

Customer Notification

EWRL78 V1.xx
Embedded Workbench® for RL78 V1.xx

Operating Precautions

Y-IAR-EWRL78-FULL-MOBILE
Y-IAR-EWRL78-FULL

www.renesas.com

Document No. R20UT0521ED0168
Date Published: March 2021

http://www.renesas.com/

 Customer Notification R20UT0521ED0168 2

Notice
1. All information included in this document is current as of the date this document is issued. Such

information, however, is subject to change without any prior notice. Before purchasing or using any
Renesas Electronics products listed herein, please confirm the latest product information with a Renesas
Electronics sales office. Also, please pay regular and careful attention to additional and different
information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other
intellectual property rights of third parties by or arising from the use of Renesas Electronics products or
technical information described in this document. No license, express, implied or otherwise, is granted
hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product,
whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to
illustrate the operation of semiconductor products and application examples. You are fully responsible
for the incorporation of these circuits, software, and information in the design of your equipment.
Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising
from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the
applicable export control laws and regulations and follow the procedures required by such laws and
regulations. You should not use Renesas Electronics products or the technology described in this
document for any purpose relating to military applications or use by the military, including but not limited
to the development of weapons of mass destruction. Renesas Electronics products and technology may
not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document,
but Renesas Electronics does not warrant that such information is error free. Renesas Electronics
assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions
from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”,
“High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product
depends on the product’s quality grade, as indicated below. You must check the quality grade of each
Renesas Electronics product before using it in a particular application. You may not use any Renesas
Electronics product for any application categorized as “Specific” without the prior written consent of
Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics
shall not be in any way liable for any damages or losses incurred by you or third parties arising from the
use of any Renesas Electronics product for an application categorized as “Specific” or for which the
product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.
The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly
specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement
equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic
equipment; and industrial robots.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-
disaster systems; anti- crime systems; safety equipment; and medical equipment not specifically
designed for life support.
“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems;
medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical
implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that
pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified
by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range,
movement power voltage range, heat radiation characteristics, installation and other product
characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the
use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products,
semiconductor products have specific characteristics such as the occurrence of failure at a certain rate
and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to
radiation resistance design. Please be sure to implement safety measures to guard them against the
possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas
Electronics product, such as safety design for hardware and software including but not limited to
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any
other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,
please evaluate the safety of the final products or system manufactured by you.

 Customer Notification R20UT0521ED0168 3

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the
environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics
products in compliance with all applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics
assumes no liability for damages or losses occurring as a result of your noncompliance with applicable
laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written
consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information
contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also
includes its majority- owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas
Electronics.

 Customer Notification R20UT0521ED0168 4

Table of Contents

A) Table of Operating Precautions for the IDE EWRL78 ..5

B) Table of Operating Precautions for the Assembler ARL78 ...5

C) Table of Operating Precautions for C/C++ Compiler ICCRL78 ...6

D) Table of Operating Precautions for the Linker XLINK ..9

E) Table of Operating Precautions for Debugger C-SPY..10

F) Description of Operating Precautions for the IDE EWRL78..12

G) Description of Operating Precautions for the Assembler ARL78...20

H) Description of Operating Precautions for the C/C++ Compiler ICCRL7823

I) Description of Operating Precautions for Linker XLINK ...92

J) Description of Operating Precautions for Debugger C-SPY ...98

K) Valid Specification ..110

L) Revision...111

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 5

A) Table of Operating Precautions for the IDE EWRL78

No. Outline
 EWRL78

Version 6.1.5 6.3.18 6.5.3 6.5.11 7.0.2 7.0.5

A1 An empty Workspace can not be sav ed      

A2 Empty Go to Function Window      

A3 Number of total Errors and Warnings
doubled by Mistake      

A4 IarBuild.exe uses incorrect Hardware
Multiplier / Div ider Support File      

A5 Bad initial Stack Size Value in C Project
Template      

A6 Wrong NEAR_CONST Definition in XCL
File Template      

A7 Wrong 16bit signed Operation using
Hardware Multiplier/Divider      

A8 Actual Linker-MAP-File not automatically
updated in Editor      

A9 Stack Size of 64Byte cannot be
permanently defined in IDE - -    

A10
Hardware Multiplier/Divider Unit
configuration changed unexpected in
case of using two projects within one
workspace

-     

A11 Double Entries in Create New Project
Dialogue      

A12 RL78 Mirror Area Configuration changed
to default Values - -    

A13 Incorrect Memory Area Definitions in
XCL-File Templates      

A14 Loading of *.ipcf file generates warnings      

: Applicable : Not applicable - : Not checked

B) Table of Operating Precautions for the Assembler ARL78

No. Outline
 ARL78

Version 1.20.1 1.30.1 1.30.3 1.30.4 1.40.1 1.40.3

B1 RSEG Directiv es can not be used in
Macro Definitions      

B3 Assembler File must contain at least one
Directiv e      

B5 Assembler Error caused by Call Frame
Information      

B6 Wrong Code Generated for relativ e
Addressing      

B7 Incorrect Source Line Information -     

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 6

: Applicable : Not applicable - : Not checked

C) Table of Operating Precautions for C/C++ Compiler ICCRL78

No. Outline

 ICCRL78

Version

1.20.4

1.30.2

1.30.3

1.30.5

1.40.1

1.40.3

1.40.5

1.40.6

C10 Inline Assembler: Double defined Label causes
internal Compiler Error        

C13 #pragma location Directiv e does not support
Unions and Structures        

C18 Keyword __no_bit_access does not work on
auto Variables        

C20 Signed Div ision HWMDU Functions for RL78
Core2 are not Interrupt safe        

C21 Illegal 8bit Access to I/O Register allowing only
16bit Access        

C22 Wrong Inline Assembler Translation        

C23 Bit Access generated although Keyword
‘__no_bit_access’ was used        

C24 Wrong indirect post Increment of a Result of a
post Increment        

C25 Wrong Optimization of indirect Variable
increment in nested do Loops        

C26 Internal Compiler Error while copying a packed
Structure        

C27 Wrong Code generated for Pointer Comparison
with Zero        

C28 Wrong Code generated for local Variable
Access        

C29 Wrong Prototype Description in Compiler
Manual of Function __segment_size        

C30 Wrong Code generated for local far Pointer
loaded v ia far Pointer        

C31 Unclear Description of Parameter Passing for
Structure Types in Compiler Manual        

C32 Internal Compiler Error by erroneous Bitfield
Definition -       

C33 Internal Compiler Error after sev eral ordinary
Errors -       

C34 Internal Compiler Error if a Function of more
than 255 Parameters is used -       

C35 Internal Compiler Error after illegal enum-Value
Error -       

C36 Internal Compiler Error after Error [Pe078] -       
C37 Internal Compiler Error after Error [Pe066] (1) -       
C38 Internal Compiler Error after Error [Pe066] (2) -       
C39 Internal Compiler Error: Stack Ov erflow -       

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 7

No. Outline

 ICCRL78

Version

1.20.4

1.30.2

1.30.3

1.30.5

1.40.1

1.40.3

1.40.5

1.40.6

C40 Keyword ‘__no_bit_access’ fails at explicit cast
to 16bit data type        

C41 Internal Compiler Error at Function defined by
Macros        

C42 Wrong Code generated for indirect Access to
Structure Member        

C43 Internal Compiler Error in case of using nested
Boolean Expressions        

C44 Internal Compiler Error after Error Pe066        
C45 Near-Call in Floating Point Library causes a

Linker Error        

C46 Wrong Code generated while Copying a 1-Bit
Bitfield -       

C47 Keyword ‘const’ disables #pragma
default_v ariable_attribute Directive        

C48 MISRA C 2004 Rule 10.6 not triggered        
C49 Wrong Result of signed Integer Div ision        
C50 Manual Error in Description of Option ‘--

disable_div_mod_instructions’        

C51 Huge constant Data placed in Segment
‘NEAR_CONST’        

C52 Stack Content can be corrupted by ISR        
C53 MISRA C Rule 10.1 triggered by Mistake        
C54 Internal Error at Comparison of near Pointer        
C55 Internal Error at Bitfield Assignment        
C56 Internal Error at Switch Statement        
C57 Wrong code generated for inline String Literal

Copying        

C58 Wrong Code generated for Multiple Bitfield
Assignments of Constant        

C59 Wrong Code generated for multiple Bitfield
Assignment in one Statement -       

C60 Wrong Code generated for Calculation
depending on Ov erflow of smaller Datatype -       

C61 Wrong Code generated for Return-Value
including Assignment        

C62 Inserted NOP after DIVWU/DIVHU Instruction
mov ed        

C63 User defined Stack Size ov erwritten by Default
Size        

C64 Wrong Code generated for direct Access to of
Hardware Multiplier / Div ider Register        

C65 Internal Compiler Error using different I/O
Register Definitions in different Modules        

C66 Compiler Error Pe147 triggered by Mistake        

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 8

No. Outline

 ICCRL78

Version

1.20.4

1.30.2

1.30.3

1.30.5

1.40.1

1.40.3

1.40.5

1.40.6

C67 Internal Compiler Error using Datatype ‘long
long’ as Switch-Expression        

C68 Internal Compiler Error using explicit double
Casting        

C69 Inconsistency of extended Keyword __monitor - - - -    

C70 Floating point comparison fails if the difference
between the operands is one bit only. - - - -    

C71 An internal error will be generated in case of
sequential pointer casting        

C72 Wrong Optimization of static local Variable -       
C73 Inserted NOP after DIVWU/DIVHU Instruction

mov ed (cross call optimization)        

C74 The C library function isblank(c) will in some
cases erroneously return true        

C75 Switch state in recursiv e function generates an
internal error        

C76 Error in case a simple character literal is
followed by a wide character literal        

C77 Sign-extending a signed int/short register
v ariable to a long can destroy a v ariable        

C78 Range error on nextXXX() functions        
C79 No output to stdout when putchar(-1) is used        
C80 Different return v alue between iswctype and

iswblank        

C81 %Z format output for strftime is wrong        

C82 Square root function in the floating point
library returns +0.0 for sqrt(-0.0)        

C83 errno() might cause a range error        
C84 Wrong result in case of Complex_I

multiplication with -0.0        

C85 Function cosh() does not set errno()        

C86 A const long long int array element v alue is not
referenced correctly        

C87
If there are multiple if-statements that refer to
function argument v alues, v alue judgment is
incorrect.

       

C88 A long long int array element v alue with auto
storage duration is not referenced correctly.        

C89
A long long int array element v alue is not
referenced using the const pointer correctly
within the for-statement.

       

C90 printf outputs nothing after long long int two-
dimension arrays operation        

C91 long long int switch-statement causes internal
error        

C92 Operation with a long long int type member of
structure causes internal error        

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 9

No. Outline

 ICCRL78

Version

1.20.4

1.30.2

1.30.3

1.30.5

1.40.1

1.40.3

1.40.5

1.40.6

C93 An extraneous memory read can occur when
you read a v olatile bitfield        

C94 Optimizer considers all long long constants as
equal - - - -    

C95 long long operations which are using the
__Mul64 function are not reentrant        

: Applicable : Not applicable - : Not checked

D) Table of Operating Precautions for the Linker XLINK

No. Outline XLINK
Version 5.7.1.40 5.8.0.42 6.0.3.49 6.1.2.53 6.1.3.56 6.3.3.74

D5 ELF Output File Format: Error e113 ‘Illegal
ELF Register’      

D6 Erroneously Error e16 ‘Segment too long’
is generated (I)      

D7 Erroneously Error e16 ‘Segment too long’
is generated (II)      

D8 Range Error using far Runtime-Library
Calls      

D9 Negativ e Value for N/A (alignment)      
D10 Unused Addresses in Common Segments

not filled correctly      

D11 Comand Line Segment Alignment ignored      

D12 Symbol div ision results in a “div ision by
zero” error      

D13 End address of checksum is wrong when
using the -M option      

D14 Segment alignment fails by using the -Z
option      

D15 End address of SADDR region is wrong      

: Applicable : Not applicable - : Not checked

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 10

E) Table of Operating Precautions for Debugger C-SPY

No. Outline C-SPY
Version 1.20.3 1.20.4 1.30.2 1.30.4 1.40.1 1.40.3 1.40.6

E5 All C-SPY Driv ers: Structure
not displayed Watch Windows       

E9
E1 C-SPY Driv er: No automatic
Mapping for Variables added
to Liv e Watch Window

      

E10
All C-SPY Driv ers: Symbols
not listed in Symbolic Memory
Window

      

E12
C-SPY IECUBE Driv er:
Pseudo Emulation of
Temperature Sensor does not
work

      

E13
C-SPY Simulator Driv er:
Display Problem in Timeline
Window

      

E14 Wrong Manual I/O Register
Modification       

E16
All C-SPY Driv ers: Registers
MDAL and MDAH not
displayed in Register Window

      

E17 C-SPY E1 Driv er: Unknown
Break Error       

E18
C-SPY E1 Driv er: Application
doesn’t start after Debug
Session

      

E19
C-SPY E1 Driv er: Crash at
Reaching a Software
Breakpoint

      

E20 All C-SPY Driv ers: Debug
Session did not Start       

E21
IECUBE and E1 C-SPY
Driv ers: Data Flash Memory
Window cannot be opened

      

E22
IECUBE and E1 C-SPY
Driv ers: Data Flash Memory
Content cannot be changed in
Memory Window

      

E23
E1 C-SPY Driv er: IDE hangs
due to Missing Frames in
Trace Buffer

      

E24 IECUBE C-SPY Driv er: Wrong
Time Stamp Information       

E25 E1 C-SPY Driv er: Data Sample
Graph is not updated       

E26

E1 C-SPY Driv er: Debug
Session closed after Error
'Flash macro serv ice ROM
accessed or stepped in'

      

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 11

No. Outline C-SPY
Version 1.20.3 1.20.4 1.30.2 1.30.4 1.40.1 1.40.3 1.40.6

E27

E1 C-SPY Driv er: RL78 dev ice
feature “RAM guard” doesn’t
work in case of single step
execution on assembler
instruction lev el

      

E28
E1 C-SPY Driv er: Wrong
Address area displayed in
Error Message

      

E29
IECUBE C-SPY Driv er: Debug
Session closed after Fail-Safe-
Break

      

E30

E1 C-SPY Driv er: Debug
Session closed after Error
'Flash macro serv ice ROM
accessed or stepped in' (II)

      

E31 IECUBE C-SPY Driv er: Wrong
av erage timer results       

E32

Wrong sampled v alues might
be shown in the Data
Sample/Sampled Graphs
window in case of sampling a
v ariable with a size of 2 bytes

      

E33
E1 C-SPY Driv er: Download of
an additional image might
destroy a part of the original
application.

