NH	Murata	LQP03TN2N7B00D	0201
L6	3.3nH	Fixed Inductors 3.3nH 0.1nH 500MHz	Murata	LQP03TN3N3B02D	0201
		Not Populated	Components		
Ref.	Value	Description	Manuf.	MPN	Footpr.
C6,C7,C 15,C16,C 19	NP	Capacitors			
R8	NP	Resistors			
ANT1		Printed Antenna			
TP1,TP2		Test Points			
J1	NP	RF Connectors / Coaxial Connectors UMC STRT JACK RECEP SURFACE MOUNT	Johnson / Cinch Connectivity Solutions	128-0711-201	UMC

4.8 Development Mode-Peripheral Pin Mapping

On the following table the pins used for development/ testing are described.

SoC Pin #	DA14580 assigned Pins	Function	SoC Pin #	DA14580 assigned Pins	Function
1	P0_0	Available External Use	21	SWITCH	Connection for the external DCDC-converter inductor.
2	P0_1	Available External Use	22	P1_0	Available External Use

User Manual

Revision 1.2

RENESAS

DA14580 Range Extender v.2 Reference Application

SoC Pin #	DA14580 assigned Pins	Function	SoC Pin #	DA14580 assigned Pins	Function
3	P0_2	PA_Rx Enable	23	VBAT1V	
4	P0_3	PA_Tx Enable	24	P1_1	Available External Use
5	NC		25	P1_5	SWDIO
6	P0_4	UART TX	26	P1_4	SWCLK
7	P0_5	UART RX	27	P1_2	Available External Use
8	P2_1	Available External Use	28	P1_3	Available External Use
9	P0_6	Available External Use	29	XTAL16Mp	
10	P0_7	WLAN coexist	30	XTAL16Mm	
11	XTAL32Km		31	VDCDC_RF	
12	XTAL32Kp		32	P2_5	Available External Use
13	P2_2	Available External Use	33	P2_6	Available External Use
14	VBAT_RF		34	RFIOm	
15	VBAT3V		35	RFIOp	
16	GND		36	P2_7	Available External Use
17	RST	RESET	37	P2_8	Available External Use
18	P2_3	Available External Use	38	VPP	
19	VDCDC		39	P2_9	Available External Use
20	P2_4	Available External Use	40	P2_0	Available External Use

*Note: Any available pin can be used for interfacing external SPI data Flash. See secondary boot loader document for further details⁴

By default in the secondary boot loader⁴ all the SPI GPIO signals are assigned to Port0. However as it has been mentioned in paragraph 4.4.1, P0_2 and P0_3 pins are utilized to extract the radio control signals. So if SPI communication with a peripheral is needed, a modification in the configuration settings for the peripherals contained in header file periph_setup.h can be made.

DA14580 Range Extender v.2 Reference Application

```
// SPI Flash settings
// SPI Flash Manufacturer and ID
#define W25X10CL MANF DEV ID (0xEF10)
#define W25X20CL MANF DEV ID (0xEF11)
// SPI Flash options
#define W25X10CL SIZE 131072
#define W25X20CL SIZE 262144
#define W25X10CL PAGE 256
#define W25X20CL PAGE 256
#define SPI FLASH DEFAULT_SIZE 131072
#define SPI FLASH DEFAULT PAGE 256
//SPI initialisation parameters
#define SPI WORD MODE SPI 8BIT MODE
#define SPI SMN MODE SPI MASTER MODE
#define SPI POL MODE SPI CLK INIT HIGH
#define SPI PHA MODE SPI PHASE 1
#define SPI MINT EN
                       SPI NO MINT
#define SPI CLK DIV SPI XTAL DIV 2
// UART GPIOs assignment
#define UART GPIO PORT GPIO PORT 0
#define UART TX PIN GPIO PIN 4
#define UART RX PIN GPIO PIN 5
#define UART BAUDRATE baudrate 57K6
// SPI GPIO assignment
#define SPI_GPIO_PORT _ GPIO_PORT_0
#define SPI_CS_PIN GPIO_PIN_3
#define SPI_CLK_PIN GPIO_PIN_0
#define SPI_DO_PIN GPIO_PIN_6
#define SPI_DI_PIN GPIO_PIN_5
// EEPROM GPIO assignment
#define I2C GPIO PORT GPIO PORT 0
#define I2C SCL PIN
                         GPIO PIN 2
#define I2C SDA PIN
                         GPIO PIN 3
```

// W25X10CL Manufacturer and ID
// W25X10CL Manufacturer and ID

- // SPI Flash memory size in bytes
- // SPI Flash memory size in bytes
- // SPI Flash memory page size in bytes
- // SPI Flash memory page size in bytes
- // SPI Flash memory size in bytes
- // SPI Flash memory page size in bytes

