

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

RX130 Group

Renesas Starter Kit
Smart Configurator Tutorial Manual

For e2 studio

Rev. 1.00 Jun 2017

32
RENESAS 32-Bit MCU
RX Family / RX100 Series

32

U
ser’s M

anual

www.renesas.com

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits,
software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and
damages incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving
patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or
technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm,
application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas
Electronics or others.

4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas
Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration,
modification, copy or otherwise misappropriation of Renesas Electronics products.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended
applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment;

home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication

equipment; key financial terminal systems; safety control equipment; etc.
Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life
or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (space and
undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas
Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas
Electronics product for which the product is not intended by Renesas Electronics.

6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes,
"General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are
within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation
characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out
of the use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products
have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them
against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of
Renesas Electronics products, such as safety design for hardware and software including but not limited to redundancy, fire control and
malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as
warranty for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please
evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each
Renesas Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled
substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in
compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses
occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use,
or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products or
technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction,
such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for
delivering such weapons, (2) any purpose relating to the development, design, manufacture, or use of conventional weapons, or (3) any
other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics
products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any
other party will engage in the activities described above. When exporting, selling, transferring, etc., Renesas Electronics products or
technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments
of the countries asserting jurisdiction over the parties or transactions.

10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms
and conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or violation results
from your resale or making Renesas Electronics products available any third party.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or
Renesas Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned
subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.3.0-1 November 2016)

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.
For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well
as any technical updates that have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
¾ The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
¾ The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
¾ The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
¾ When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
¾ The characteristics of Microprocessing unit or Microcontroller unit products in the same group but

having a different part number may differ in terms of the internal memory capacity, layout pattern,
and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a
product with a different part number, implement a system-evaluation test for the given product.

Disclaimer

By using this Renesas Starter Kit (RSK), the user accepts the following terms:

The RSK is not guaranteed to be error free, and the entire risk as to the results and performance of the RSK is
assumed by the User. The RSK is provided by Renesas on an “as is” basis without warranty of any kind whether
express or implied, including but not limited to the implied warranties of satisfactory quality, fitness for a particular
purpose, title and non-infringement of intellectual property rights with regard to the RSK. Renesas expressly
disclaims all such warranties. Renesas or its affiliates shall in no event be liable for any loss of profit, loss of data,
loss of contract, loss of business, damage to reputation or goodwill, any economic loss, any reprogramming or recall
costs (whether the foregoing losses are direct or indirect) nor shall Renesas or its affiliates be liable for any other
direct or indirect special, incidental or consequential damages arising out of or in relation to the use of this RSK, even
if Renesas or its affiliates have been advised of the possibility of such damages.

Precautions

The following precautions should be observed when operating any RSK product:

This Renesas Starter Kit is only intended for use in a laboratory environment under ambient temperature and humidity
conditions. A safe separation distance should be used between this and any sensitive equipment. Its use outside the
laboratory, classroom, study area or similar such area invalidates conformity with the protection requirements of the
Electromagnetic Compatibility Directive and could lead to prosecution.

The product generates, uses, and can radiate radio frequency energy and may cause harmful interference to radio
communications. However, there is no guarantee that interference will not occur in a particular installation. If this
equipment causes harmful interference to radio or television reception, which can be determined by turning the
equipment off or on, you are encouraged to try to correct the interference by one or more of the following measures;

• ensure attached cables do not lie across the equipment
• reorient the receiving antenna
• increase the distance between the equipment and the receiver
• connect the equipment into an outlet on a circuit different from that which the receiver is connected
• power down the equipment when not in use
• consult the dealer or an experienced radio/TV technician for help NOTE: It is recommended that wherever

possible shielded interface cables are used.

The product is potentially susceptible to certain EMC phenomena. To mitigate against them it is recommended that the
following measures be undertaken;

• The user is advised that mobile phones should not be used within 10m of the product when in use.
• The user is advised to take ESD precautions when handling the equipment.

The Renesas Starter Kit does not represent an ideal reference design for an end product and does not fulfil the
regulatory standards for an end product.