      

: Applicable : Not applicable - : Not checked

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 12

F) Description of Operating Precautions for the IDE EWRL78

No. A1 An empty workspace can not be sav ed

Details

Although it is described in the user’s manual an empty workspace can not be saved.

Workaround

Add at least one project to the workspace before saving. The project may be an empty project.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 13

No. A2 Empty Go to Function Window

Details

Depending on some source code constructions (e.g. using shift operator to initialize a structure
element) the Go to Function Window may be empty.
Correct Go to Function Window:

Empty Go to Function Window although there are several functions defined in the active source
fi le:

Workaround
None. The problem will be fixed in the next EWRL78 platform update.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 14

No. A3 Number of total Errors and Warnings doubled by Mistake

Details

The total number of errors and warnings presented by the compiler is doubled compared to the
real amount.

Example:
Although there only one compiler warning (-> l ine 13 in module main.c), the listed total number
of warnings is two.

Building configuration: N111209A - Debug
Updating build tree...
main.c
Warning[Pe177]: variable "i" was declared but never referenced

C:\Data\RL78\IAR Bugs\main.c 13

Linking

Total number of errors: 0
Total number of warnings: 2

Workaround
None. The problem will be fixed in the next EWRL78 platform update.

No. A4 IarBuild.exe uses incorrect Hardware Multiplier / Div ider Support File

Details

A project build correctly by EWRL78 causes an error message about wrong CPU core if build by
command line tool IarBuild.exe:

Fatal Error[Pe035]: #error directive: "Functions for RL78_2 core
devices only"

Reason is that IarBuild.exe always copies asm-file for RL78-Core2 to support the
multiplier/divider to folder <target>\obj.

Workaround

Copy the correct fi le ‘hwmdu_LibReplacement.s87’ from subfolder
‘\rl78\src\hw_multiply_division_units\RL78_1_core‘ to subfolder obj of your
project and mark it as read-only.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 15

No. A5 Bad initial Stack Size Value in C Project Template

Details

New C projects created by the project wizard have a bad initial stack size value. Instead of the
default size of 128 bytes the string ‘"###Uninitialized###" is used.

Workarounds

1) Enter a legal (= numeric) stack size

or

2) Create an empty project and add the main module manually

No. A6 Wrong NEAR_CONST Definition in XCL File Template

IAR Reference: EW24075

Details

In the XCL fi le template the definition of segment ‘NEAR_CONST’ is wrong. In case of selecting
mirror area 1 (= area 0x1xxxx - 0x1xxxx is mirrored to 0xFxxxx-0xFxxxx) an overflow occurs.

Wrong definition:
-Z(DATA)NEAR_CONST=(_NEAR_CONST_LOCATION_START+F0000)-
 (_NEAR_CONST_LOCATION_END+F0000)

Correct definition:
-Z(DATA)NEAR_CONST=(_NEAR_CONST_LOCATION_START|F0000)-
 (_NEAR_CONST_LOCATION_END|F0000)

Workarounds
Use a manually corrected XCL fi le instead of the default one.

No. A7 Wrong 16bit signed Operation using Hardware Multiplier/Divider

IAR Reference: EW24298

Details

In case of a sequence of multiple 16bit signed division or modulo operations, the result maybe
wrong due to missing of CPU register preservation expected by compiler. The problem occurs
only for RL78 Core2 devices (e.g. RL78/G14, RL78/F13, and RL78/F14).

Workarounds
Update the assembler modules supporting the RL78. The update patch
‘EW24298_ewrl78_hw_multiply_division_units.zip’ is available on the European Renesas
Download Area.

http://www.renesas.eu/updates?oc=Y-IAR-EWRL78-FULL-MOBILE
http://www.renesas.eu/updates?oc=Y-IAR-EWRL78-FULL-MOBILE

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 16

No. A8 Actual Linker-MAP-File not automatically updated in Editor

IAR Reference: EW24451

Details

Although the option ‘Scan for changed Files’ is enabled in EW tool options, a l inker map fi le in
HTML format is not automatically updated.

Workarounds
Use text format or update the file manually.

No. A9 Stack Size of 64Byte cannot be permanently defined in IDE

IAR Reference: EW24879

Details

If CPU core S2 (respectively core 1 in EWL78 V1.30.x) or S3 (respectively core 2 in EWL78
V1.30.x) is selected, it is not possible to permanently define a stack size of 64 bytes. After
reopening the options window, the stack size is again 128 byte. Definition of other values is
possible.

Workarounds
If a stack size of 64 bytes is mandatory, please defined the stack size directly in the XCL fi le or
the ‘Extra Options’ field of the linker configuration without using the predefined symbol
‘_CSTACK_SIZE’.

No. A10 Hardware Multiplier/Divider Unit configuration changed unexpected in case of using two

projects within one workspace

IAR Reference: EW24987

Details

This failure occurs in case two projects are placed within one workspace. Both projects are
configured for devices which support a Multiplier/Divider Unit. In such a case the configuration
of Multiplier/Divider Unit within the first project may

• automatically change the Multiplier/Divider Unit configuration within the second
 project and/or
• generate a l inker/assembler error due to wrong Multiplier/Divider Unit configuration and
 missing Multiplier/Divider Unit l ibrary functions

Workarounds
Use different workspaces for each project.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 17

No. A11 Double Entries in Create New Project Dialogue

IAR Reference: EWxxxxx

Details

Due to a problem in localization of EWRL78 there are double entries for each project template in
the ‘Create New Project Dialogue’:

The created project templates are correct, it is only a display issue.

Workarounds
Please replace some fi les by the fi les included in patch
‘EWRL78_V1.40.6_UpdateProjectTemplate.zip’.

No. A12 RL78 Mirror Area Configuration changed to default Values

IAR Reference: EW25197

Details

In case of switching the project configuration in Project Manager, the mirror area start address
setting is reset to default value, if different devices are used in different project configurations
and a user-defined start address unequal to the default value is used.

Workarounds

1) Please use the default values for mirror start address and size.
Or

2) Please use different projects rather than different project configurations, if a start
address unequal the default value is used.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 18

No. A13 Incorrect Memory Area Definitions in XCL-File Templates

IAR Reference: EW25271

Details

The allowed memory areas for segments SWITCH, NEAR_ID, SADDR_ID, and DIFUNCT are
too small for devices with more than 64KB Flash memory. Although the reserved area for the
OCD firmware is located in a higher segment, the area is additionally reserved in the first 64KB
segment. This won’t cause any runtime problems, but unnecessary l imit the allowed memory
area for these segments.

Example:

-Z(CONST)SWITCH=000D8-0FDFF
-Z(CONST)NEAR_ID=[000D8-0FDFF]/10000
-Z(CONST)SADDR_ID=[000D8-0FDFF]/10000
-Z(CONST)DIFUNCT=[000D8-0FDFF]/10000

Workarounds
Correct the XCL- fi le manually by changing the end-address to 0xFFFF.

-Z(CONST)SWITCH=000D8-0FFFF
-Z(CONST)NEAR_ID=[000D8-0FFFF]/10000
-Z(CONST)SADDR_ID=[000D8-0FFFF]/10000
-Z(CONST)DIFUNCT=[000D8-0FFFF]/10000

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 19

No. A14 Loading of .ipcf file generates warnings

IAR Reference: IDE-2878

Details

During the load procedure “Add Project Connection...” of an *.ipcf fi le the following warnings
might occur:

Workarounds
Press the “OK” button and ignore the messages.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 20

G) Description of Operating Precautions for the Assembler ARL78

No. B1 RSEG Directiv es can not be used in Macro Definitions

Details

The assembler calculates a wrong relative jump-distance if the RSEG directive is used within a
macro definition:

Example

myDummyMacro MACRO
 RSEG CODE
 NOP
 ENDM

Workaround

Don’t use the RSEG directive in macro definitions. The used code-segment must be defined in
the code where the macro is expanded to.

No. B3 Assembler File must contain at least one Directiv e

Details

An assembler module without any assembler directive causes the following error message:

Error[As074]: Each file must contain at least one directive

Example

#if PLATFORM == RL78
 ; section without directive
#else
 ; section without directive
#endif

Workaround

Please use the END directive:

#if PLATFORM == RL78
 ; section code
 END
#else
 ; section code
 END
#endif

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 21

No. B5 Assembler Error caused by Call Frame Information

Details

An assembler f ile generated by C compiler with the option "Include call frame information" enabled causes
an internal error and/or an assembler error.

Example

CFI Resource MACRH:16, MACRL:16, W0:8, W1:8, W2:8, W3:8, W4:8, W5:8

Workaround

Disable the compiler option "Include call frame information".

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 22

No. B6 Wrong Code Generated for relativ e Addressing

IAR Reference EW24012

Details

In case of using absolute segments (ASEG or ASEGN) the assembler generates wrong hex code f or the
relativ e addressing at branch instructions like e.g. BZ, BNZ and BR. An incorrect branch address is
calculated.

Example

 ASEGN C2:CODE,0x10
m1:
 MOV a,#1
 CMP a,#0
 BNZ m1
 RET

List-File:

 000014 DF0E BNZ m1 <- wrong hex code should be DFFA

Workaround

Use relocatable instead absolute segments:

 RSEG RCODE:CODE

m1:
 MOV a,#1
 CMP a,#0
 BNZ m1
 RET

List-File:

 000004 DFFA BNZ m1

No. B7 Incorrect Source Line Information

IAR Reference EW24609

Details

Assembler source code containing end-of-l ine comments (;) in the non-active part of assembler
conditionals (IF/ENDIF) can cause incorrect source positions for subsequent l ines. This can
affect assembler diagnostics as well as source level debugging of assembler code.

Workaround

None.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 23

H) Description of Operating Precautions for the C/C++ Compiler ICCRL78

No. C10 Inline Assembler: Double defined Label causes internal Compiler Error

Details

The double def inition of an inline assembler label causes an internal compiler error instead of an error
message:
 Internal error [OgModuleLabels::Def::Define]: Label already defined: label1

 Fatel error detected aborting

Example

void test (void)

{

 asm("BR label1 \n"

 "nop \n"

 "label1: ");

 asm("nop");

 asm("BR label1 \n"

 "nop \n"

 "label1: ");

 asm("nop");

}

Workaround

Please use only allowed destination registers according to the instruction set.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 24

No. C13 #pragma location Directiv e does not support Unions and Structs

Details

The #pragma location directiv e does not support unions and structs. An warning is generated to inf orm the
user:
Warning[Pe609]: this kind of pragma may not be used here

Example

typedef struct
{
 unsigned char no0:1;
 unsigned char no1:1;
 unsigned char no2:1;
 unsigned char no3:1;
 unsigned char no4:1;
 unsigned char no5:1;
 unsigned char no6:1;
 unsigned char no7:1;
} __BITS8;

#pragma location = 0xFFF22;
__sfr __no_init volatile union {
 unsigned char PM2;
 __BITS8 PM2_bit;};

Workaround

Use the @ operator instead of #pragma location to define an absolute address:
__sfr __no_init volatile union {
 unsigned char PM2;
 __BITS8 PM2_bit;
} @ 0xFFF22;

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 25

No. C14 Internal Compiler Error while using __segment_size as memcpy Parameter

Details

Using intrinsic function __segment_size as size parameter for memcpy function causes an
internal compiler error:

Internal Error: [CoreUtil/General]: Access Violation

Example

#include <string.h>

#pragma segment="MY_SEGMENT_1" __near
#pragma segment="MY_SEGMENT_2" __near

void test(void)
{
 memcpy(__segment_begin("MY_SEGMENT_1"),
 __segment_begin("MY_SEGMENT_2"),
 __segment_size("MY_SEGMENT_2"));
}

Workaround

Use a temporary variable:

void workaround(void)
{
 size_t my_var;
 my_var= __segment_size("MY_SEGMENT_2");

 memcpy(__segment_begin("MY_SEGMENT_1"),
 __segment_begin("MY_SEGMENT_2"),
 my_var);
}

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 26

No. C15 Wrong Code generated for Pointer Access to Extended I/O Area

Details

Pointer expressions of the kind *(Base - imm*variable) may generate faulty code using the
imm[BC] address mode (e.g. instruction MOV (0x5EA & 0xFFFF)[BC], A).

Example

typedef struct {
 unsigned char const e1;
 unsigned short const e2;
} t_s1;

typedef struct {
 unsigned char low;
 unsigned char high;
} Bytes;

typedef union {
 unsigned char u8_view;
} Byte;

typedef union {
 unsigned short u16_view;
 Bytes u08_2_view;
} Word;

__near __no_bit_access __no_init volatile Byte ab1 @ 0xF05EA;
__near __no_bit_access __no_init volatile Word ab2 @ 0xF05EC;

void test (unsigned char p1,const t_s1* p2)
{
 (((volatile Byte __near *) &ab1)+((-0x250*p1)))->u8_view = p2->e1;
 (((volatile Word __near *) &ab2)+((-0x250*p1)))->u16_view = p2->e2;
}

Workaround

Use direct I/O access instead of indirect pointer access.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 27

No. C16 Wrong Code generated for Far Pointer Access

Details

If a hip optimization level is used, wrong code is generated for the far pointer read access.
Register ES is loaded by values 0x0F instead of 0x00.

Example

#pragma segment="MYROM1"
#pragma segment="MYRAM1"
#pragma segment="MYROM2"
#pragma segment="MYRAM2"

void test(void)
{
 unsigned char *ptr_dst;
 unsigned char __far *ptr_src;

 ptr_src = (unsigned char __far *) __segment_begin("MYROM1") ;
 ptr_dst = (unsigned char *) __segment_begin("MYRAM1") ;
 while(ptr_src < (unsigned char __far *)__segment_end("MYROM1")){
 *ptr_dst++ = *ptr_src++;
 }
 ptr_src = (unsigned char __far *) __segment_begin("MYROM2") ;
 ptr_dst = (unsigned char *) __segment_begin("MYRAM2") ;
 while(ptr_src < (unsigned char __far *)__segment_end("MYROM2")){
 *ptr_dst++ = *ptr_src++;
 }
}

Workarounds

1) Reduce optimization for function to medium:
 #pragma optimize=medium
 void test(void)
 {
 …
 }

2) Use a static source pointer:

 void test(void)
 {
 unsigned char * ptr_dst;
 static unsigned char __far * ptr_src;
 …
 }

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 28

No. C18 Keyword __no_bit_access does not work on auto Variables

Details

The keyword __no_bit_access does not work on auto variables. The compiler uses bit
instructions although not allowed.