Figure 26: DA14580/581/583 configuration settings for peripherals, periph_setup.h

4.9 Software

The following instructions are based DA14580_581_583_SDK_3.0.10.1. Instructions are valid for both Keil 4 and Keil 5 projects. Screenshots shown are in Keil 5. **Inserting in a project (example in proximity reporter)**

- 1. Copy app_range_extender folder to dk_apps\src\modules\app\src\app_utils
- 2. Open the project and add app range extender.c in app group of the keil project
- 3. Right click 'apps' and select "Add existing files to Group 'app' ". Add app range extender.c

Figure 27: Step 2 of adding app_range_extender

4. Add the app_range_extender folder in the compiler include paths.

File Edit View Project Flash Debug	Peripherals Tools SVCS Window Help
🗋 🖆 🛃 🥥 👗 🛍 🛍 🗠 🗠	← → 作 務 務 務 律 津 //: //:
😵 🕮 📽 🥪 🔜 🔤 prox_reporter	
Project 🛛 🕈 📔	
🖃 🍄 Project: prox_reporter	569 Configure target options

Figure 28: Step 3a of adding app_range_extender

In the target options, select the C/C++ tab and in the end add: .\..\..\ src\modules\app\src\app_utils\app_range_extender (separate from the previous path with a semicolon)

DA14580 Range Extender v.2 Reference Application

vice Target Output Listing User	C/C++ Asm Linker Debug Utilities	
Preprocessor Symbols		
Define: Undefine:		
Language / Code Generation		Warnings:
Execute-only Code	Strict ANSI C	_
Optimization: Level 3 (-03)	Enum Container always int	All Warnings 🔹
C Optimize for Time	Plain Char is Signed	🔲 Thumb Mode
Split Load and Store Multiple	Read-Only Position Independent	No Auto Includes
One ELF Section per Function	Read-Write Position Independent	C99 Mode
Paths	lude;c:\Keil\ARM\CMSIS\Include;C:\Keil\AF	RM\RV31\INC;.\\\\
Misc Controls	a14580_config.h -bss_threshold=0	
	-DMICROLIB -li -g -03apcs=interwork -l \CMSIS\Include -IC:\Keil\ARM\RV31\INC -l	

Figure 29: Step 3b of adding app_range_extender

5. In app_<project>_proj file, add the line:

#include "app_range_ext.h" in the Include files section

🖇 📖 🥮 👘 🔄 🎢 🛛 prox, reporter	- × & ♦ ♥ @	
unt 🔹 🖬	app prom proje	
TI Project: prox_reporter	26 #include "www.pot_guadeo.h"	// SW configuration
🖶 🔛 prox_reporter	21	
🛛 🛄 boet	28 [st: (RLE_APP_PRESENT)	
in Call arch	29 30日/*	
petches	31 + ISCLUCE FILES	
E Ca driver	32 *****************************	***************************************
E Ca host	33 */	
a la nude	34 -	
a cotte	35 Minclude "app_sec.h"	
	36 #include "app_prosr_proj.n*	
😑 🛄 profiles	37 #include "Arch_sleep.h* 38	
🗄 😂 🖝 P	39 #include "on math.h"	// Common Harks Definition
# 🙆 app.s	10	
# 🛄 app_pecs	41 HILE (NVDS_BUPPORT)	
iii 🙆 app_sec_taik.c	42 finclude "nods.h"	// WVDB Definitions
🛞 🛄 app_task.c	43 ##ndif //(NVDS_SUPPORT)	
app_batt.c	44 - 45 #include "api flash.h*	
app bett task c	46 46	
app finimez	47 #include "app range sat.b"	// Added for range extender support
=] app_findme_task.c	45	
= app prome	岐口パ	
= in app.pror.tatk.c	56 - FUNCTION DEFINITIONS	
	51 52 */	
app,de.c	83	
₩ 🔄 app_dis_tack.c	54	
# 🔄 whb"hour"hoire	55 1 /**	
# 🛄 app_spotar.c	56	***************************************
# 🔄 app_spoter_task.c		funntion. Registered in WHUPCT driver.
🗑 🔄 app_range_ext.c	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	59 * Brwaturn vuid.	