How to Use This Manual

1. Purpose and Target Readers

This manual is designed to provide the user with an understanding of how to use Smart Configurator for RX
together with the e2 studio IDE to create a working project for the RSK platform. It is intended for users
designing sample code on the RSK platform, using the many different incorporated peripheral devices.

The manual comprises of step-by-step instructions to generate code and import it into e2 studio, but does not
intend to be a complete guide to software development on the RSK platform. Further details regarding
operating the RX130 microcontroller may be found in the Hardware Manual and within the provided sample
code.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within the body
of the text, at the end of each section, and in the Usage Notes section.

In this manual, the display may differ slightly from screen shots. There is no problem in reading this manual.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of
the manual for details.

The following documents apply to the RX130 Group. Make sure to refer to the latest versions of these
documents. The newest versions of the documents listed may be obtained from the Renesas Electronics Web
site.

Document Type Description Document Title Document No.
User’s Manual Describes the technical details of the RSK

hardware.
RSKRX130-512KB User’s
Manual

R20UT3921EG

Tutorial Manual Provides a guide to setting up RSK
environment, running sample code and
debugging programs.

RSKRX130-512KB Tutorial
Manual

R20UT3925EG

Quick Start
Guide

Provides simple instructions to setup the
RSK and run the first sample.

RSKRX130-512KB Quick
Start Guide

R20UT3926EG

Smart
Configurator
Tutorial Manual

Provides a guide to code generation and
importing into the e2 studio IDE.

RSKRX130-512KB Smart
Configurator Tutorial Manual

R20UT3927EG

Schematics Full detail circuit schematics of the RSK. RSKRX130-512KB
Schematics

R20UT3920EG

Hardware
Manual

Provides technical details of the RX130
microcontroller.

RX130-512KB Group
Hardware Manual

R01UH0560EJ

2. List of Abbreviations and Acronyms

Abbreviation Full Form

ADC Analog-to-Digital Converter
API Application Programming Interface

bps bits per second

CMT Compare Match Timer

COM COMmunications port referring to PC serial port
CPU Central Processing Unit
DVD Digital Versatile Disc
E1 / E2 Lite Renesas On-chip Debugging Emulator
GUI Graphical User Interface
IDE Integrated Development Environment
IRQ Interrupt Request
LCD Liquid Crystal Display
LED Light Emitting Diode
LSB Least Significant Bit
LVD Low Voltage Detect
MCU Micro-controller Unit
MSB Most Significant Bit
PC Personal Computer
PLL Phase-locked Loop

Pmod™ This is a Digilent Pmod™ Compatible connector. Pmod™ is registered to Digilent Inc.
Digilent-Pmod_Interface_Specification

RAM Random Access Memory
ROM Read Only Memory
RSK Renesas Starter Kit
RTC Real Time Clock
SAU Serial Array Unit
SCI Serial Communications Interface
SPI Serial Peripheral Interface
TAU Timer Array Unit
TFT Thin Film Transistor
TPU Timer Pulse Unit
UART Universal Asynchronous Receiver/Transmitter
USB Universal Serial Bus
WDT Watchdog Timer

All trademarks and registered trademarks are the property of their respective owners.

http://www.digilentinc.com/index.cfm

Table of Contents

1. Overview .. 8
1.1 Purpose .. 8
1.2 Features ... 8

2. Introduction .. 9

3. Project Creation with e2 studio ... 10
3.1 Introduction .. 10
3.2 Creating the Project ... 10

4. Smart Configurator Using the e2 studio plug in .. 13
4.1 Introduction .. 13
4.2 Project Configuration using Smart Configurator – Overview page .. 14
4.3 Clocks configuration page .. 15

4.3.1 Clocks configuration ... 15
4.4 Components page .. 16

4.4.1 Add a software component into the project .. 16
4.4.2 8-Bit Timer .. 17
4.4.3 Compare Match Timer .. 18
4.4.4 Interrupt Controller Unit .. 20
4.4.5 Ports ... 22
4.4.6 SCI/SCIF Asynchronous Mode .. 26
4.4.7 SPI Clock Synchronous Mode ... 29
4.4.8 Single Scan Mode S12AD .. 32