Example

char var1;

void test(void)
{
 __no_bit_access char local;

 local = var1;
 var1 = (local | 0x04) & 0xFE;
}

Workaround
None.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 29

No. C20 Signed Div ision HWMDU Functions for RL78 Core2 are not Interrupt safe

Details

The signed division functions using the hardware multiplier/divider used as replacement for the
IAR runtime library functions for signed divisions are not interrupt-safe. Affected are all RL78
Core2 devices, e.g. series RL78/G14, RL78/F13, RL78/F14
If a signed division is interrupted and a second division shall be executed in the ISR, the first
division result may be wrong.

Example

Workaround

In case of using the Embedded Workbench to build the application:

1) Download the update V1.05 of the HW-MDU functions and add the module
‘hwmdu_LibReplacement.s87’ to your application.

2) Disable the feature ‘Use Hardware Multiplier Divider Unit in IDE.
3) Add the following options to l inker ‘Extra Options Field:

-eHWDIV_8_8_8=?UC_DIV_L01
-eHWSDIV_8_8_8=?SC_DIV_L01
-eHWSDIV_16_16_16=?SI_DIV_L02
-eHWSDIV_32_32_32=?SL_DIV_L03

In case of using the command line to build the application:

1) Download the update V1.05 of the HW-MDU functions and replace the existing module
‘hwmdu_LibReplacement.s87’ in your application.

http://www.renesas.eu/updates?oc=Y-IAR-EWRL78-FULL-MOBILE
http://www.renesas.eu/updates?oc=Y-IAR-EWRL78-FULL-MOBILE

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 30

No. C21 Illegal 8bit Access to I/O Register allowing only 16bit Access

Details

Due to a wrong I/O register definition in the device header fi le the compiler accesses an I/O
register allowing only 16bit access by an 8bit access
Example

#include <ior5f100le_ext.h>

void test()
{
 SO1 = 0x0101;
 SO1_bit.no8 = 0;
 SO1_bit.no0 = 0;
}

Workaround

The problem is fixed by new device header fi les included in EWRL78 V1.30.2.
As a workaround for previous versions please replace the old header by the new ones.

No. C22 Wrong Inline Assembler Translation

Details

An il legal inline assembler statement is in some cases translated to a completely different
assembler statement instead of generating an error message.

Example

void test(void)
{
 asm("MOVW SP,0xDF82"); // incorrect translation to MOVW AX,N:0xDF82
}

Workaround

none

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 31

No. C23 Bit Access generated although Keyword ‘__no_bit_access’ was used

Details

The compiler doesn’t take care on the keyword __no_bit_access in pointer definitions. Although
a pointer is correctly defined using the keyword ‘__no_bit_access’, the compiler generates a bit
access. For some I/O registers this causes an il legal I/O register access.

Example

volatile unsigned short __no_bit_access v1;
volatile unsigned short __no_bit_access* ptr1 = &v1;

void test (void)
{
 *ptr1 = 0x0123U;
 *ptr1 |= 0x4000U;
}

Workaround

Use direct access instead of indirect pointer access

void workaround (void)
{
 v1 = 0x0123U;
 v1 |= 0x4000U;
}

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 32

No. C24 Wrong indirect post Increment of a Result of a post Increment

Details

Independent of the selected optimization level the compiler generates wrong code for the
indirect post increment of a result of a post increment

Example

#include <stdio.h>
#include <assert.h>

char c[2] = {'a','b'};
char *pc[2] = {&c[0],&c[1]};
char **ppc = &pc[0];

int test(void)
{
 char cc_ret;
 cc_ret = *(*ppc++)++;
 assert(pc[0]==pc[1]);
 return (int)cc_ret;
}

Workaround

Use separate statements for post increment:

int workaround (void)
{
 …
 cc_ret = *(*ppc); /* problem */
 (*ppc)++;
 ppc++;
 …
}

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 33

No. C25 Wrong Optimization of indirect Variable increment in nested do Loops

Details

On high optimization, a variable (v) can be optimized incorrectly if *v is incremented with a
constant value inside a do loop, *the do loop has a computable trip count, *the do loop is
surrounded by another loop with a computable trip count, and *v is not used inside either of the
two loops, except for the increment.

Example

#include <assert.h>

int i, i0, i1, i2, i3, i4, i5, i6, i7;

void test(void)
{
 i = i3 = i4 = 0;
 i0 = 2;
 do {
 i1 = 2;
 while (i1--) {
 for (i2 = 0; i2 < 2; i2++) {
 i5 = 2;
 do {
 i6 = 2;
 while (i6--) {
 for (i7 = 0; i7 < 2; i7++)
 i++;
 }
 } while (--i5);
 }
 }
 } while (--i0);
 assert (i == 64);
}

Workaround

Reduce the optimization to medium either by using a compiler option or by #pragma optimize.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 34

No. C26 Internal Compiler Error while copying a packed Structure

IAR Reference: EW24136

Details

An internal error is generated when trying to copy a packed structure.

Example

typedef struct
{
 char e1;
 int e2;
 int e3;
} T_S1;

typedef struct
{
 T_S1 s1;
} T_S2;

#pragma pack(1)
typedef struct
{
 T_S2 s1[3];
} T_S3;

#pragma pack()

T_S3 object;

T_S2 func1(void)
{
 T_S2 test;
 test = object.s1[0];
 return test;
}

Workaround

None. Issue will be fixed in service pack V1.30.4 (October 2013)

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 35

No. C27 Wrong Code generated for Pointer Comparison with Zero

IAR Reference: EW24151

Details

Casting a near pointer to a far pointer via an unsigned or signed short can result in a near to far
cast instead of a zero-extend cast on medium and higher optimization levels.

Example

extern unsigned short var1;

void test void)
{
 unsigned short addr;
 const unsigned short __far *compare;

 *((unsigned short __far *) 0xF800) = 0x0000;
 addr = (unsigned short) var1;
 compare = (unsigned short __far*)addr;

 if ((unsigned short)0x00 == (*((unsigned short __far*)compare)))
 {
 __asm("BR N:0x2B05");
 }

}

Workaround

Use optimization level low:

#pragma optimize=low
void test void)
{
 …
}

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 36

No. C28 Wrong Code generated for local Variable Access

IAR Reference: EW24074

Details

The memory tracking of auto variables can optimize away storing of values under rare
circumstances at high optimization.

Example

unsigned char test (unsigned char lub_1, unsigned char lub_2,
 unsigned char lub_3, unsigned char lub_4)
{
 unsigned char loc1;
 unsigned char loc2;

 loc1 = 0x90u;
 asm("nop");
 if(lub_1 == 0xFFu){
 loc1 = 0u;
 }
 if((loc1&0x80u) == 0u){
 loc2 = 0xFFu;
 if(lub_2 == lub_3){
 loc2 = lub_2;
 if(lub_4 != loc2){
 loc1 |= 0x10u;
 }
 }
 if((loc2&0xF0u) == 0x00u){
 loc1 |= loc2;
 }else{
 loc1 = 0x90;
 }
 }
 return loc1;
}

Workaround

Use optimization level low:

#pragma optimize=medium
void test void)
{
 …
}

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 37

No. C29 Wrong Prototype Description in Compile Manual of Function __segment_size

IAR Reference: EW24186

Details

At page 121 of the RL78 C/C++ Compiler Reference Guide (2nd Edition) the prototype of
function __segment_size is described as

size_t * __segment_size(char const * segment)

But the correct prototype is:

size_t __segment_size(char const * segment)

Workaround

Please use the corrected prototype. An updated explanation is given in the release notes
V1.30.5

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 38

No. C30 Wrong Code generated for local far Pointer loaded v ia far Pointer

IAR Reference: EW24198

Details

Loading a far pointer via a far pointer can generate faulty code.

Example

typedef struct
{
 unsigned char * data;
 unsigned char a;
} st;

st s1;

void test (unsigned char buffer[], unsigned char n)
{
 unsigned char i;
 for (i = 0U; i < s1.a; i++)
 {
 *(s1.data + i) = buffer[i + 1U];
 }
 return;
}

Workaround

void copy (unsigned char buffer[], unsigned char n)
{
 unsigned char i;
 static unsigned char * ptr;
 for (i = 0U; i < s1.a; i++)
 {
 ptr = (s1.data + i);
 *ptr = buffer[i + 1U];
 }
 return;
}

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 39

No. C31 Unclear Description of Parameter Passing for Structure Types in Compiler Manual

IAR Reference: EW24223

Details

At page 108 of the RL78 C/C++ Compiler Reference Guide (2nd Edition) parameter passing to
function is described. It is described that structure types parameters are passed via stack except
the size is 1,2,4 and 4 bytes:

Structure types: struct, union, and classes, except structs and unions
of sizes 1, 2, and 4

This is correct, but additionally the structure type element must be word aligned. The alignment
of the element is defined by the data type of the largest member.

Example

typedef struct {
 unsigned char e1;
 unsigned char e2;
} s1_TYPE;

The above structure is passed via stack as only byte aligned elements are included.

Workaround

Include the structure type element in a union to force word alignment:

typedef union {
 struct {
 unsigned char e1;
 unsigned char e2;
 };
 unsigned short dummy;
} s1_TYPE;

An updated explanation is given in the release notes V1.30.5

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 40

No. C32 Internal Compiler Error by erroneous Bitfield Definition

IAR Reference: EW24368

Details

After the compiler generates the error, Error[Pe168]: a function type is not allowed here, for an
erroneous bitfield type it can produce an internal error

Internal Error: [Front end]: assertion failed:
set_field_size_and_alignment: bad curr_container_avail_bits adjustment

Example

typedef void (func_type) ();

struct s {
func_type f:32;
};

int main (void)
{
 return 0;
}

Workaround
Use only data type attributes for bitfield definitions.

No. C33 Internal Compiler Error after sev eral ordinary Errors

IAR Reference: EW24366

Details

After a sequence of several ordinary errors an internal compiler error may occur.

Internal Error: [PaType - MemoryAttribute]: no memory attribute set

Workaround
Fix the ordinary errors.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 41

No. C34 Internal Compiler Error if a Function of more than 255 Parameters is used

IAR Reference: EW24359

Details

A function receiving more than 250 parameters may generate an internal error
in the compiler if the object format is UBROF.

Internal Error: [Front end]: assertion failed:
set_field_size_and_alignment: bad curr_container_avail_bits adjustment

Example

#define PAR1 int, int, int, int, int, int, int, int, int, int
#define PAR2 PAR1, PAR1, PAR1, PAR1, PAR1, PAR1, PAR1, PAR1, PAR1, PAR1
#define PAR3 PAR2, PAR2, PAR2, PAR2, PAR2, PAR2, PAR2, PAR2, PAR2, PAR2

extern void func (PAR3);

#define ARG1 0,1,2,3,4,5,6,7,8,9
#define ARG2 ARG1, ARG1, ARG1, ARG1, ARG1, ARG1, ARG1, ARG1, ARG1, ARG1
#define ARG3 ARG2, ARG2, ARG2, ARG2, ARG2, ARG2, ARG2, ARG2, ARG2, ARG2

void caller(void)
{
 func (ARG3);
}

Workaround
Reduce number of Parameters.

Since V1.40.1 a new error message is generated to inform the user that functions with more
than 250 parameters are not supported

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 42

No. C35 Internal Compiler Error after illegal enum-Value Error

IAR Reference: EW24363

Details

An error for an enum constant with an il legal value may be followed by an internal error.

Internal Error: [Front end]: assertion failed at:
"..\..\Translator\compiler_core\src\parser\edg\const_ints.c", line 360

Example

struct B {};
struct NonPOD : B {};

struct A
{
static int check(...);
static NonPOD GetNonPOD(void);
enum { value = sizeof(A::check(A::GetNonPOD())) };

};

int main(void)
{
 return 0;
}

Workaround
Use a valid enum value.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 43

No. C36 Internal Compiler Error after Error [Pe078]

IAR Reference: EW24362

Details

After the error, Error [Pe078]: a parameter declaration may not have an initializer, the compiler
may produce an internal error.

Internal Error:
[CoreUtil/General]: Access violation (0xXXXXXXXX) at XXXXXXXX (reading
from address 0x40)

Example

#ifndef __USER_LABEL_PREFIX__
#define PREFIX ""
#else
#define xstr(s) str(s)
#define str(s) #s
#define PREFIX xstr(__USER_LABEL_PREFIX__)
#endif

typedef unsigned short int __uint16_t;
enum
{
_ISupper = (1 << (0)), _ISlower = (1 << (1)), _ISalpha =
(1 << (2)), _ISdigit = (1 << (3)), _ISxdigit = (1 << (4)), _ISspace
=
(1 << (5)), _ISprint = (1 << (6)), _ISgraph = (1 << (7)), _ISblank
=
(1 << (8)), _IScntrl = (1 << (9)), _ISpunct = (1 << (10)), _ISalnum
=
(1 << (11))

};
typedef __uint16_t __ctype_mask_t;
extern const __ctype_mask_t *__C_ctype_b;
extern
__typeof (__C_ctype_b)

__C_ctype_b __asm__ (PREFIX "__GI___C_ctype_b")
__attribute__ ((visibility ("hidden")));

static const __ctype_mask_t __C_ctype_b_data[] = {
};

const __ctype_mask_t *__C_ctype_b = __C_ctype_b_data + 128;
extern
__typeof (__C_ctype_b)

__EI___C_ctype_b __attribute__ ((alias ("" "__GI___C_ctype_b")));

int main(void)
{
return 0;
}

Workaround
Correct the parameter declaration.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 44

No. C37 Internal Compiler Error after Error [Pe066] (1)

IAR Reference: EW24358

Details

After the error Error [Pe066]: enumeration value is out int range, the compiler may produce an
internal error.

Internal Error:
[Front end]: assertion failed at:”...\...\xxx.c", line xxx

Example

enum err {
err_IO = 0x8a450000,
err_NM,
err_EOF,
err_SE,
err_PT

};
static enum err E_;
int error()
{
switch (E_) {
case err_IO : break;
case err_NM : break;
case err_EOF : break;
case err_SE : break;
case err_PT : break;
default : return 0;

}

int main(void)
{
 return 0;
}

Workaround
Enable IAR ANSI C extensions or reduce the enumeration value to an integer.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 45

No. C38 Internal Compiler Error after Error [Pe066] (2)

IAR Reference: EW24357

Details

After the error Error[Pe066]: enumeration value is out int range, the compiler may produce an
internal error.