Figure 30: Step 4a of adding app_range_extender

and call app_range_extender_enable() in app_init_func()

DA14580 Range Extender v.2 Reference Application

Figure 31: Step 4b of adding app_range_extender

6. In periph setup.c, add the line:

#include "app range ext.h" in the Include files section

1 😅 🖬 🕼 👘	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	作名 15. 15. 17. 17. 17. 17. 15. 19. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	range_extender_en 🚽 🐊 🦓 🔍 🕘 🔹 🔗 🍓 🔝 🔍
000000	prox_reporter		
Voject:	• 🗹 🖉	periph_setup.c app_prosr_proj.c	
Project: prox_re	porter	1日/**	
🖯 🔐 prox_reports	¥.	2	
🗄 🧰 boot		3 -	
🖂 🤤 arch		4 * @file periph_setup.c	
in 🖸 arch	engin.c	S * 6 * Øbrief Peripherals setup an	d initialization
(i) [1] putt	T (1) (1) (1)	7 *	5 Inteldifiederon.
IE arch	· · · · · · · · · · · · · · · · · · ·		Semiconductor Ltd, unpublished work. This computer
iii 🛄 nmi			al, Proprietary Information and is a Trade Secret of
			All use, disclosure, and/or reproduction is prohibited
ili 🛄 perij		11 * unless authorized in writin	g. All Rights Reserved.
🕀 🛄 arch	7.8.10.1.000	12 * 13 * cbluetooth.supportEdiasemi.	
🖶 🛄 arch		14 ·	comp and contraining as
ill 🞑 patches		15	
🗄 🛄 driver		16/	
🕀 🛄 host		17 旦/*	
😸 🛄 nvds		18 * INCLUDE FILES	
🕫 🛄 rwble		19	
🛞 🛄 profiles		21 #include "rwip config.h"	// SW configuration
app 🔤		22 #include "periph setup.h"	// periphera configuration
		28 Findlude "global 10.h"	
		24 #include "gpic.h*	
		25 #include "uart.h"	// UART initialization
		26	
		27 #include "app_proxr_proj.b" 28	
		29 #include "app range ext.h"	// Added for range extender support
		30	11 more for raile customer sufficies
		31 Hainder PERIPH SETUP H	
		32 #define PERIPM SETUP H	
		33	

Figure 30: Step 5a of adding app_range_extender

and call app range extender enable() at the end of periph init()

User Manual	Revision 1.2	29-Dec-2021

DA14580 Range Extender v.2 Reference Application

1 2 4 2 3 3	👄 👘 🖄 🐘 🗶 🖉 🖉 🖉 🖉 app_range_extender_er	••• 🔹 🖉 🞍 🕘 🔗 🍓 💷 • 🔦
S D D & D W provjepo	ner 💽 🔊 💩 🗧 🚸 🔭 🏟	
niject a 🗑	B periph_setup_t app_prosr_prop.t	
Project: prox_reporter	118 * Obrief Enable pad's and peripheral clock	ks assuming that peripherals' power domain is
🗏 🔐 prox_reporter	119 *	
🗟 🛄 boot	120 * Breturn wold	
= 🦢 arch	121	***************************************
i arch_main.c	122 - */	And a state way and a free of a state of
	123 void periph_init(void) // set 12c, spi, w 124 ()(art, uart2 serial clas
III jump_table.c	125 // Power up peripherals' power domain	
🗄 🛄 arch_sleep.c	126 SetBits16(PMU CTRL REG, PERIPH SLEEP,	01.5
ami_handler.c	127 while (! (GetWord16(SYS STAT RES) & FER	
	128	
arch_system.c	129 SetBits16(CLK 16M RED, XTAL16 BIAS SH 1	ENABLE, 1);
in in arch_patch.c	130	
III 🛄 patches	131 //rom patch	
	132 patch_func();	
i 🗐 📴 deiver	133	
🗇 🛄 host	134 //Init pads	
🗊 🛄 muda	<pre>135 set_pad_functions();</pre>	
🕀 🛄 nwble	136	
profiles	138 Haif (BLE APP PRESENT)	
🗃 🛄 app	139	
an - Abb	140 HALF BLE PROK REPORTER	
	141 spp proxr port reinit(GPIO ALERT LED P	ORT, GPIO ALERT LED FIN);
	142 D #11 USE PUSH BUITON	N 1881 A 67 N
	143 app_button_enable();	
	144 #endif // USE_PUSE_BUITON	
	145 Felif BLE_FINDME_LOCATOR	
	146 E FIT USK_FUSH_BUTTON	
	147 spp_button_enable(); 148 = #endif // USE FUSH BUTTON	
	148 #endif // USE FUSH BUTTON 148 #endif //BLE PROX REPORTER	
	150 HALF BLE BATTERY SERVER	
	151 app_batt_port_reinit();	
	192 #endit //BLE BATTERY SERVER	
	153	
	154 #endlf //BLE_APP_FRESENT	
	155	
	156 // Enable the pads	
	157 SetBits16(SYS_CIRL_REG, PAD_LAICH_EN, 1)	i
	155	
	159 app_range_extender_enable())	<pre>// Added for range extender support</pre>
	160 161)	
	498	

