

RZ Ecosystem Partner Solution ENERZAi Optimium

Solution Summary

Optimium is a next-generation AI inference engine designed to maximize AI performance and flexibility. It accelerates AI model inference on CPU while preserving accuracy. With a single, versatile tool, it simplifies AI model deployment across multiple hardware platforms, ensuring seamless integration and efficiency. Optimium can be seamlessly connected to <u>RZ/V2H MPU</u> evaluation kit, and generated the latest <u>benchmark result</u>. Optimium will continue to expand its support to suitable Renesas Linux/Android-based <u>RZ Family of MPUs</u>.

Features/Benefits

- Provided as a Python package for seamless integration into development environment
- Support AI inference optimization for CV(Computer Vision) models on CPUs
- Maximize AI model inference on target hardware with no compromise in accuracy
- Enable convenient deployment, contributing to substantial time & cost reductions
- Help to enhance/complement RZ/V's AI performance.

Diagrams/Graphics

Target Markets and Applications

- Wearables
- Appliances
- Industrial
- Robotics
- Surveillance
- Infrastructure monitoring

optimium.enerzai.com

Company Information

Profile

- Year Established: Jan. 2019
- Location: Seoul, Republic of Korea
 Team: 25+ Members from top universities(SNU & KAIST), as well as
- major companies (Samsung & SK)
 Product: Optimium(Al Inference Engine) & Optimized Al solutions

Funding

- Seed funding from NAVER affiliate VC(SpringCamp)
- Raised \$5.0M in Series A funding from leading financial institutions including Korea Development Bank and Korea Investment Partners
- Selected as beneficiary of TIPS & Post-TIPS by Korean government

Al model compression that makes Al model smaller while maintaining accuracy
Low-level optimization that maximizes Al model performance for target H/W

Reference

Technology

Selected as Intel Partner Alliance Gold & Samsung C-Lab Outside • Ranked 1st and runner-up in 2 tracks at Mobile AI & AIM 2022 Challenge • Ranked 3rd in 2 tracks at CVPR 2021 - Mobile AI Workshop

Awards

CVPR 2021 – Mobile Al Workshop and Challenges

		Result					
Rank	Team	Model Size (KB)	Accuracy (PSNR)	Runtime (ms)	Rank	Team	Мс
1	Huawei	209	37.52	39	1	Dahua	
2	Megvii	14,276	37.83	84	2	ITRI	
3	ENERZAi	81	36.33	11	3	ENERZAi	
4	Xiaomi	1,404	37.37	54	4	Dahua	
5	ENERZAi	118	36.22	23	5	Huawei	

Learned Smartphone ISP Challenge							
		J					
Rank	Team	Model Size (KB)	Accuracy (PSNR)	Runtime (ms)			
1	Dahua	21	23.2	61			
2	ITRI	123	23.73	90.9			
3	ENERZAi	9	22.97	65			
4	Dahua	175	22.78	77			
5	Huawei	244	23.08	94.5			
Note	Humer	244	20.00	04.0			

1) Final Score = $PSNR + \alpha \times (0.2 - clip(Runtime))$. α is set to 20 when Runtime is 0.2 or lower. Otherwise, α is set to 0.5. clip = min(max(Runtime, 0.03), 5)

Contact

With the vision to deliver the best AI experience for everything and everyone, our team is ready to help you. Please contact us for more information and we'll get back to you! Contact: <u>enerzai.com/contact</u>