Internal Error:
[Front end]: assertion failed at: ”..\..\xxx.c", line xxx

Example

typedef enum OMX_ERRORTYPE
{
OMX_ErrorNone = 0,
OMX_ErrorInsufficientResources = 0x80001000

} OMX_ERRORTYPE;

int main(void)
{
 return 0;
}

Workaround
Enable IAR ANSI C extensions or reduce the enumeration value to an integer.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 46

No. C39 Internal Compiler Error: Stack Ov erflow

IAR Reference: EW24353

Details

Very deep nestlings of struct declarations, parenthesis or if-else statements, may generate a
stack overflow error in the compiler.

Internal Error:
[CoreUtil/General]: Stack overflow (0xXXXXXXXX) at xxxxxxxx

Examples

1)
#define LBR1 ((((((((((
#define LBR2 LBR1 LBR1 LBR1 LBR1 LBR1 LBR1 LBR1 LBR1 LBR1 LBR1
#define LBR3 LBR2 LBR2 LBR2 LBR2 LBR2 LBR2 LBR2 LBR2 LBR2 LBR2
#define LBR4 LBR3 LBR3 LBR3 LBR3 LBR3 LBR3 LBR3 LBR3 LBR3 LBR3
#define RBR1))))))))))
#define RBR2 RBR1 RBR1 RBR1 RBR1 RBR1 RBR1 RBR1 RBR1 RBR1 RBR1
#define RBR3 RBR2 RBR2 RBR2 RBR2 RBR2 RBR2 RBR2 RBR2 RBR2 RBR2
#define RBR4 RBR3 RBR3 RBR3 RBR3 RBR3 RBR3 RBR3 RBR3 RBR3 RBR3

int q5_var = LBR4 0 RBR4;

2)
#define ONE else if (0) { }
#define TEN ONE ONE ONE ONE ONE ONE ONE ONE ONE ONE
#define HUN TEN TEN TEN TEN TEN TEN TEN TEN TEN TEN
#define THOU HUN HUN HUN HUN HUN HUN HUN HUN HUN HUN

void foo()
{
if (0) { }
THOU THOU THOU THOU THOU THOU THOU THOU THOU THOU THOU

}

Workaround
Avoid such code, this will be listed as a known problem.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 47

No. C40 Keyword ‘__no_bit_access’ fails at explicit cast to 16bit data type

IAR Reference: EW24389

Details

The keyword __no_bit_access does not work correctly with an expression like :

*(volatile ushort __no_bit_access *)(ushort)(0xFFF10U)

The compiler will use a bit access for an access to above and this causes a problem, if a bit
access is not allowed at this address.

Example:

#define MYREGISTER *(__no_bit_access volatile unsigned short *)(unsigned
short)(0xFFF10U)

void test (void)
{
 MYREGISTER = (unsigned short) (((unsigned short)(MYREGISTER)) & ~(0x80u));
}

Workaround
None. Will be fixed in next update.

No. C41 Internal Compiler Error at Function defined by Macros

IAR Reference: EW24361

Details

An internal compiler error may occur, if a function is defined by several macros.

Example:

#define main()
int main

#define mainbody () { return 0; }
mainbody

Workaround
Define both macros before using them:

#define main()
#define mainbody () { return 0; }

int main
mainbody

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 48

No. C42 Wrong Code generated for indirect Access to Structure Member

IAR Reference: EW24383

Details

An expression (e) containing an auto variable (v) and one or more indirect accesses could be
optimized incorrectly, if the expression was preceded by a statement where v is assigned the
result of a function call, and e contains the only use of v (before v is assigned another value) and
if the compiler optimization ‘high size’ or ‘high balanced/speed without function inlining is used.

Example:

#include <stdio.h>

typedef struct {int a; int b;} SP;
SP st1 = {1,2}, st2 = {1,2};

typedef struct {void *p;} VP;
VP st2x = {&st2};

unsigned int ex(SP * p1, SP * p2){
 p2->b++;
 return (p1->a)+(p2->b);
}

int sub(void)
{
 int16_t ret;
 VP *px = (VP*) &st2x;
 SP *ps = (SP*) px->p;
 ret = ex(&st1, px->p);
 ret |= ps->b << 8;
 return(ret);
}

int ans;

int main (void)
{
 ans = sub();
 printf("ret = %x\n", ans);
}

Workaround
Use not the above listed optimization setting.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 49

No. C43 Internal Compiler Error in case of using nested Boolean Expressions

IAR Reference: EW24511

Details

In case of using optimization level low nested boolean expressions may in rare cases cause an
il legal state error.

Example:

extern int foo (int);

int test (int a, int b, int c)
{
 foo (1 > (2 > c));
 return (a);
}

Workaround
Avoid nested Boolean expression or increase optimization level.

No. C44 Internal Compiler Error after Error Pe066

IAR Reference: EW24357

Details

The compiler can produce an internal error after the error, Error [Pe066]:
enumeration value is out of "int" range, is produced is the option –strict is used.

Example:

 enum E { A = 0x80000000, B = 0 };

 int test (void)
 {
 if (sizeof (E) != 4)
 return 1;
 else
 return 0;
 }

Workaround
Use C++ compiler (-> compiler option –-ec++) or enable ANSI C extensions (option –e)

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 50

No. C45 Near-Call in Floating Point Library causes a Linker Error

IAR Reference: EW24573

Details

Due to a wrong near-function call in the floating-point l ibrary, a l inker error can occur if the
compiler option ‘--generate_far_runtime_library_calls’ is used:

Error[e18]: Range error, Limit exceeded

 Where $ = ?F_ADD + 0xFFFFFFD8 [0x10019]
 in module "?FLOAT_ADD_SUB" (C:\Program Files (x86)\IAR
Systems\Embedded Workbench 6.5_EWRL78_1305\rl78\LIB\dlrl78fn2nf.r87),
 offset 0x19 in segment part 2, segment XCODE
 What: __iar_norm_arg [0x104CC]
 Allowed range: 0x0 - 0xFFFF
 Operand: __iar_norm_arg [0x104cc]
 in module ?SUBN_ARG (C:\Program Files (x86)\IAR
Systems\Embedded Workbench 6.5_EWRL78_1305\rl78\LIB\dlrl78fn2nf.r87),
 Offset 0x0 in segment part 2, segment XCODE

Example:

unsigned int i1;
 int i2;
 int i3;
 float f1;

void test(void)
{
 i3 = (int)(i1 – f1 * (i2 – 600))
}

Workaround
Replace the standard library by a customer one, where the issue is fixed. If further support is
needed please contact the Renesas Software-Tool-Support-Team

mailto:software_support-eu@lm.renesas.com?subject=EWRL78%20:%20Customer%20Notification%20Item%20C45

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 51

No. C46 Wrong Code generated while Copying a 1-Bit Bitfield

IAR Reference: EW24645

Details

Assigning a value from one 1-bit bitfield to another 1-bit bitfield can fail if the byte offset of the
bitfield in of struct is not zero and an optimization level medium or higher is used.

Example

typedef struct
{
 unsigned long u32var1;
 unsigned char u1var6_1:1;
 unsigned char u1var6_2:1;
 unsigned char u1var6_3:1;
 unsigned char u1var6_4:5;
}s1_T;

void test(s1_T * in, s1_T * out)
{
 out->u1var6_1 = in->u1var6_1;
 out->u1var6_2 = in->u1var6_2;
 out->u1var6_3 = in->u1var6_3;
 out->u1var6_4 = in->u1var6_4;
}

Workaround
Lower optimization level to medium or low.

No. C47 Keyword ‘const’ disables #pragma default_variable_attribute Directive

IAR Reference: EW24683

Details

Using the keyword ‘const’ disables the #pragma default_variable_attribute directive.

Example

#pragma default_variable_attributes = __root
 const int c3=0x33;
#pragma default_variable_attributes =

In above example the variable c3 is defined without object attribute ‘root’

Workaround
Use extended keyword instead of #pragma directive to define an attribute.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 52

No. C48 MISRA C 2004 Rule 10.6 not triggered

IAR Reference: EW24733

Details

The compiler does not check MISRA-C 2004 rule 10.6 correctly. It bases the check on the usage
of the constant instead of on the type of the constant.

Example:

#define UNSIGNED_CHAR_C 0x12
#define UNSIGNED_SHORT_C 0x1234
#define UNSIGNED_LONG_C 0x12345678

unsigned char var1 = UNSIGNED_CHAR_C; /* Error [Pm127]: */
unsigned short var2 = UNSIGNED_SHORT_C; /* no error MISRA C 2004 */
unsigned long var3 = UNSIGNED_LONG_C; /* no error MISRA C 2004 */

In above example error Pm127 should be triggered three times instead of only one.

Workaround
None; it wil l be fixed in next update.

No. C49 Wrong Result of signed Integer Div ision

IAR Reference: EW24778

Details

The result of signed division might be wrong, if one of the operands is a constant that is not of
the same type as the other operand.

Example:

signed short v1;
signed short v2;

void test (void)
{
 v1 = 1;
 v2 = (signed short)(((signed long)40000 * v1)/200);
}

Workaround
None.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 53

No. C50 Manual Error in Description of Option ‘--disable_div _mod_instructions’

IAR Reference: EW24831

Details

On page 217 for the compiler option --disable_div_mod_instructions it is described "Disabling
these instructions will make interrupts faster." That is incorrect. It is the opposite since a library
call is done when instruction is disabled.

Example:

Workaround
Manual be corrected in future update of the compiler manual.

No. C51 Huge constant Data placed in Segment ‘NEAR_CONST’

IAR Reference: EW24860

Details

Although a huge constant data is defined correctly, it is located in segment NEAR_CONST
where only near constant data shall be placed.

Example:

 __huge const unsigned short c1 = 0x1234;

Workaround
If possible use far constant data.

__far const unsigned short c1 = 0x1234;

Will be fixed in next update

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 54

No. C52 Stack Content can be corrupted by ISR

IAR Reference: EW24898

Details

Due scheduling error in the optimizer, the stack content can be corrupted if stack is used for
temporary storage in a function and an interrupt occurs also using temporary storage

Example:

In below sample the address of data located on stack is stored in register HL to access it
indirectly. Due to the error the stack pointer is modified to free the stack size before the last
access to the data is finished. If now an interrupt using stack area occurs between modification
of stack pointer and data processing, the data is corrupted:

 \ 00003D 16 MOVW HL, AX ;; 1 cycle
 \ 00003E 710103 MOV1 S:0xFFF03.0, CY ;; 2 cycles
 \ 000041 A7 INCW HL ;; 1 cycle
 \ 000042 1002 ADDW SP, #0x2 ;; 1 cycle

If an interrupt using stack memory occurs here, data used in the next indirect memory access
are corrupted:

 \ 000044 71B4 MOV1 CY, [HL].3 ;; 1 cycle
 \ 000046 710103 MOV1 S:0xFFF03.0, CY ;; 2 cycles

The correct code should be:

 \ 000040 16 MOVW HL, AX ;; 1 cycle
 \ 000041 A7 INCW HL ;; 1 cycle
 \ 000042 71B4 MOV1 CY, [HL].3 ;; 1 cycle
 \ 000044 710103 MOV1 S:0xFFF03.0, CY ;; 2 cycles
 \ 000047 1002 ADDW SP, #0x2 ;; 1 cycle

Workaround
Avoid optimization level high balanced and high speed.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 55

No. C53 MISRA C Rule 10.1 triggered by Mistake

IAR Reference: EW24883

Details

In below sample MISRA-C:2004 rule 10.1 is falsely triggered for an implicit cast from a _Bool
type to an integer of float type.

Example:

#include <stdbool.h>

bool boTest;

void test (void);

void test (void)
{
 if (boTest == false) {
 /* Error Pm128: illegal implicit conversion from underlying MISRA
 type “_Bool” to “int” (MISRA C 2004 rule 10.1
 */
 …
 }
}

Workaround
This issue will be fixed in EWRL78 V2.10. Until then please suppress this error message for the
corresponding code lines:

Example:

void workaround (void)
{
 #pragma diag_suppress=Pm128
 if (boTest == false) {
 #pragma diag_default=Pm128
 …
 }
}

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 56

No. C54 Internal Error at Comparison of near Pointer

IAR Reference: EW24995

Details

Comparing of a near data pointer with (void near*) -1 can generate an internal compiler error at
using optimization level ‘low’:

Tool Internal Error:
Internal Error: [CMPW]:
Diagnostics: Immediate out of range
P0: 1048575
P1: 0

Example:

static volatile unsigned short int * ptr;

unsigned char foo1 (void)
{
 unsigned char status = 0x40u;

 ptr = (unsigned short int *) 0xFFFFu;

 if (ptr != (unsigned short int *) 0xFFFFu)
 {
 status = 0x42u;
 }
 return status;
}

Workarounds

1) Increase optimization level to ‘medium’ or higher.

or

2) Instead of casting “-1” to a near pointer, cast the near pointer to (un)signed short:

if ((unsigned short) ptr == 0xFFFF)
{
 ...
}

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 57

No. C55 Internal Error at Bitfield Assignment

IAR Reference: EW24994

Details

An assignment, where a signed / unsigned bitfield member is assigned a constant value,
followed by an assignment to an signed / unsigned bitfield member in the same variable, can in
some cases trigger an internal error at using a high optimization level:

Internal Error: [CoreUtil/General]: integral and fatal error detected, aborting.

Example:

void test (void)
{
 struct str {
 struct nest_str {
 signed int b1 : 3 ;
 unsigned int : 1 ;
 unsigned int b2 : 2 ;
 } bf ;
 int dmy ;
 } s = { { 0, 0 }, 0 } ;

 s.bf.b1 = 1 ;
 s.bf.b2 = 1 ;

 if (s.bf.b1 != 1 || s.bf.b2 != 1) {
 asm("nop");
 }
 else {
 asm("nop");
 asm("nop");
 }
}

Workarounds
Lower optimization level.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 58

No. C56 Internal Error at Switch Statement

IAR Reference: EW24996

Details

Tail recursive calls before a switch statement can trigger an internal error:

Internal Error: [CoreUtil/General]: Access violation (0xc0000005) xxxxxxxx
Fatal error detected, aborting.

Example:

int val;

void sub(int arg)
{
 if(arg) {
 sub(arg - 1) ;

 switch(arg) {
 case 1 :
 val = 1 ;
 break ;
 case 2 :
 val = 2 ;
 break ;
 default :
 break ;
 }
 }
}

Workarounds
Lower optimization level.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 59

No. C57 Wrong code generated for inline String Literal Copying

IAR Reference: EW24999

Details

Copying a string literal to a char array using strcpy generate faulty inline code if the literal starts
at an odd address. Inline code is typically generated at optimization level high balanced and high
speed.