Figure 31: Step 5b of adding app_range_extender

Inserting in the production test tool

- 1. Follow above steps 1-3
- 2. In custom_gtl_hci.c, add the line:

#include "app_range_ext.h" in the Include files section

DA14580 Range Extender v.2 Reference Application

and call app_range_extender_enable()in gtl_hci_rx_header_func()

1 월 년 월 1 8 9 월 1 9 이 1 1 년 년 월 2 1 11 1 protjet						
Project prod_test						
in an prod_test	139					
iii 📮 beet	140 // Allocate the kertel message					
iii 🔁 arch	161					
ii 🔁 patches	162 If (opcode 1+ HCI UNRODULATED ON CHED OFCODE 14 opcode 1+ BCI LE END FROD RX TEST CHED OFCODE					
	163 SE opcode 1+HCI TX STARI CONTINUE TEST CHD OFCODE 66 opcode 1+HCI TX ESD CONTINUE TEST CHD					
iii 🎴 driver	164 54 (opcodeRCI LE IX TEST CHD GPCODE 64 length rw5) 54 (opcodeRCI SLEEP TEST CHD 165 54 (opcodeRCI XIAL TRIN CHD OPCODE) 44 (opcodeRCI OTP FW CHD OPCODE)					
iii 🞑 frest	144 14 (upcode=HCT OFF READ CHD DPCODE) 14 ((prode=HCT OFF WRITE CHD OPCODE)					
iii 🖾 mids	147 ## ((ppodeMCI_REGISTER BN_CHD_OPCODE) ## ((ppodeMCI_CUSTON_ACTION_CHD_OPCODE)					
iii 🛄 ruble	168 44 (opcode==SCI RDTESTER CHD GFCODE) 44 (opcode==SCI FIRMARE VERSION CHD GFCODE))					
iii 🛄 misc	162 D I					
i i i i i i i i i i i i i i i i i i i	170 gt1_env.p_mag_rs = ke_paramimag(ke_mag_allog(msgid, dest_id, TASK_OTL, allog_length));					
iii 📄 custemer prod.c	<pre>171 gtl_env.p_wsg_rw->pardw_len = length_rw/</pre>					
iii 📄 custem la ext.c	172 - 1					
	171 else //WWW comming in this long means we handle the customer production commands, they are no 176 // and will be handled in 'oil hot in header' or in 'oil hot in header and wil hot ins pay					
iii 🛄 custom_lid_deta.c	174 // and will be handled in 'gtl_bci_rs_header' or in 'gtl_bci_rs_header and gtl_bci_rs_pay 175 // // and will be handled in 'gtl_bci_rs_header' or in 'gtl_bci_rs_header and gtl_bci_rs_pay					
iii 🛄 sustem_ltd.c	176 gti env.p mag rm = Ne paraminag(Ne mag allocimagid, dept id, TASK OTL, alloc length)))					
a fie, bg_mateurs 🛄 🕀	177 gtl env.p mag ra->id = opcode;					
🗉 🛄 zusternigtijheis	198 gtl env.p meg rm->parum len = length rm;					
(i) 📄 stat cal.c	179 1					
D pubes	190					
III 🛄 intent.api.c	191					
the second se	182 app_range_extender_enable(): // Added for range satender support					
III III mtect_lowleveLc	183					
# 🛄 tithed_support.c	184 // SetWord16(E1_RESET_DAIN_HES, Sw04): //SET F1.2					
iii 📑 app_range_ed.c.	105 1					
	185 void gtl hd: nx psyload(void)					

Figure 32: Inserting app_range_extender in the production test tool

DA14580 Range Extender v.2 Reference Application

5 Measurements

5.1 Basic performance measurements

5.1.1 Receiver sensitivity (conducted)

5.1.1.1 Test description

In this test the Rx sensitivity of Range Extender v.2 Module was measured.

5.1.1.2 Test setup

The Range Extender v.2 Module was mounted on a DK Development Board with the use of an intermediate interposer board. The R&S®CBT Bluetooth® Tester from Rohde & Schwarz was used. An RF cable assembly was connected to J1 connector (UMC RF Series) and at the other end through an attenuator to the R&S®CBT Bluetooth® Tester from Rohde & Schwarz. The results from a dirty transmitter on one of the boards are reported below.

5.1.1.3 Test results

The conducted RF sensitivity with dirty transmitter shows that the sensitivity is better than -90 dBm for the most of the channels.