4.5 Pins configuration page ... 35
4.5.1 Change pin assignment of a software component ... 35

4.6 Building the Project .. 38

5. User Code Integration .. 39
5.1 LCD Code Integration .. 39

5.1.1 SPI Code .. 41
5.1.2 TMR Code .. 42

5.2 Additional include paths ... 43
5.3 Switch Code Integration ... 44

5.3.1 Interrupt Code .. 44
5.3.2 De-bounce Timer Code .. 47
5.3.3 Main Switch and ADC Code ... 48

5.4 Debug Code Integration ... 53
5.5 UART Code Integration .. 53

5.5.1 SCI Code .. 53
5.5.2 Main UART code .. 55

5.6 LED Code Integration .. 57

6. Debugging the Project ... 60

7. Additional Information .. 62

RSKRX130-512KB R20UT3927EG0100
 Rev. 1.00
RENESAS STARTER KIT Jun 30, 2017

R20UT3927EG0100 Rev. 1.00 Page 8 of 66
Jun 30, 2017

1. Overview

1.1 Purpose

This RSK is an evaluation tool for Renesas microcontrollers. This manual describes how to use the e2 studio
IDE Smart Configurator plug-in to create a working project for the RSK platform.

1.2 Features

This RSK provides an evaluation of the following features:
• Project Creation with e2 studio.
• Code Generation using the Smart Configurator plug-in.
• User circuitry such as switches, LEDs and a potentiometer.

The RSK board contains all the circuitry required for microcontroller operation.

RSKRX130-512KB 2. Introduction

R20UT3927EG0100 Rev. 1.00 Page 9 of 66
Jun 30, 2017

2. Introduction

This manual is designed to answer, in tutorial form, how to use the Smart Configurator plug-in for the RX
family together with the e2 studio IDE to create a working project for the RSK platform. The tutorials help
explain the following:
• Project generation using e2 studio
• Detailed use of the Smart Configurator plug-in for e2 studio
• Integration with custom code
• Building the project in e2 studio

The project generator will create a tutorial project with two selectable build configurations:
• ‘HardwareDebug’ is a project built with the debugger support included. Optimisation is set to zero.
• ‘Release’ is a project with optimised compile options (level two) and ‘Outputs debugging information’

option not selected, producing code suitable for release in a product.

These tutorials are designed to show you how to use the RSK and are not intended as a comprehensive introduction to
the e2 studio debugger, compiler toolchains or the E2 emulator Lite. Please refer to the relevant user manuals for more
in-depth information.

RSKRX130-512KB 3. Project Creation with e2 studio

R20UT3927EG0100 Rev. 1.00 Page 10 of 66
Jun 30, 2017

3. Project Creation with e2 studio

3.1 Introduction

In this section, the user will be guided through the steps required to create a new C project for the RX130
MCU, ready to generate peripheral driver code using Smart Configurator. This project generation step is
necessary to create the MCU-specific source, project and debug files.

3.2 Creating the Project

• Start e2 studio and select a suitable

location for the project workspace.

• In the Welcome page, click ‘Create a new
C/C++ project’.

• In the ‘Templates for New C/C++ Project’
dialog, selecting ‘Renesas RX’ ->
‘Renesas CC-RX C/C++ Executable
Project’.

• Click ‘Next’.

RSKRX130-512KB 3. Project Creation with e2 studio

R20UT3927EG0100 Rev. 1.00 Page 11 of 66
Jun 30, 2017

• Enter the project name ‘SC_Tutorial’.
• Click ‘Next’.

• In the ‘Select toolchain, device & debug
settings’ dialog, select the options as
shown in the screenshot opposite.

• In ‘Toolchains’ choose ‘Renesas CCRX
Toolchain’.

• The R5F51308AxFP MCU is found under
RX100 -> RX130 ->
RX130 – 100 pin.

• Click ‘Next’.

• In the ‘Select Coding Assistant Settings’
dialog, select ‘Smart Configurator’.

• Click ‘Next’.

RSKRX130-512KB 3. Project Creation with e2 studio

R20UT3927EG0100 Rev. 1.00 Page 12 of 66
Jun 30, 2017

• Click ‘Next’.