Example:

#include <stdio.h>
#include <string.h>

typedef struct {
 char mem;
 char name[10];
} ST01;

ST01 g01;

void test (void);

void test (void)
{
 ST01 b01;

 strcpy(b01.name, "abc");
 strcpy(g01.name, "abc");
}

Workarounds
Lower optimization level or use optimization high size.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 60

No. C58 Wrong Code generated for Multiple Bitfield Assignments of Constant

IAR Reference: EW25000

Details

Bitfield variables can in some rare cases be optimized incorrectly on high optimization level, if
there are multiple assignments to two or more bitfield members and at least one of them is
assigned a constant.

Example:

#include <stdio.h>

struct srt_dat_t {
 unsigned int bit1 : 3 ;
 unsigned int : 3 ;
 unsigned int bit2 : 5 ;
} ;

void func(struct srt_dat_t arg1);

void func(struct srt_dat_t arg1)
{
 arg1.bit1 = !0 ;
 arg1.bit2 = !0 ;

 ++arg1.bit1;
 ++arg1.bit2;

 if (!((arg1.bit1 == 2) && (arg1.bit2 == 2))) {
 printf("\targ1.bit1[2]--->[%d]\n", arg1.bit1) ;
 printf("\targ1.bit2[2]--->[%d]\n", arg1.bit2) ;
 }
}

Workarounds
Replace pre-increment by simple addition by one:
 arg1.bit1 = arg1.bit1 + 1;
 arg1.bit2 = arg1.bit2 + 1;

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 61

No. C59 Wrong Code generated for multiple Bitfield Assignment in one Statement

IAR Reference: EW25002

Details

Assignments where multiple bitfields are assigned in one can be optimized incorrectly on high
optimization.

Example:

void test (void)
{
 SRT_DAT srt1;

 srt1.bt1 = srt1.bt4 = srt1.bt6 = srt1.bt7 = 1;

 if (!(srt1.bt1==1 && srt1.bt4==1 && srt1.bt6==1 && srt1.bt7==1)) {
 printf("%-12s %04d:NG\n", __FILE__, __LINE__) ;
 }else{
 printf("%-12s %04d:OK\n", __FILE__, __LINE__) ;
 }
 printf("\tsrt1.bt1[1]--->[%d]\n", srt1.bt1) ;
 printf("\tsrt1.bt4[1]--->[%d]\n", srt1.bt4) ;
 printf("\tsrt1.bt6[1]--->[%d]\n", srt1.bt6) ;
 printf("\tsrt1.bt7[1]--->[%d]\n", srt1.bt7) ;
}

Workarounds
Use separated statements:
void test (void)
{
 SRT_DAT srt1;

 srt1.bt1 = srt1.bt4 = srt1.bt6 = 1;
 srt1.bt7 = 1;

 if (!(srt1.bt1==1 && srt1.bt4==1 && srt1.bt6==1 && srt1.bt7==1)) {
 printf("%-12s %04d:NG\n", __FILE__, __LINE__) ;
 }else{
 printf("%-12s %04d:OK\n", __FILE__, __LINE__) ;
 }
 printf("\tsrt1.bt1[1]--->[%d]\n", srt1.bt1) ;
 printf("\tsrt1.bt4[1]--->[%d]\n", srt1.bt4) ;
 printf("\tsrt1.bt6[1]--->[%d]\n", srt1.bt6) ;
 printf("\tsrt1.bt7[1]--->[%d]\n", srt1.bt7) ;
}

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 62

No. C60 Wrong Code generated for Calculation depending on Ov erflow of smaller Datatype

IAR Reference: EW25004

Details

On high optimization levels loops containing an expression where the result of the expression
depends on unsigned overflow of a smaller type can in some case be optimized incorrectly.

Example:

#include <stdio.h>

unsigned char globalTMP ;

int main (void)
{
 unsigned int i, res1 ;
 globalTMP = 0;
 res1 = 0;

 for(i = 64 ; i < 65 ; i++) {
 globalTMP = i * 4 ;
 res1 = i * 4 + globalTMP ;
 }
 printf("res = %d\n",res1);
 return(0);
}

Workarounds
Lower optimization level.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 63

No. C61 Wrong Code generated for Return-Value including Assignment

IAR Reference: EW25006

Details

Instead of assigning a correct return value, the input parameter value is used as return value in
the following example.

Example:

int b = 1;

int func(int a)
{
 return(a = b++);
}

Workarounds
Use separated statements:
int func(int a)
{
 a = b++;
 return(a);
}

No. C62 Inserted NOP after DIVWU/DIVHU Instruction mov ed

IAR Reference: EW25080

Details

The compiler adds a NOP instruction for the RL78 S3 MCU core after every DIVWU and DIVHU
instruction as a workaround for an error in the MCU. However, the instruction scheduler will in
some cases move an instruction in between the DIVHU/DIVWU instruction and the NOP.
This happens only using optimization level high.

Example:

Workarounds
Disable scheduling by using compiler option --no_scheduling .

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 64

No. C63 User defined Stack Size ov erwritten by Default Size

IAR Reference: EW25088

Details

For RL78 Core S1 and S2 devices the user defined stack size is overwritten by default value
after re-opening a project.

Workarounds
None.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 65

No. C64 Wrong Code generated for direct Access to of Hardware Multiplier / Div ider Register

IAR Reference: EW25100

Details

For RL78 Core S2 devices wrong code may be generated for direct access to register MDAH
and MDAL of the Hardware Multiplier/Divider directly. Access via included ASM functions or
replacement of runtime library functions are not affected.

Example

#include <stdint.h>
#include <stdio.h>
#include <ior5f109aa.h>
#include <ior5f109aa_ext.h>

uint32_t foo1(uint32_t value)
{
 uint32_t result;
 MDUC = 0x80;
 MDAH = (uint16_t)(value >> 16);
 MDAL = (uint16_t)(value & 0xFFFF);
 MDBH = 0;
 MDBL = 1000;
 DIVST = 1;
 while(DIVST == 1) {
 }
 result = ((uint32_t)MDAH) << 16;
 result += (uint32_t)MDAL;
 return result;
}

Workaround
Use dummy function to read result and make sure that function-inlining is disabled:
#pragma optimize=no_inline
uint32_t dummy(void)
{
 uint32_t result;
 while(DIVST == 1) {
 }
 result = ((uint32_t)MDAH) << 16;
 result += (uint32_t)MDAL;
 return result;

}
uint32_t foo1(uint32_t value)
{
 MDUC = 0x80;
 MDAH = (uint16_t)(value >> 16);
 MDAL = (uint16_t)(value & 0xFFFF);
 MDBH = 0;
 MDBL = 1000;
 DIVST = 1;
 result = dummy2();
 return result;
}

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 66

No. C65 Internal Compiler Error using different I/O Register Definitions in different Modules

IAR Reference: EW25225

Details

In case of using different definitions for the same I/O register in different modules and enabling
multiple fi le compilation, an internal compiler error occurs.

Example

Module 1:

__sfr __no_init volatile unsigned char MK2L @ 0xFFFD4u;
void f1 (void)
{
 MK2L = 0xFF;
}

Module 2:
#include <ior5f109ge.h>
extern void f1 (void);
void main (void)
{
 f1 ();
 while(1) {
 MK2L = 0x00;
 }
}

Workaround
Use only one common I/o register definition:

Module 1:

#include <ior5f109ge.h>

void f1 (void)
{
 MK2L = 0xFF;
}

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 67

No. C66 Compiler Error Pe147 triggered by Mistake

IAR Reference: EW25227

Details

The compiler emits a spurious error when processing an out of class definition of a const or
volati le member function of a class with a class memory.

Example

 struct __far S
 {
 int fun() const;
 int mS;
 };

 int
 S::fun() const
 {
 return mS;
 }

Workaround
None.

No. C67 Internal Compiler Error using Datatype ‘long long’ as Switch-Expression

IAR Reference: EW25270

Details

In case of using datatype long long (=64 bit) for a switch expression, an internal compiler error
occurs.

Example

long long int my_very_long_int;

void test (void)
{
 switch (my_very_long_int) {
 case 1:
 break;
 case 2:
 break;
 }
}

Workaround

Use a smaller datatype for the switch expression

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 68

No. C68 Internal Compiler Error using explicit double Casting

IAR Reference: EW25540

Details

In case of using explicit double casting, an internal compiler error occurs:

Internal error:
[GoBinaryExprCvm::Evaluate]: bad operator

Example

void test (void)
{
 (void)(unsigned short int)((*(unsigned short *)0xF06E6));
}

Workaround

Either remove the (void) cast or make the pointer cast volati le:
(void)(unsigned short int)((*(unsigned short volatile *)0xF06E6))

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 69

No. C69 Inconsistency of extended Keyword __monitor

IAR Reference: EW25971

Details

Using IAR function object attributes (like __monitor) w ith member functions of template
classes defined outside the class definition does not w ork properly. Specifying the
attribute both on the declaration and the definition of the function results in a
nonsensical error message ("declaration is incompatible w ith ...").

Example:

template <typename T, unsigned long Size>
class buffer
{
 __monitor void clear();
};

template <typename T, unsigned long Size>
__monitor void buffer<T, Size>::clear() {
 // ...
}

Workaround

None; it w ill be f ixed in next update.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 70

No. C70 Floating point comparison fails if the difference between the operands is one bit only.

IAR Reference: EW26007

Details

A floating point comparison fails if the difference between the operands is one bit only.

Example:

The following code should return 0, because the value of the expression (-16777215.0F <=
-16777216.0F) is false. But it returns 1.

volatile float a;
const float t = -16777216.0F;

int main()
{
 int ret = 0;

 a = (-16777215.0F);
 if(a <= -16777216.0F) ret |= 1;
 if(a <= t) ret |= 2;
 return ret;
}

Workaround

Compare with a (const) volati le variable or an external const variable instead of a
constant.

No. C71 An internal error will be generated in case of sequential pointer casting

IAR Reference: EWRL78-506

Details

An internal error can be generated in case of casting a near pointer to a short, then casting it to
far pointer and then casting to a long, if optimization level medium or higher is used.

Internal Error: [TaOpPrefix::GetWordIndex]:
Diagnostics: Not implemented yet)

Example:

unsigned long l;
char __near np;

void test()
{
 l = (unsigned long) (void __far *) (unsigned short) &np;
}

Workaround

Avoid pointer casting sequence or reduce optimization level for the function by using #pragma
optimize.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 71

No. C72 Wrong Optimization of static local Variable

IAR Reference: EWRL78-547

Details

At optimization level ‘high’, static local variables assigned only the constants 0 and 1, but
initialized with another value, can be optimized incorrectly.

Example:

typedef enum {
 tt1 = 0,
 tt2,
 tInvalid
} tMyTpe;

int g1, g2;

void test()
{
 static tMyTupe v1;

 if (g1 < g2) && (v1 != tt2) {

 }
}

Workaround

Set initial start value of the first struct member to 1:

typedef enum {
 tt1 = 1,
 tt2,
 tInvalid
} tMyTpe;

No. C73 Inserted NOP after DIVWU/DIVHU Instruction mov ed (cross call optimization)

IAR Reference: EWRL78-576

Details

The compiler adds a NOP instruction for the RL78 S3 MCU core after every DIVWU and DIVHU
instruction as a workaround for an error in the MCU. However, the cross call optimizer will in
some cases move an instruction in between the DIVHU/DIVWU instruction and the NOP.

This happens only if cross call optimization is activated.

Example:
None

Workaround

Disable the cross call optimization by using the compiler option --no_crosscall

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 72

No. C74 The C library function isblank(c) will in some cases erroneously return true

IAR Reference: EW26558/EWRL78-584

Details

The C library function isblank(c) will in some cases erroneously return true for a few characters
(\f, \n, \r and \v).

Example

if(isblank('\v')) {
 printf("This line will be printed in case of wrong return value!!!");
}

Workaround
None

No. C75 Switch state in recursiv e function generates an internal error

IAR Reference: EW26549/EWRL78-585

Details

On optimization level -Om or higher the Compiler generates an internal error in case a function
with a recursive call followed directly by a switch statement where one of the switch cases has
the only effect that the function exits.

Example

#include <stdio.h>

int val = 0;
void func(int p)
{
 if(p > 0) {
 func(-1);
 switch(val) {
 case 0 :
 val = 1;
 break ;
 case 1 :
 val = 2;
 break ;
 default :
 break ;
 }
 }
}

int main(void)
{
 func(1);

 if(val != 1) {
 printf("FAILED");
 } else {
 printf("OK");
 }

Workaround
None

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 73

No. C76 Error in case a simple character literal is followed by a wide character literal

IAR Reference: EW26564/EWRL78-587

Details

If the code contains a simple character l iteral followed by a wide character l iteral, an error is
issued. See Example.

Example

wchar_t buf[] = L"1""2" ;

Error:[Pe1282]: string literals with different character kinds cannot be
concatenated

Workaround
None

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 74

No. C77 Sign-extending a signed int/short register v ariable to a long can destroy a v ariable

IAR Reference: EWRL78-597

Details

Sign-extending a signed int/short register variable to a long can destroy the register variable if it
is located in register AX.

Example

File: file1.c
#include "type.h"
#include <math.h>
#include "stdio.h"

void main(void);
sint16 Mag3DPosDet_CalcSphericalCoordinateTheta(sint16, sint16, sint16);

sint16 X, Y, Z, result;

void main (){
 X = 72;
 Y = -258;
 Z = -130;
 result = Mag3DPosDet_CalcSphericalCoordinateTheta(X, Y, Z);
 if (result == 1158){
 printf("OK”);
 }else{
 printf("FAILED”);
 }
}

File: file2.c
#include <math.h>
#include "type.h"

sint16 Mag3DPosDet_CalcSphericalCoordinateTheta(sint16, sint16, sint16);
sint16 Mag3DPosDet_CalcSphericalCoordinateTheta(sint16 sComponentX, sint16 sComponentY,
sint16 sComponentZ)
{
 float32 fParam; uint32 ulHelp;

 ulHelp = (uint32)((((sint32)sComponentX) * ((sint32)sComponentX)) +
 (((sint32)sComponentY) * ((sint32)sComponentY)));
 if(ulHelp > 0x00ul){
 fParam = sqrtf(ulHelp);
 fParam = (float32)sComponentZ / fParam;
 fParam = atanf(fParam) * (float32)(57.29577951);
 }
 else{
 fParam = (float32)(900) / ((float32)(10u));
 }
 return ((sint16)(900) - (sint16)(fParam * (float32)(10u)));
}

Workaround
None

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 75

No. C78 Range error on nextXXX() functions

IAR Reference: EWRL78-603

Details

The range error occurs when the first argument of the following function is 0.0
nextafter / nextafterf / nextafterl / nexttoward / nexttowardf / nexttowardl.