Г

DA14580 Range Extender v.2 Reference Application

Table 10: Conducted Rx sensitivity

TX Start Level: -96.0 dBm, Packets: 1500, Payload: PRBS 9, Le	ength: 37 Bytes, Dirty Transmitter: specifi	ation table	
Channelscan: from Ch. 00 to Ch. 39, with detailed values			
RX Level @ Ch: 00, PER: 28.93%, Count: 13		-91.40 dBm	
RX Level @ Ch: 01, PER: 29.33%, Count: 06		-91.40 dBm	
RX Level @ Ch: 02, PER: 30.33%, Count: 12		-91.40 dBm	
RX Level @ Ch: 03, PER: 31.20%, Count: 07		-90.60 dBm	
RX Level @ Ch: 04, PER: 30.60%, Count: 07		-91.50 dBm	
RX Level @ Ch: 05, PER: 29.67%, Count: 11		-91.40 dBm	
RX Level @ Ch: 06, PER: 31.53%, Count: 08		-91.40 dBm	
RX Level @ Ch: 07, PER: 31.47%, Count: 09		-91.10 dBm	
RX Level @ Ch: 08, PER: 31.07%, Count: 06		-91.40 dBm	
RX Level @ Ch: 09, PER: 28.93%, Count: 09		-91.10 dBm	
RX Level @ Ch: 10, PER: 31.13%, Count: 11		-91.00 dBm	
RX Level @ Ch: 11, PER: 32.47%, Count: 10		-90.70 dBm	
RX Level @ Ch: 12, PER: 29.93%, Count: 12		-91.10 dBm	
RX Level @ Ch: 13, PER: 28.80%, Count: 09		-91.10 dBm	
RX Level @ Ch: 14, PER: 28.93%, Count: 09		-91.10 dBm	
RX Level @ Ch: 15, PER: 31.60%, Count: 14		-89.20 dBm	
RX Level @ Ch: 16, PER: 29.27%, Count: 13		-91.20 dBm	
RX Level @ Ch: 17, PER: 29.33%, Count: 09		-91.10 dBm	
RX Level @ Ch: 18, PER: 31.40%, Count: 12		-91.30 dBm	
RX Level @ Ch: 19, PER: 29.40%, Count: 09		-90.40 dBm	
RX Level @ Ch: 20, PER: 30.07%, Count: 10		-91.20 dBm	
RX Level @ Ch: 21, PER: 29.60%, Count: 05		-91.20 dBm	
RX Level @ Ch: 22, PER: 29.33%, Count: 09		-91.20 dBm	
RX Level @ Ch: 23, PER: 29.00%, Count: 11		-90.80 dBm	
RX Level @ Ch: 24, PER: 29.80%, Count: 05		-91.20 dBm	
RX Level @ Ch: 25, PER: 31.53%, Count: 06		-91.40 dBm	
RX Level @ Ch: 26, PER: 29.93%, Count: 10		-90.90 dBm	
RX Level @ Ch: 27, PER: 29.93%, Count: 09		-90.40 dBm	
RX Level @ Ch: 28, PER: 29.40%, Count: 18		-90.90 dBm	
RX Level @ Ch: 29, PER: 30.20%, Count: 11		-91.00 dBm	
RX Level @ Ch: 30, PER: 29.73%, Count: 18		-90.90 dBm	
RX Level @ Ch: 31, PER: 28.87%, Count: 06		-88.80 dBm	
RX Level @ Ch: 32, PER: 31.00%, Count: 09		-91.10 dBm	
RX Level @ Ch: 33, PER: 29.93%, Count: 05		-91.20 dBm	
RX Level @ Ch: 34, PER: 29.33%, Count: 10		-90.90 dBm	
RX Level @ Ch: 35, PER: 29.53%, Count: 07		-90.60 dBm	
RX Level @ Ch: 36, PER: 31.13%, Count: 05		-91.20 dBm	
RX Level @ Ch: 37, PER: 29.40%, Count: 11		-91.00 dBm	
RX Level @ Ch: 38, PER: 31.13%, Count: 12		-91.10 dBm	

DA14580 Range Extender v.2 Reference Application

5.1.2 Transmitter output power (conducted)

5.1.2.1 Test description

In this test the conducted RF output power of Range Extender v.2 Module was measured.

5.1.2.2 Test setup

The Range Extender v.2 Module was mounted on a DK Development Board with the use of an intermediate interposer board. In order to evaluate the TX output power, production test firmware was used. Conducted transmitted output power was measured by using the R&S®CBT Bluetooth® Tester from Rohde & Schwarz. An RF cable assembly was connected to J1 connector (UMC RF Series) and at the other end through an attenuator to the R&S®CBT Bluetooth® Tester. Bursts of 10 packets were transmitted by the DA14580. The packet length was 37 and the pattern was "01010101". Three channels were recorded, channels 0, 19 and 39.