• A summary dialog will appear, click
‘Finish’ to complete the project
generation.

• You may be prompted to open the Smart
Configurator perspective. Click ‘Yes’ to
open the Smart Configurator perspective.

• Wait for file generation to start.

RSKRX130-512KB 4. Smart Configurator Using the e2 studio plug in

R20UT3927EG0100 Rev. 1.00 Page 13 of 66
Jun 30, 2017

4. Smart Configurator Using the e2 studio plug in

4.1 Introduction

Smart Configurator plug-in for the RX130 has been used to generate the sample code discussed in this
document. Smart Configurator for e2 studio is a plug-in tool for generating template ‘C’ source code and
project settings for the RX130. When using Smart Configurator, it supports user with a visual way of
configuring the target device, clocks, software components, hardware resources and interrupts for the project;
thereby bypassing the need, in most cases, to refer to sections of the Hardware Manual.

Once the user has configured the project, the ‘Smart Configurator’ function is used to generate three code
modules for each specific MCU feature selected, general folder, r_bsp folder, r_config folder and r_pincfg
folder. These code modules are name ‘Config_xxx.h’, ‘Config_xxx.c’, and ‘Config_xxx_user.c’, where ‘xxx’ is
an acronym for the relevant MCU feature, for example ‘CMT’. Within these code modules, the user is then
free to add custom code to meet their specific requirement. Custom code should be added, whenever
possible, in between the following comment delimiters:

/* Start user code for adding. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */

Smart Configurator will locate these comment delimiters, and preserve any custom code inside the delimiters
on subsequent code generation operations. This is useful if, after adding custom code, the user needs to re-
visit Smart Configurator to change any MCU operating parameters.

By following the steps detailed in this Tutorial, the user will generate an e2 studio project called SC_Tutorial.
The fully completed Tutorial project is contained on the RSK Web Installer (https://www.renesas.com/rskrx130-
512kb/install) and may be imported into e2 studio by following the steps in the Quick Start Guide. This
Tutorial is intended as a learning exercise for users who wish to use the Smart Configurator to generate their
own custom projects for e2 studio.

The SC_Tutorial project uses interrupts for switch inputs, the ADC module, the 8-Bit Timer, the Compare
Match Timer (CMT), the Serial Communications Interface (SCI) and uses these modules to perform A/D
conversion and display the results via the Virtual COM port to a terminal program and also on the LCD display
on the RSK.

Following a tour of the key user interface features of Smart Configurator in ‘Clocks configuration page’,
‘Components page’, ‘Pins configuration page’ and ‘Building the Project’, the reader is guided through each of
the peripheral function configuration pages, familiarised with the structure of the template code, and adding
their own code to the user code areas provided by the Smart Configurator.

The Smart Configurator installer is contained on the RSK Web Installer. This installer must be run before
proceeding to the next section.

https://www.renesas.com/rskrx130-512kb/install
https://www.renesas.com/rskrx130-512kb/install

RSKRX130-512KB 4. Smart Configurator Using the e2 studio plug in

R20UT3927EG0100 Rev. 1.00 Page 14 of 66
Jun 30, 2017

4.2 Project Configuration using Smart Configurator – Overview page

In this section, a brief tour of Smart Configurator is presented. For further details of the Smart Configurator
paradigm and reference, refer to the Smart Configurator User Guide.
You can download the latest document from: https://www.renesas.com/smart-configurator.

From the e2 studio menus, select ‘Window -> Perspective -> Open Perspective -> Other. In the ‘Open
Perspective’ dialog shown in Figure 4-1, select ‘Smart Configurator’ and click ‘OK’.

Figure 4-1 Open Perspective Dialog

The Smart Configurator initial view is displayed as illustrated in Figure 4-2.

Figure 4-2 Overview page

Smart Configurator provides GUI features for configuration of MCU sub systems. Once the user has
configured all required MCU sub systems and peripherals, the user can click the ‘Generate Code’ button,
resulting in a fully configured e2 studio project that builds and runs without error.

https://www.renesas.com/smart-configurator

RSKRX130-512KB 4. Smart Configurator Using the e2 studio plug in

R20UT3927EG0100 Rev. 1.00 Page 15 of 66
Jun 30, 2017

4.3 Clocks configuration page

Clocks configuration page configures clocks of the device selected. Clock source, frequency, PLL settings and
clock divider settings can be configured for the output clocks.