Example

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <errno.h>

int main(void)
{
errno = 0 ;
nextafter(0.0, 1.0) ;

if (errno == 0) {
 printf("OK") ;
} else {
 printf("NG") ;
}

return(0) ;
}

Workaround
None

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 76

No. C79 No output to stdout when putchar(-1) is used

IAR Reference: EWRL78-606

Details

The library function putchar() does not handle the input value -1 according to the standard.
Instead of printing '\0377' (-1 casted to unsigned char) to stdout and return this value it does not
output anything and returns -1.

Example

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <errno.h>

int main(void)
{
errno = 0 ;
nextafter(0.0, 1.0) ;

if (errno == 0) {
 printf("OK") ;
} else {
 printf("NG") ;
}

return(0) ;
}

Workaround

Cast the parameter to unsigned char when calling putchar.

putchar((unsigned char)-1);

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 77

No. C80 Different return v alue between iswctype and iswblank

IAR Reference: EWRL78-602 / EW26582

Details

The return value of iswctype(wc, wctype("blank")) and the return value of iswblank(wc) are
NOT same.

res1 = iswblank(L' ') ; // res1=1
res2 = iswctype(L' ', wctype("blank")) ; // res2=0

IAO/IEC9899:1999 describes that iswctype(wc, wctype("blank")) and iswblank(wc) have the
same return value.

++++
IAO/IEC9899:1999 : 7.25.2.2.1 The iswctype function Each of the following expressions has
a truth-value equivalent to the call to the wide character classification function
(7.25.2.1) in the comment that follows the expression:
iswctype(wc, wctype("blank")) // iswblank(wc)
++++

Example

#include <stdio.h>
#include <wctype.h>

int main(void)
{
int res1, res2 ;

res1 = iswblank(L' ') ;
res2 = iswctype(L' ', wctype("blank")) ;

if(res1 != res2) {
 printf("NG") ;
} else {
 printf(OK") ;
}

return(0) ;
}

Workaround

None

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 78

No. C81 %Z format output for strftime is wrong

IAR Reference: EWRL78-605 / EW26595

Details

By default the character ":" is used as a replacement for %Z if the application has not
implemented time zone handling. However, here the value 0x00 will be written instead of
0x3A ":".

Example

#include <stdio.h>
#include <time.h>
#include <string.h>

int main(void)
{
 char expected[] = ":" ;
 char result[100] ;
 struct tm input ;

 input.tm_sec = 0 ;
 input.tm_min = 0 ;
 input.tm_hour = 0 ;
 input.tm_mday = 1 ;
 input.tm_mon = 0 ;
 input.tm_year = 0 ;
 input.tm_wday = 0 ;
 input.tm_yday = 0 ;
 input.tm_isdst = 0 ;

 strftime(result, 100, "%Z", &input) ;
 if(strcmp(result, expected) == 0) {
 printf("OK") ;
 } else {
 printf("NG") ;
 }

 return(0) ;
}

Workaround

None

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 79

No. C82 Square root function in the floating point library returns +0.0 for sqrt(-0.0)

IAR Reference: EWRL78-607 / EW26605

Details

The square root function in the floating point l ibrary returns +0.0 for sqrt(-0.0) and not
-0.0 as the standard specifies.

Example

#include <stdio.h>
#include <math.h>

volatile float sqrt_result;
float compare_value = -0.0f;

unsigned long int * value_1 = (unsigned long int *)&sqrt_result;
unsigned long int * value_2 = (unsigned long int *)&compare_value;

int main(void)
{

 sqrt_result = sqrt(-0.0f);

 if(*value_1 == *value_2){
 printf("OK");
 } else {
 printf("NG");
 }
return(0) ;
}

Workaround

None

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 80

No. C83 errno() might cause a range error

IAR Reference: EWRL78-604 / EW26577

Details

errno() might cause a range error if the first argument to a function is ±DBL_MIN and the sign of
the second argument is opposite to the first argument.

Example

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <errno.h>
#include <float.h>

int main(void)
{
errno = 0 ;
nextafter(DBL_MIN, -0.1) ;

if (errno == 0) {
 printf("OK") ;
} else {
 printf("NG") ;
}

return(0) ;
}

Workaround
None

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 81

No. C84 Wrong result in case of Complex_I multiplication with -0.0

IAR Reference: EWRL78-601 / EW26599

Details

A multiplication of a real floating point type (r1) with a complex type will promote r1 to a complex
type before the multiplication. This will produce undesirable results when infinite number, NaNs,
or -0.0:s are involved. The same thing happens when you divide a complex type with a real
floating type.

Example

#include <stdio.h>
#include <math.h>
#include <complex.h>
#include <string.h>

int main(void)
{
complex double d = -0.0 * _Complex_I ;
char real[10], image[10] ;

sprintf(real, "%g", creal(d)) ;
sprintf(image, "%g", cimag(d)) ;

if((strcmp(real, "-0") != 0) || (strcmp(image, "-0") != 0)) {
 printf("%-12s %04d:NG [-0][-0]--->[%s][%s]\n", __FILE__, __LINE__, real, image) ;
} else {
 printf("%-12s %04d:OK\n", __FILE__, __LINE__) ;
}

return(0) ;
}

Workaround
None

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 82

No. C85 Function cosh() does not set errno()

IAR Reference: EWRL78-612 / EW26609

Details

The standard library function cosh() called with an infinite does not set errno() to EDOM (domain
error) as expected.

Example

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <errno.h>
int main(void)
{
 double result ;
 union u_data {
 double d ;
 signed long dt[2] ;
 } pt = { 0.0 } ;
 errno = 0 ;
 pt.dt[1] |= 0x7ff00000ul ; //
 result = cosh(pt.d) ;
 printf("cosh--->[%E][%s]\n", result, strerror(errno)) ;
 return(0) ;
}

Workaround
None

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 83

No. C86 A const long long int array element v alue is not referenced correctly

IAR Reference: EWRL78-646

Details

The compiler can sometimes fail to calculate correct l ive ranges for local long long arrays
causing them to share the same stack space with other local variables.

Example

#include <stdio.h>

int flg = 0 ;

void sub(void);

void sub(void)
{
 int i ;
 const signed long long int ary[1] = { 0LL } ;

 for (i = 0 ; i < 1 ; i++) {
 if (ary[i] != 0LL) {
 flg++ ;
 }
 }
}

int main(void)
{
 sub() ;

 if(!flg) {
 printf("%-12s %04d:OK\n", __FILE__, __LINE__) ;
 } else {
 printf("%-12s %04d:NG\n", __FILE__, __LINE__) ;
 }

 return(0) ;
}

Workaround
None

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 84

No. C87 If there are multiple if-statements that refer to function argument v alues, value judgment
is incorrect.

IAR Reference: EWRL78-644

Details

The compiler can sometimes remove 16-bit compares in if statements if the variable value
instead of being re-read is restored by adding a constant before the compare.

Example

#include <stdio.h>

void sub(signed int);

void sub(signed int a)
{
 if (a > 10) {
 printf("%-12s %04d:NG [1]\n", __FILE__, __LINE__) ;
 } else if (a > 0 && a <= 10) {
 printf("%-12s %04d:NG [2]\n", __FILE__, __LINE__) ;
 } else if (a >= -10 && a < 0) {
 printf("%-12s %04d:NG [3]\n", __FILE__, __LINE__) ;
 } else {
 printf("%-12s %04d:OK\n", __FILE__, __LINE__) ;
 }
}

int main(void)
{
 sub(0) ;
 return(0) ;
}

Workaround
None

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 85

No. C88 A long long int array element v alue with auto storage duration is not referenced
correctly.

IAR Reference: EWRL78-645

Details

The compiler can sometimes fail to calculate correct l ive ranges for local long long arrays
causing them to share the same stack space with other variables.

Example

#include <stdio.h>

int flg = 0 ;

#define N 2

void func(void);

void func(void)
{
 int i ;
 long long int a[N] = { 0, 1 } ;

 for (i = 0; i < N; i++) {
 if (a[i] != i) flg++ ;
 }
}

int main(void)
{
 func() ;

 if(flg == 0) {
 printf("%-12s %04d:OK\n", __FILE__, __LINE__) ;
 } else {
 printf("%-12s %04d:NG\n", __FILE__, __LINE__) ;
 }

 return(0) ;
}

Workaround
None

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 86

No. C89 A long long int array element v alue is not referenced using the const pointer correctly
within the for-statement.

IAR Reference: EWRL78-640/EWRL78-641

Details

Taking the address of a local long long array/struct and using it to initialize a local long long
pointer can cause the two variables to share the same stack address.

Example

#include <stdio.h>

int flg = 0 ;

void sub(void);

void sub(void)
{
 int i ;
 signed long long int ary[1] = { 0LL } ;
 const signed long long int *ptr = &ary[0] ;
 for (i = 0 ; i < 1 ; i++, ptr++) {
 if (*ptr != 0LL) {
 flg++ ;
 }
 }
}

int main(void)
{
 sub() ;
 if(!flg) {
 printf("%-12s %04d:OK\n", __FILE__, __LINE__) ;
 } else {
 printf("%-12s %04d:NG\n", __FILE__, __LINE__) ;
 }
 return(0) ;
}

Workaround
None

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 87

No. C90 printf outputs nothing after long long int two-dimension arrays operation

IAR Reference: EWRL78-638

Details

The compiler can sometimes fail to calculate correct l ive ranges for local long long arrays
causing them to share the same stack space.

Example

#include <stdio.h>
int flg = 0 ;
void sub(void);

void sub(void)
{
 int i, j ;
 signed long long int ary1[1][6] = { { 1, 1, 1, 1, 1, 1, } } ;
 signed long long int ary2[1][6] = { { 1, 1, 1, 1, 1, 1, } } ;
 for(i = 0 ; i < 1 ; i++)
 for(j = 0 ; j < 6 ; j++) {
 ary1[i][j] -= ary2[i][j] ;
 if (ary1[i][j] != 0) {
 flg++ ;
 }
 }
}

int main(void)
{
 sub() ;
 if(!flg) {
 printf("%-12s %04d:OK\n", __FILE__, __LINE__) ;
 } else {
 printf("%-12s %04d:NG\n", __FILE__, __LINE__) ;
 }
 return(0) ;
}

Workaround
None

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 88

No. C91 long long int switch-statement causes internal error

IAR Reference: EWRL78-642

Details

Switch statements on type long long is not supported by the compiler.

Example

#include <stdio.h>
int sub(unsigned long long data);
int sub(unsigned long long data)
{
 switch(data) {
 case 0 :
 return(10) ;
 case 1 :
 return(20) ;
 default : break ;
 }
 return(0) ;
}
int main(void){
 printf("%-12s %04d:OK\n", __FILE__, __LINE__) ;
}

Workaround
None

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 89

No. C92 Operation with a long long int type member of structure causes internal error

IAR Reference: EWRL78-639

Details

If the operand is a member of a structure, and has long long int ty pe, the multiple arithmetic operations
causes the tool internal error.

Example

#include <stdio.h>

typedef struct s_tag {
 long long int mem01;
 long long int mem02;
} STRCT_A;

STRCT_A stdata;

long long int sub(long long int arg);
long long int sub(long long int arg)
{
 return arg;
}

int main(void)
{
 long long int result;
 long long int data01;
 long long int data02;
 int flg=0;

 data01 = 33 ;
 data02 = 3 ;

 stdata.mem01 = sub(data01) ;
 stdata.mem02 = sub(data02) ;

 result = stdata.mem01 - stdata.mem02 ;
 if (result != 30) flg ++;

 result = stdata.mem01 * stdata.mem02 ;
 if (result != 99) flg ++;

 result = stdata.mem01 / stdata.mem02 ;
 if (result != 11) flg ++;

 if (flg == 0) {
 printf("%-12s %04d:OK\n", __FILE__, __LINE__) ;
 } else {
 printf("%-12s %04d:NG\n", __FILE__, __LINE__) ;
 }

 return(0) ;
}

Workaround
Disable Compiler optimization cse (--no_cse)

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 90

No. C93 An extraneous memory read can occur when you read a v olatile bitfield

IAR Reference: EWRL78-707

Details

Reading of a v olatile bitfield might lead to an extraneous memory read.

Example

typedef struct
{
 unsigned char no0:1;
 unsigned char no1:1;
 unsigned char no2:1;
 unsigned char no3:1;
 unsigned char no4:1;
 unsigned char no5:1;
 unsigned char no6:1;
 unsigned char no7:1;
} __BITS8;

__saddr __no_init volatile union { __BITS8 P2_bit; } @ 0xFFF02;

int main(void)
{
 P2_bit.no7 = ~P2_bit.no7;
 return 0;
}

The extraneous memory read can be f ound within the disassembly listing:

Workaround
None

No. C94 Optimizer considers all long long constants as equal

IAR Reference: EWRL78-760

Details

The optimizer considers all labels of long long constants (i.e. internally generated long long constants) to
be equal which can cause cross call and cross jumping to fail.

Workaround
None

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 91

No. C95 long long operations which are using the __Mul64 function are not reentrant

IAR Reference: EWRL78-650, EWRL78-647, EWRL78-648, EWRL78-646, EWRL78-641,
EWRL78-638

Details

Operations on long long variables might access the IAR __Mul64 library function which is using
the RL78 MACH instruction. By executing the MACH instruction, the result will be stored into the
MACR register. Since the __Mul64 function doesn’t backup/restore the contents of MACR
register that function is not reentrant and shall not be used inside of ISRs.

Workaround

Disable interrupts during the operation of long long variables were __Mul64 is used or avoid
using long long operations inside of ISRs.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 92

I) Description of Operating Precautions for Linker XLINK

No. D5 ELF Output File Format: Error e113 ‘Illegal ELF Register’

IAR Reference EW24254

Details

The usage of the compiler option ‘—worksegment’ causes an ‘i l legal ELF register error if the
output fi le format ELF is selected:

Fatal Error[e113]: Corrupt input file: "Illegal ELF-register." in
module xxx (<path>\xxx.r87)

Workaround

Please avoid compiler option ‘—worksegment’ if a l inker output fi le in ELF format is necessary.