5.1.2.3 Test results

Measurements were performed on a number of samples.

Figure 33: Nominal conducted output power per channel

lleor	Manual	
USCI	manuai	

Table	11: Tx	output	power
-------	--------	--------	-------

Parameter	Vbat_3v (V)		Роит (dBm))
Nominal Tx output power, average	+3.0	CH00	CH19	CH39
Nominal 1X output power, average	+3.0	9.35	8.87	8.57
Peak Tx output power, average	+3.0	9.88	9.34	9.03

DA14580 Range Extender v.2 Reference Application

5.1.3 Current consumption

5.1.3.1 Test setup

The board used in the test presented optimal RF performance. The integrated printed antenna was used to perform the measurements.

Following instruments were used for the test:

- Multimeter
- 3 V, 100 mA power source
- Agilent N6705B

The current profiles were evaluated using proximity reporter firmware with embedded PA control. During this test the Advertisement, Connection and Extended Sleep modes were evaluated.

5.1.3.2 Advertisement mode

For this measurement the DUT was supplied by 3 V. FW was downloaded and the JTAG programmer and then it was disconnected.

Table 12: Peak current during Advertisement mode

Channel	Frequency (MHz)	Parameter	I _{PEAK} (mA)
0	2402	lpeak0, TX	16.15
12	2440	lpeak12, TX	15.91
39	2480	lpeak39, TX	14.68

Figure 35: Supplu current during an Advertisement frame

DA14580 Range Extender v.2 Reference Application

5.1.3.3 Connection mode

For this measurement the DUT was supplied by 3 V. FW was downloaded and the JTAG programmer was disconnected and connection with an iPhone 4S was established.

Figure 36: Supply current during a Connection frame

5.1.3.4 Extended sleep mode

For this measurement the DUT was supplied by 3 V. FW was downloaded and the JTAG programmer was disconnected. FW was setting the RF path to Rx.

Table 14: Average current in Extended Sleep mode

Parameter	Ι _{Αν} (μΑ)
Imean	1.58

DA14580 Range Extender v.2 Reference Application

Figure 37: Supply current during Extended Sleep mode

User Manual

DA14580 Range Extender v.2 Reference Application

5.2 FCC/ ETSI Measurements

5.2.1 Emission limitation conducted (transmitter)

5.2.1.1 Test description

In this test the level of the harmonics produced by the Tx path was measured.

5.2.1.2 Test setup

The Range Extender v.2 Module was mounted on a DK Development Board with the use of an intermediate interposer board. In order to evaluate the harmonics levels production, the production test firmware with embedded PA signal control was used. The boards under test, were set into continuous transmit mode. An RF cable assembly was connected to J1 connector (UMC RF Series) and in the other end were connected to the spectrum analyser. Three channels were tested, channels 0, 19 and 39.

5.2.1.3 Test results

CH39 - 2480 MHz Parameter (dBm) CH00 - 2402MHz CH19 – 2440MHz 2nd harmonic power -52.40 -52.56 -52.40 -58.54 -58.04 -56.76 3rd harmonic power -55.70 -55.64 4th harmonic power -56.81

Table 15: Conducted Tx harmonics at V_{BAT_3V} = 3.0 V @ CH00, CH19, CH39

-59.52

All measurements comply with the limits specified in FCC 15.247/ Sub clause (d). Please note that the second harmonic power is has a 11.2 dBm margin to the FCC limits (-41.2 dBm).

-58.06

5.2.2 Emission limitation radiated (transmitter)

5.2.2.1 Test description

5th harmonic power

In this test the level of radiated spurious emissions produced in the Tx mode was measured in the certified semi-anechoic RF chamber at AT4W labs.

5.2.2.2 Test setup

For the measurements, the device under test comes with its OTP preloaded with the production test firmware with embedded PA signal control. This software can be configured to generate the required test patterns. The hardware configuration for the test is shown in Figure 38.

-56.66

Figure 38: Range Extender v.2 mounted on the interposer board for radiated measurements

The board was set to continuous transmission mode with a 100% duty cycle.

The measurements were conducted for the range of 30 to 1000MHz, 1 GHz to 3 GHz and from 3GHz to 18 GHz according to FCC Part 15C and for the range of 30 to 1000 MHz and 1 to 12.75 GHz for ETSI EN 300 328 1.8.1.

A board with Nominal RF Output Power equal to +9.3 dBm was used for this test.

The situation and orientation was varied to find the maximum radiated emission. It was also rotated 360° and the antenna height was varied from 1 to 4 meters to find the maximum radiated emission. Measurements were made in both horizontal and vertical planes of polarization. All tests were performed in a semi-anechoic chamber at a distance of 3 m for the frequency range 30 MHz-1000 MHz and at distance of 1 m for the frequency ranges above 1 GHz.