No. D6 Erroneously Error e16 ‘Segment too long’ is generated (I)

IAR Reference EW24343

Details

When placing an empty segment (= size 0 bytes) in a placement range of 0 bytes using the
notation START:+SIZE, erroneously error message e16 ‘Segment too long’ is generated even
though the segment actually fits:

Error[e16]: Segment xxx (size: 0 align: 0) is too long for segment
definition. At least 0 more bytes needed. The problem occurred while
processing the segment placement command

Workaround
Use a placement range greater than 0 bytes.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 93

No. D7 Erroneously Error e16 ‘Segment too long’ is generated (II)

IAR Reference EW10555

Details

When last segment of multi segment definition command is empty (= size 0 bytes) erroneously
error message e16 ‘Segment too long’ is generated even though the segment actually fits:

Error[e16]: Segment xxx (size: 0 align: 0) is too long for segment
definition. At least 0 more bytes needed. The problem occurred while
processing the segment placement command

In version V 6.0.3.49 or later an improved error message is generated:

Error[e189]: Unable to place the empty segment xxx (align 0). At the
moment of placement there were no available addresses where the segment
could be placed. Try changing the order the segments are placed in The
problem occurred while processing the segment placement command
"-Z(DATA)ONE,TWO,THREE=00000-0FFFF, where at the moment of placement
the available memory ranges were "-none-"

Example:

-Z(DATA)ONE,TWO,THREE=00000-0FFFF

Segment ONE uses the last available byte in the range; segment TWO and THREE are empty.

Workaround
Rearrange the -Z line so that the last l isted segment is the one which size is greater than zero.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 94

No. D8 Range Error using far Runtime-Library Calls

IAR Reference EW25288

Details

Several support routines for long operations can generate an out of range error at l ink time when
using far runtime library calls :

Error[e18]: Range error, Limit exceeded

 Where $ = ?L_XOR_L03 + 0x1F [0x28049] in module "?LONG_XOR_L03"
 (C:\Program Files (x86)\IAR Systems\...\dlrl78fn2nf.r87),
 offset 0x1F in segment part 2, segment XCODE
 What: (?L_F_DEALLOC_L06 - (?L_XOR_L03 + 0x1E)) - 3 [0xFFFF7F95]
 Allowed range: 0xFFFF8000 - 0x7FFF
 Operand: ?0SL_F_DEALLOC_L06 [0x1ffe0]
 in module ?LONG_FLOAT_DEALLOC_L06
 (C:\Program Files (x86)\IAR Systems\...\dlrl78fn2nf.r87),
 Offset 0x0 in segment part 2, segment XCODE
 Operand: ?L_XOR_L03 [0x28048]
 in module ?LONG_XOR_L03
 (C:\Program Files (x86)\IAR Systems\...\dlrl78fn2nf.r87),
 Offset 0x1e in segment part 2, segment XCODE

Workaround
Please check first if using far runtime library calls is necessary.
If yes, rename the code segment of runtime library dlrl78fn2nf.r87 to any other name than
XCODE and define the new segment in a specific 32KB area inside the far memory area.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 95

No. D9 Negativ e Value for N/A (alignment)

IAR Reference EW25394

Details

When producing a module summary (-xe) the value of N/A (alignment) can become negative if
the --segment_mirror option was used with the @-modifier on a segment with content. This is an
incorrect sum in the map fi le and has no effect on the generated code. This problem has been
present since the introduction of --segment_mirror in XLINK 5.4.0.28.

 **
 * *
 * MODULE SUMMARY *
 * *
 **

Module CODE DATA CONST
------ ---- ---- -----
 (Rel) (Rel) (Rel)
?CSTARTUP 47
…
file 58 6 6
N/A (alignment) -6
---------- --- - -
Total: 580 4 6
 + common 2

Workaround
None. Fixed in XLINK version V6.3.0

No. D10 Unused Addresses in Common Segments not filled correctly

IAR Reference EW25592

Details

When generating more than two output fi les (e.g.one UBROF output fi le and additional output
fi les in one of the simpler output format including, but not l imited to, intel-hex and Motorola-s-
records), XLINK fails to correctly generate fil ler bytes for COMMON segments.

Workaround
None.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 96

No. D11 Comand Line Segment Alignment ignored

IAR Reference EW25374

Details

In case of using command line segment alignment -Z(SEGTYPE)SEGNAME|ALIGNMENT|, the
specified alignment is ignored and the segment retains its natural alignment.

Workaround
Update to XLINK V6.2.268 or later

No. D12 Symbol div ision results in a “div ision by zero” error

IAR Reference EWRL78-714

Details

Using a division operator in the -D command results in an error:
-Ddiv=2
-Dresult=(4/div)

Error:
Tool Internal Error:
Internal Error: In function:
Diagnostic: Division by zero.

P0: 0 P1: 0
Internal Error: In function:
Diagnostic: Division by zero.

Workaround
This problem is solved in the released XLINK V6.5.4 which can be downloaded either from the
Technical Note at the IAR web site or from the Renesas ToolWeb.

No. D13 End address of checksum is wrong when using the -M option

IAR Reference EWRL78-735

Details

The checksum end address is wrong when the XLINK -M option is used.

Workaround
None

https://www.iar.com/support/tech-notes/linker/latest-version-of-xlink-linker/
http://www.renesas.eu/update?oc=Y-IAR-EWRL78-FULL-MOBILE_V1XX#packageInfo

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 97

No. D14 Segment alignment fails by using the -Z option

IAR Reference EWRL78-748

Details

When using the alignment specification (|alignment|) suffix for sequential segment placement
(example: -Z(DATA)MYDATA|3| should 8-byte align the start address and size of the segment
MYDATA), the size of the segment is not aligned if the segment has the SORT property. SORT
is used on some data segments to sort them in alignment order (this minimizes size lost to
alignment issues). Please refer to your Assembler Reference Guide for details on SORT.

Workaround
None

This problem is fixed in the XLINK version 6.6.2.104. Latest l inker version can be retrieved from
the IAR website here:
https://www.iar.com/support/tech-notes/linker/latest-version-of-xlink-linker/

No. D15 End address of SADDR region is wrong

IAR Reference -

Details

In all l inker configuration fi le templates (*.xcl) of the RL78/G10 series (R5F10Y14, R5F10Y16,
R5F10Y17, R5F10Y44, R5F10Y46, R5F10Y47) the end address of the SDDR area is wrong. It
must be 0xFFEDF instead of 0xFFEF7.

Workaround
Change the end address manually in the linker fi le.

Example for device R5F10Y14:

-Z(DATA)SADDR_I,SADDR_Z,SADDR_N=FFE20-FFEF7

change to

-Z(DATA)SADDR_I,SADDR_Z,SADDR_N=FFE20-FFEDF

https://www.iar.com/support/tech-notes/linker/latest-version-of-xlink-linker/

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 98

J) Description of Operating Precautions for Debugger C-SPY

No. E5 All C-SPY Driv ers: Structure not displayed Watch Windows

Details

A struct variable of a typedef struct having the same name as the struct can not be displayed in
the C-SPY watch window.

Example

typedef struct stTest{
 int i;
}tstTest;

volatile tstTest stTest;

Workarounds

1) Don’t define a data type name:

typedef struct {
 int i;
}tstTest;

2) Use different names for data type and data object:

typedef struct stTest1{
 int i;
}tstTest;

volatile tstTest stTest;

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 99

No. E9 E1 C-SPY Driv er: No automatic Mapping for Variables added to Liv e Watch Window

Details

Variables added to Live Watch Window are not updated automatically, because the automatic
mapping doesn‘t work. Instead of the value <unavailable> is displayed.

Workaround

As a temporary workaround until the next update patch is available please open the Live
Memory Window and select the corresponding memory area for the variables listed in Live
Watch Window.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 100

No. E10 All C-SPY Driv ers: Symbols not listed in Symbolic Memory Window

Details

Symbols are not l isted in the Symbolic Memory Window, if another zone than 'Memory is
selected. In this sample the zone ‘INT_RAM is selected:

Workaround

Use only the memory zone ‘Memory’:

No. E12 C-SPY IECUBE Driv er: Pseudo Emulation of Temperature Sensor does not work

Details

The Pseudo Emulation function to change the temperature sensor value does not work.
The default value for 25° is always used and can’t be modified by the user.

Workaround
None.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 101

No. E13 C-SPY Simulator Driv er: Display Problem in Timeline Window

Details

Function entries and exits are not always shown correctly in the Timeline Window.
It is only a display problem.

Example:
If function exit is missing and the function is called again later, a new row for the function is
created.

Workaround
None. The problem will be fixed in next update V1.30.1 (schedule: e/o February 2013)

No. E14 C-SPY E1 Driv er: Wrong Manual I/O Register Modification

Details

If an I/O register allowing byte and word access (e.g. register TDR01) is manually modified in
Register Window a wrong value is written

Example:
Instead of 0x1234 a wrong value of 0x1200 is written to TDR1
Writing any value to low byte always clears the high byte.
Writing any value to high byte always clears the low byte.

Workaround
None.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 102

No. E16 All C-SPY Driv ers: Registers MDAL and MDAH not displayed in Register Window

IAR Reference EW24033

Details

Due to a missing definition in the SFR fi le (-> subfolder rl78\config\debugger\ior5fxxxxx.sfr) the
registers MDAL and MDAH of all RL78 Core0 (= RL78 Core S1) devices are not displayed in the
Register Window. Instead of the listed registers the CPU register AX is displayed twice:

Workaround

Add the missing entries for registers MDAL and MDAH manually
Example for ior5f100le.sfr:

sfr = "MDAL", "Sfr", 0xFFFF0, 2, base=16 ;; Others

sfr = "MULA", "Sfr", 0xFFFF0, 2, base=16 ;; Others

sfr = "MDAH", "Sfr", 0xFFFF2, 2, base=16 ;; Others

sfr = "MULB", "Sfr", 0xFFFF2, 2, base=16 ;; Others

If you need further details, please contact the Renesas SW-Tool-Support-Team.

mailto:software_support-eu@lm.renesas.com?subject=EWRL78:%20Add%20MDAL%20and%20MDAH%20register%20definitions%20to%20SFR-file

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 103

No. E17 C-SPY E1 Driv er: Unknown Break Error

IAR Reference EW24022

Details

If you are using the E1 emulator and single-step over a for-loop or step into a function, the error
"Break reason: Unknown (hwbrfact: 0x00000000)" is sometimes generated in Debug Log
Window:

Mon Jul 08, 2013 11:04:36: Break reason: Unknown (hwbrfact: 0x00000000).

Workaround
None.

No. E18 C-SPY E1 Driv er: Application doesn’t start after Debug Session

IAR Reference EW23929

Details

After a successfully closed E1 debug session, an application on RL78/F13 and RL78/F14 series
doesn't start after power up of the target hardware without connected E1 emulator.

Workaround
None. The problem will be fixed in next EWRL78 SP V1.30.5

No. E19 C-SPY E1 Driv er: Crash at Reaching a Software Breakpoint

IAR Reference EW23929

Details

The C-SPY debug session crashes if a software breakpoint reached and if the Flash-
Selfprogramming-Library feature FSL_ChangeInterruptTable/FSL_RestoreInterruptTable is
used. The problem only occurs on RL78/F13 and RL78/F14 series and for software breakpoints
defined on code lines between function call of FSL_ChangeInterruptTable () and
FSL_RestoreInterruptTable ().

Workaround
None. The problem will be fixed in next EWRL78 SP V1.30.5

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 104

No. E20 All C-SPY Driv ers: Debug Session did not Start

IAR Reference EW24226

Details

In rare cases after trying to start a debug session of modified application via "Download and
Debug", a build will be performed, but the debug session won’t start.

Workaround
Please clean the project and start the debug session again.

No. E21 IECUBE and E1 C-SPY Driv ers: Data Flash Memory Window cannot be opened

IAR Reference EW24236

Details

The Data Flash Memory Window cannot be opened by clicking the correspondent menu entry.

Workaround
None. Will be fixed in next update.

No. E22 IECUBE and E1 C-SPY Driv ers: Data Flash Memory Content cannot be changed in

Memory Window

IAR Reference EW24237

Details

Although the correct memory zone “EEPROM” is selected, the content of the Data Flash
Memory is neither displayed correctly nor can be modified in C-SPY Memory Window.

Workaround
None. Will be fixed in next update.

No. E23 E1 C-SPY Driv er: IDE hangs due to Missing Frames in Trace Buffer

IAR Reference EW24263

Details

Due to a problem in the algorithm for fi ll ing in missing frames between the branches in the trace
buffer, the IDE may hang for a certain code example when using OCD trace.

Workaround
Uncheck the feature ‘Fil l in missing frames’ in trace setup dialogue.
Will be fixed in next update.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 105

No. E24 IECUBE C-SPY Driv er: Wrong Time Stamp Information

IAR Reference EW24319

Details

Due to usage of a wrong trace time base, for certain trace settings wrong time stamps are
displayed in Trace Window.

Workaround
Please use ‘Run Break Timer’ or an event controlled timer for execution time measurement.
Will be fixed in next update.

No. E25 E1 C-SPY Driv er: Data Sample Graph is not updated

IAR Reference EW24594

Details

Variables displayed in the Sampled Graphs Window are not updated unless they are present in
the Live Watch Window at the same time.

Workaround
Add variable to Live Watch Windows. Will be fixed in next update.

No. E26 E1 C-SPY Driv er: Debug Session closed after Error 'Flash macro serv ice ROM accessed

or stepped in'

IAR Reference EW24790

Details

The debug session is closed after error 'Flash macro service ROM accessed or stepped in'
occurs. The error occurs, if a single step action (step in, step over, step out) shall be executed
while the Flash sequencer is active due to usage of a Renesas Flash Libraries. As the
sequencer works asynchrony to program execution, the sequencer status is unknown to the
user.

Workaround
None. Will be fixed in future update, so that the debug session is continued.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 106

No. E27 E1 C-SPY Driv er: RL78 dev ice feature “RAM guard” doesn’t work in case of single step
execution on assembler instruction lev el

IAR Reference ---

Details

The RAM area protected by the RL78 RAM guard feature can be unexpected re-written in case
of single step execution on the assembler instruction level.

Workaround
Instead of using the single step on assembler level, please use
- single step execution on C level or
- RUN mode with/without breakpoints

No. E28 E1 C-SPY Driv er: Wrong Address area displayed in Error Message

IAR Reference ---

Details

In case of using the E1 OCD emulator, the highest 256bytes of the Flash memory must be
reserved as described in the RL78 E1 Manual Addendum. In case of a violation of this
requirement, a debug session cannot be started and an error message occurs instead.
In this error message instead of the highest 256 bytes the address range of the corresponding
Flash memory block is displayed.

Workaround
Not necessary as the error message is correct.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 107

No. E29 IECUBE C-SPY Driv er: Debug Session closed after Fail-Safe-Break

IAR Reference EW25151

Details

The Debug session is closed if an IECUBE fail-safe-break (e.g. read from uninitialized RAM)
occurs. The fails safe reason is l isted in Debug Log Window.

Workaround
None. The issue will be fixed in next update.

No. E30 E1 C-SPY Driv er: Debug Session closed after Error 'Flash macro serv ice ROM accessed

or stepped in' (II)

IAR Reference EW25668

Details

A warning message is displayed when single step is not allowed during flashing and C-SPY
stops execution with a "failed to run" message.

Same reason as described in issue E26. The correction of issue E26 did not handle the case
where the breakpoint was placed on a jump instruction which means that C-SPY will use a step
command to proceed even if the user command is "Go".

Workaround
Don’t place a breakpoint on jump instructions while the Flash sequencer is active.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 108

No. E31 IECUBE C-SPY Driv er: Wrong av erage timer results

IAR Reference EW25913

Details

In some cases it might happen that the timer average result of a conditional measurement is
wrong.

Example:

Timer 1: Pass count: 369. Average pass time: 5 msec. (total cycles: 239540413, average
cycles: 649161, min cycles: 12288621, max cycles: 12288686, rate: 8.33333 nsec/cycle).

Workaround
None. Please ignore the average result and use the min and max values for the investigation.

No. E32 Wrong sampled v alues might be shown in the Data Sample/Sampled Graphs window in

case of sampling a v ariable with a size of 2 bytes

IAR Reference EWRL78-533

Details

The sampling of two byte variables might lead to wrong values in the Data Sample or Sampled
Graphs window. The probability to get a wrong value increases if the write frequency to the two
byte variable is very high (e.g. toggle of the variable in a loop) and the sample period of the
debugger very low (e.g. 10ms).

Workaround
None.

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 109

No. E33 E1 C-SPY Driv er: Download of an additional image might destroy a part of the original
application.
IAR Reference EWRL78-513

Details

During the download procedure of an image the debugger performs the following steps:

1) Depending on the image size and location the flash will be erased by 2KB units
2) Image will be written to the flash memory

If the additional image to be downloaded is located directly below of the application it might
happens that a part of the application will be destroyed.

Example:

Bootloader: 0x00000 - 0x0DBFF
Application: 0x0DC00 - 0x0FBFF

The above application is the main software which will be downloaded first and the bootloader will
be downloaded afterwards as an image.

Because of the fact that the flash erase unit of the debugger is 2KB the image download will also
erase the address 0xD800 to 0xDFFF. That means the first programmed application part
(0x0DC00 to 0xDFFF) will be erased during the bootloader image download.

Workaround
Change the order of the download process:

1) Download the image with lower address range first (e.g. 0x00000 - 0x0DBFF)
2) Download the image with higher address range (e.g. 0x0DC00 - 0x0FBFF)

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 110

K) Valid Specification

Item Date published Document No. Document Title

1 April 2014 UIEEW-7 IAR Embedded Workbench
IDE Project Management and Building Guide

2 March 2014 CRL78-3 IAR C/C++ Compilers Reference Guide for RL78

3 February 2011 ARL78-1 IAR Assemblers Reference Guide for RL78

4 January 2013 UCSRL78-3 IAR C-SPY Debugging Guide for RL78

5 March 2013 XLINK-600 IAR Linker and Library Tools Reference Guide

6 January 2011 EWMISRAC1998-4 IAR Embedded Workbench MISRA C 1998 Reference Guide

7 January 2011 EWMISRAC2004-3 IAR Embedded Workbench MISRA C 2004 Reference Guide

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 111

L) Revision

Edition Date published Document No. Comment

1 26-04-2011 R20UT0521ED0000 First release.

2 27-06-2011 R20UT0521ED0001 EWRL78 update 1.10.2
Items C1 and E2 added

3 21-07-2011 R20UT0521ED0100 Items C2 and E3 added

4 08-08-2011 R20UT0521ED0101 EWRL78 update V1.10.3
Item B2 added

5 16-08-2011 R20UT0521ED0102
EWRL78 update V1.10.4
Items C3 and C4 added, item E3 updated
Link to current document version changed.

6 13-09-2011 R20UT0521ED0103 Item B2 updated, items C5 and C6 added

7 13-10-2011 R20UT0521ED0104 Items C7, C8, E4, E5, and E6 added

8 28-10-2011 R20UT0521ED0105 EWRL78 update V1.10.5
Item E7 added

9 09-12-2011 R20UT0521ED0106 Items B3, B4 ,C9, D1 and C10 added

10 10-02-2012 R20UT0521ED0107 Items A3 and E8 added, specification update
MISRA C 1998 and 2004 Reference Guide

11 27-02-2012 R20UT0521ED0108 Item C11 added

12 03-04-2012 R20UT0521ED0109 Item D2 added
New Renesas Order Codes since 01.04.2012

13 16-04-2012 R20UT0521ED0110

EWRL78 update V1.20.1, specification update
Embedded Workbench, C Compiler and Linker
Reference Guide, item C6 updated, item C13
added

14 24-05-2012 R20UT0521ED0111 Items A4 and E9 added

15 18-06-2012 R20UT0521ED0112 Items C14, D3 and E10 added

16 01-08-2012 R20UT0521ED0113 Items C15 and C16 added

17 13-08-2012 R20UT0521ED0114 EWRL78 SP update V1.20.3 added
Item E11 added

18 17-09-2012 R20UT0521ED0115 Item C17, C18 and E12 added

19 19-10-2012 R20UT0521ED0116 Item C19 added

20 31-10-2012 R20UT0521ED0117 EWRL78 Update V1.20.4

21 30-01-2013 R20UT0521ED0118 Item E13 added

22 26-02-2013 R20UT0521ED0119 Item B5, C20 and D4 added

23 12-03-2013 R20UT0521ED0120
EWRL78 update V1.30.2, specification update
Embedded Workbench, C-Spy Debugger and
Linker Reference Guide, item C21 added, items
C1, E1 and E2 removed

24 03-04-2013 R20UT0521ED0121 XLINK update V5.6.0.36, item D1 removed,
previous Renesas order codes removed

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 112

Edition Date published Document No. Comment

25 15-05-2013 R20UT0521ED0122 Items A5, C22, C23 and E14 added

26 05-06-2013 R20UT0521ED0123 Items C24, C25 and E15 added

27 14-06-2013 R20UT0521ED0124 Update EWRL78 V1.30.3
Items C2,C3 and C4 removed

28 08-07-2013 R20UT0521ED0125 Items B6, E16 and E17 added

29 03-09-2013 R20UT0521ED0126 Item A6, C26 added

30 09-09-2013 R20UT0521ED0127 Item C27 added

31 26-09-2013 R20UT0521ED0128 Items C28, C29 added, item B6 updated

32 09-10-2013 R20UT0521ED0129 Item C30, C31, E18, and E19 added.

33 14-10-2013 R20UT0521ED0130
Update EWRL78 V1.30.5
Items C5 - C9, C11, C12, D2, and E3 removed
Items C29 and C31 update

34 29-10-2013 R20UT0521ED0131 Items D5, E20, E21, and E22 added

35 20-11-2013 R20UT0521ED0132 Items E23 and E24 added

36 25-11-2013 R20UT0521ED0133 Item A7 added

37 06-12-2013 R20UT0521ED0134 Items C32 – C39 and D6 added
Item D3 removed, XLINK Update V5.8.0.42

38 02-01-2014 R20UT0521ED0135 Items C40, C41 and C42 added

39 11-02-2014 R20UT0521ED0136 Items A8 and D7 added

40 10-04-2014 R20UT0521ED0137
Update EWRL78 V1.40.1
Items B7, C43, C44, C45 and E25 added
Items C14, C15, C16, E4, E6 and E15 removed
Items C34 and D7 updated

41 12-05-2014 R20UT0521ED0138 Item C46 added

42 21-05-2014 R20UT0521ED0139 Item C47 added

43 11-06-2014 R20UT0521ED0140 Item C48 added

44 25-06-2014 R20UT0521ED0141 Item C49 added

45 23-07-2014 R20UT0521ED0142 Items C50 and E26 added, Specification Update

46 07-08-2014 R20UT0521ED0143 Items A9, C51 and C52 added

47 22-09-2014 R20UT0521ED0144
Update EWRL78 V1.40.3
Item C53 added
Items B2, B4, C17, C19, E7 and E9 removed
Specification Update

48 17-10-2014 R20UT0521ED0145 Item A10, C54 and E27 added

49 29-10-2014 R20UT0521ED0146 Update EWRL78 V1.40.5
Item D4 removed, item C55 - C61 added

50 12-11-2014 R20UT0521ED0147
Update EWRL78 V1.40.6
Items C62, C63 and E28 added
Status change item C57 (only partly solved in
V1.40.5)

51 25-11-2014 R20UT0521ED0148 Item C64 added

52 12-01-2015 R20UT0521ED0149 Items A11 and E29 added
Item E11 removed

53 17-02-2015 R20UT0521ED0150 Items A12, C65, and C66 added

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 113

Edition Date published Document No. Comment

54 16-03-2015 R20UT0521ED0151 Items A13, C67, and D8 added

55 18-06-2015 R20UT0521ED0152 Item D9 added, item E28 updated,
email address of Software-Tool-Support updated

56 10-08-2015 R20UT0521ED0153 Items C68 , D10 and D11 added, XLINK update
6.3.3.74

57 15-09-2015 R20UT0521ED0154 Item E30 added

58 01-02-2016 R20UT0521ED0155
Item C46 updated (fixed from version 1.40.3),
item C56 updated (sample code updated),
item E31 added

59 16-03-2016 R20UT0521ED0156 Item C69 added

60 27-04-2016 R20UT0521ED0157 Item C70 added

61 14.07.2016 R20UT0521ED0158 Item C71 added

62 23.11.2016 R20UT0521ED0159 Item E32 added

63 06.02.2017 R20UT0521ED0160 Item C72 added

64 13.03.2017 R20UT0521ED0161 Item A14 added

65 21.04.2017 R20UT0521ED0162 Item E33 added
Item C73 added

66 09.06.2017 R20UT0521ED0163

Item C74 added
Item C75 added
Item C76 added
Item C77 added
Item C78 added
Item C79 added
Item C80 added
Item C81 added
Item C82 added
Item C83 added
Item C84 added
Item C85 added

67 11.09.2017 R20UT0521ED0164

Item C86 added
Item C87 added
Item C88 added
Item C89 added
Item C90 added
Item C91 added
Item C92 added

68 21.03.2017 R20UT0521ED0165 Item C93 added

69 08.06.2018 R20UT0521ED0166 Item D12 added

70 13.08.2019 R20UT0521ED0167

Item C94 added
Item D13 added
Item D14 added
Item D15 added

71 19.03.2021 R20UT0521ED0168 Item C95 added

Before using this material, please visit our website to confirm using the most current document available:
Current version of this document.

In case of any technical question related to the Embedded Workbench for RL78, please feel free to contact
the Renesas Software-Tool-Support Team.

http://www.renesas.eu/updates?id=392
mailto:sw_tool_support-eu@lm.renesas.com?subject=Question%20about%20EWRL78%20Operating%20Precautions%20(R2UT0521EDxxxx)

Operating Precautions f or EWRL78

 Customer Notification R20UT0521ED0168 114

Please note that EWRL78 V1.xx had been updated to EWRL78 V4.xx already. Due to major internal
differences between these versions, two different customer notifications are published.

http://www.renesas.eu/updates?oc=Y-IAR-EWRL78-FULL-MOBILE_V1XX
http://www.renesas.eu/updates?oc=Y-IAR-EWRL78-FULL-MOBILE_V4XX

R20UT0521ED0168
March 2021

	Customer Notification
	EWRL78 V1.xx
	Operating Precautions
	Table of Contents
	A) Table of Operating Precautions for the IDE EWRL78
	B) Table of Operating Precautions for the Assembler ARL78
	C) Table of Operating Precautions for C/C++ Compiler ICCRL78
	D) Table of Operating Precautions for the Linker XLINK
	E) Table of Operating Precautions for Debugger C-SPY
	F) Description of Operating Precautions for the IDE EWRL78
	No. A1
	No. A2
	No. A3
	No. A4
	No. A5
	No. A6
	No. A7
	No. A8
	No. A9
	No. A10
	No. A11
	No. A12
	No. A13
	No. A14

	G) Description of Operating Precautions for the Assembler ARL78
	No. B1
	No. B3
	No. B5
	No. B6
	No. B7

	H) Description of Operating Precautions for the C/C++ Compiler ICCRL78
	No. C10
	No. C13
	No. C14
	No. C15
	No. C16
	No. C18
	No. C20
	No. C21
	No. C22
	No. C23
	No. C24
	No. C25
	No. C26
	No. C27
	No. C28
	No. C29
	No. C30
	No. C31
	No. C32
	No. C33
	No. C34
	No. C35
	No. C36
	No. C37
	No. C38
	No. C39
	No. C40
	No. C41
	No. C42
	No. C43
	No. C44
	No. C45
	No. C46
	No. C47
	No. C48
	No. C49
	No. C50
	No. C51
	No. C52
	No. C53
	No. C54
	No. C55
	No. C56
	No. C57
	No. C58
	No. C59
	No. C60
	No. C61
	No. C62
	No. C63
	No. C64
	No. C65
	No. C66
	No. C67
	No. C68
	No. C69
	No. C70
	No. C71
	No. C72
	No. C73
	No. C74
	No. C75
	No. C76
	No. C77
	No. C78
	No. C79
	No. C80
	No. C81
	No. C82
	No. C83
	No. C84
	No. C85
	No. C86
	No. C87
	No. C88
	No. C89
	No. C90
	No. C91
	No. C92
	No. C93
	No. C94
	No. C95

	I) Description of Operating Precautions for Linker XLINK
	No. D5
	No. D6
	No. D7
	No. D8
	No. D9
	No. D10
	No. D11
	No. D12
	No. D13
	No. D14
	No. D15

	J) Description of Operating Precautions for Debugger C-SPY
	No. E5
	No. E9
	No. E10
	No. E12
	No. E13
	No. E14
	No. E16
	No. E17
	No. E18
	No. E19
	No. E20
	No. E21
	No. E22
	No. E23
	No. E24
	No. E25
	No. E26
	No. E27
	No. E28
	No. E29
	No. E30
	No. E31
	No. E32
	No. E33

	K) Valid Specification
	L) Revision