5.2.2.3 Test results

The results of the radiated measurements are given on Figure 39 to Figure 51. All measured FCC values comply with the emission limits specified in FCC 14.247/ Sub-clause (d). Additionally radiated emissions limits which fall in restricted bands, as defined in FCC 15.205(a) also comply with the radiated emissions limits specified in 15.209.

As far as ETSI transmitter unwanted emission in the spurious domain, they all comply to the limits described in ETSI 300 328 1.8.1 paragraph 4.3.1.9.2.

FREQUENCY RANGE 30 MHz-1000 MHz.

Note: The peak shown in the plot above the limit is the carrier frequency.

Figure 40: FCC, Frequency from 1GHz to 3GHz, CH00

CHANNEL: Middle (2440 MHz).

Ref Level 80.	Spectrum	• PBW	1 MHz							
 Att TDF 1 Frequency S 	0 dB 🖷 S	WT1s = VBW	3 MHz Mode /	Auto Sweep					1Pk View	8 2Av ViewLin
70 d8µV/m	H1 74.000 dBµV/π									
60 dkµV/m										
50 d8µV/m	H2 54,000	dBuWim								alouita, ukatelo
le beleve beter	al-ustaintéini	ana si cara sa sa	and de the de charde a find	al-loonal pic the	dahuna berdidari		-			
30 Cept () in	un coloristicant in	a Michigan Cara ang Singla ang		متابغ ومعاجلها والمانية ال				****		
20 dBµV/m										
10 d8µ\//m										
a disµvjin-										
-10 dBµ/vjm										
1.0 GHz			30000 pt	s	20	0.0 MHz/				3.0 GHz

Note: The peak shown in the plot above the limit is the carrier frequency.

Figure 41: FCC, Frequency from 1GHz to 3GHz, CH19

CHANNEL: Highest (2480 MHz).

MultiView										v
Ref Level 80. Att TDF	0 d8 🖷 S	● RBW WT 1 p ● VBW	1 MHz 3 MHz Mode /	luito Sweep						
I Frequency S	weep								 1Pk View 	2Av ViewLin
	HL 74,000 d8µV/m									
0 d8µi//m										
iD dBulWm-										
								ł		
iD dBu/V/m	H2 54.000	dBµV/m								
io deploym						فيعيدوا ويريبون	أرادون	Lucus	ومعاديك والمساوين	والار والمتلك والمراوية
had a second	التلأك الحلحة أحداجها	a history and a second second	and a state of the second second	a last to al addition						
							كطنل	كلطب		
			a man demonstration	and the second se		and the second data was a second data w				
0 dsu wm										
0 dBµiV/m										
0 dBµN/m										
) dBµV/m										
10 dBµ\//m										
.0 GHz			30000 pt	s	20	0.0 MHz/	_			3.0 GH

Note: The peak shown in the plot above the limit is the carrier frequency.

Figure 42: FCC, Frequency from 1GHz to 3GHz, CH39

44 of 52

FREQUENCY RANGE 3 GHz to 18 GHz.

CHANNEL: Lowest (2402 MHz).

CHANNEL: Middle (2440 MHz).

CHANNEL: Highest (2480 MHz).

Figure 45: FCC, Frequency from 3GHz to 18GHz, CH39

FREQUENCY RANGE 2.31 GHz to 2.39 GHz. (RESTRICTED BAND)

CHANNEL: Lowest (2402 MHz).

	MultiView	~								~
	Ref Level 80 Att TDF	0 dB = \$	• RBW WT 1s • VBW	1 MHz 3 MHz - Mode J	Auto Sweep					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Sweep							1Pk View	24v ViewLin
H2 54.000 Bully In- H2 54.000 H2 54	78 dBµV/n									
	60.dByW/m									
		H2 54.000	disµv/m							
		at the strength of the second	and the second scheme the second	المتعادية والعاصرين		والويلة مصعبين بالبينو	is a colorada core color	and a state of the	للمرجعا ويعاورنا	an an air an
	40 dBµV/m			-				*		Λ
				and the second s			discretes and the sec			
	30 dBuV/m									
d8LV/m-	20 dBµV/m									
d8LV/m-										
	10 dBµW/n									
	0.d8/k//m									
	a aspentit									
31 GHz 20000 pts 8.0 MHz/ 2.29 GHz	-10 dbµu/m									
21 GHz 2000 pts 8.0 MHz/ 2.20 GHz										
	2.31 GHz			20000 -		9	0.04477			2 20 GU*

Figure 46: FCC, Frequency Range 2.31 GHz to 2.39 GHz (Restricted band- CH00)

CHANNEL: Middle (2440 MHz).

MultiView									_ ▽
Ref Level 80 Att TDF	0 dBµW/m 0 dB = \$	● RBW WT 1s ● VBW	/1 MHz /3 MHz Mode /	Auto Sweep					
Frequency S	Sweep							1Pk View	24v ViewLin
	Ht. 74.000 dbuV/m								
78 dBµV/n									
50 dByW/n									
	H2 54.000	dBµv/m							
sa deyw/n									
والمتعملة أحامهم	a desta de la compañía	فيعتد استعميا فلتم	ويعيافهما بالتحجاج	e li della la citta e a si i	a tel or ba contra l'est	dina kalendarak na	a desta a seconda de se		aladam baata da chara
40 dispv/n									
						A Martine and a state of	- down dwy bloom		
30 dBµV/n ———									
20 dBuWm									
10 dBµV/n									
10 GED AVIA									
d8µv/m									
10 dBul//m									
2.31 GHz			30000 p	te	8	.0 MHz/			2.39 GHz

MultiView	~	(2480 MH	z).						_ ▽
Ref Level 80 Att TDF	0 dB 🖷 🕏	● RBW WT 1 5 ● VBW	1 MHz 3 MHz Mode /	Auto Sweep					
1 Frequency S	sweep							IPk View -	azav ViewLin
	H1 74.000 dBLAVm								
70 dBµv/n									
60 dBµV/n									
	+2 54.000	daµv/m							
50 dBµV/m		and do at the conclusion of	ab reference to the second of	design of the second states of	فمردوق والمتعاقدين		ويعور ويعرفون والمعطوم	Ant Hulber series in the	- Hilling to page 1
40 dBµV/m	and lower and departments	und a statement is	and the state of the	and and a state design of				and the state of the state	<u> </u>
30 dBµV/n									
						1			
20 dBµV/m									
20 dBµV/m 10 dBµV/m 0 dBµV/m									
10 dBµV/m									

Figure 48: FCC, Frequency Range 2.31 GHz to 2.39 GHz (Restricted band- CH39)

DA14580 Range Extender v.2 Reference Application

FREQUENCY RANGE 2.4835 GHz to 2.5 GHz. (RESTRICTED BAND) CHANNEL: Lowest (2402 MHz).

Figure 49: FCC, Frequency Range 2.4385 GHz to 2.5 GHz (Restricted band- CH00)

Figure 50: FCC, Frequency Range 2.4385 GHz to 2.5 GHz (Restricted band- CH19)

48 of 52

CHANNEL: Highest (2480 MHz).

Figure 51: FCC, Frequency Range 2.4385 GHz to 2.5 GHz (Restricted band-CH39)

6 FCC/IC Certification and CE marking

- 6.1 Standards and conformity assessment
- 6.2 FCC requirements regarding the end product and end user
- 6.2.1 End product marking
- 6.2.2 End product literature
- 6.3 **Permissive changes**
- 6.4 Industry Canada requirements regarding the end product and end user
- 6.4.1 End product marking
- 6.4.2 End product literature

7 Appendix A: Range Extender v.2 with SPI Data Flash

Range Extender v.2 can be used with external SPI Data Flash Memory. Any available pins can be used to interface the external data Flash. The appropriate configuration settings for peripherals must be set in secondary boot loader as described in paragraph 4.8. The following application example schematic contains Range Extender v.2 with external SPI Data Flash.

DA14580 Range Extender v.2 Reference Application

Figure 52: Range Extender v.2 Module with external SPI Flash

User I	Manual
--------	--------

Revision 1.2

8 Revision History

Revision	Date	Description
1.0	16-07-2015	Initial version . FCC/ETSI final certification reports pending for end of September 2015. All measurement regarding compliance to FCC/ETSI will be updated from the final certification reports. All FCC/ ETSI tests have been found to pass.
1.1	14-09-2015	Initial version: modification related to reduction of the output power.
2.0	With final FCC/ETSI reports	The document will be updated in the following sections.
		Chapter 4.9: Software: upgrade with version SDK 5.02
		 Chapter 4.10: Test platform (future chapter): PRO DK Interposer Description
		 Chapter 5.3: FCC/ETSI Measurements: upgrade with final results
		Chapter 6: FCC/IC Certification and CE marking
2.1	29-Dec-2021	Updated logo, disclaimer, copyright.

Status Definitions

Status	Definition
DRAFT	The content of this document is under review and subject to formal approval, which may result in modifications or additions.
APPROVED or unmarked	The content of this document has been approved for publication.

RoHS Compliance

Dialog Semiconductor's suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our suppliers are available on request.