4.3.1 Clocks configuration

Figure 4-3 shows a screenshot of Smart Configurator with the Clocks tab. Click on the ‘Clocks’ tab.
Configure the system clocks as shown in the figure. In this tutorial, we are using the on-board 8 MHz crystal
resonator for our main clock oscillation source and the PLL circuit is in operation. The PLL output is used as
the main system clock and the divisors should be set as shown in Figure 4-3.

Figure 4-3 Clocks Configuration page

RSKRX130-512KB 4. Smart Configurator Using the e2 studio plug in

R20UT3927EG0100 Rev. 1.00 Page 16 of 66
Jun 30, 2017

4.4 Components page

Drivers and middleware are handled as software components in Smart Configurator. The Components page
allows user to select and configure software components.

Figure 4-4 Components page

4.4.1 Add a software component into the project

Smart Configurator supports two types of software components: Code Generator and Firmware Integration
Technology. In the following sub-sections, the reader is guided through the steps to configure the MCU for a
simple project containing interrupts for switch inputs, timers, ADC and a SCI by component of Code Generator.

Click ‘Add component’ icon.

Figure 4-5 Add a Code Generator component (1)

In ‘Software Component Selection’ dialog -> Type, select ‘Code Generator’.

Figure 4-6 Add a Code Generator component (2)

RSKRX130-512KB 4. Smart Configurator Using the e2 studio plug in

R20UT3927EG0100 Rev. 1.00 Page 17 of 66
Jun 30, 2017

4.4.2 8-Bit Timer

TMR0 will be used as an interval timer for generation of accurate delays. Select ‘8-Bit Timer’ as shown in
Figure 4-7 below then click ‘Next’.

Figure 4-7 Select 8-Bit Timer

In ‘Add new configuration for selected component’ dialog -> Resource, select ‘TMR0’ as shown in Figure 4-8
below then click ‘Finish’.

Figure 4-8 Select Resource – TMR0

RSKRX130-512KB 4. Smart Configurator Using the e2 studio plug in

R20UT3927EG0100 Rev. 1.00 Page 18 of 66
Jun 30, 2017

In ‘Config_TMR0’ configure TMR0 as shown in Figure 4-9. This timer is configured to generate a high priority
interrupt every 1ms. We will use this interrupt later in the tutorial to provide an API for generating high
accuracy delays required in our application.

Figure 4-9 Config_TMR0 setting

4.4.3 Compare Match Timer

CMT0 and CMT1 will be used as timers in de-bouncing of switch interrupts.

Click ‘Add component’ icon. In ‘Software Component Selection’ dialog -> Type, select ‘Code Generator’.
Select ‘Compare Match Timer’ as shown in Figure 4-10 then click ‘Next’.

Figure 4-10 Select Compare Match Timer

RSKRX130-512KB 4. Smart Configurator Using the e2 studio plug in

R20UT3927EG0100 Rev. 1.00 Page 19 of 66
Jun 30, 2017

In ‘Add new configuration for selected component’ dialog -> Resource, select ‘CMT0’ as shown in Figure 4-11
below then click ‘Finish’.

Figure 4-11 Select Resource - CMT0

In the ‘Config_CMT0’ configures CMT0 as shown in Figure 4-12. This timer is configured to generate a high
priority interrupt after 20ms. This timer is used as our short switch de-bounce timer later in this tutorial.

Figure 4-12 Config_CMT0 setting

Click ‘Add component’ icon. In ‘Software Component Selection’ dialog -> Type, select ‘Code Generator’.
Select ‘Compare Match Timer’ then click ‘Next’. In ‘Add new configuration for selected component’ dialog ->
Resource, select ‘CMT1’ as shown in Figure 4-13 below then click ‘Finish’.

Figure 4-13 Select Resource – CMT1

RSKRX130-512KB 4. Smart Configurator Using the e2 studio plug in

R20UT3927EG0100 Rev. 1.00 Page 20 of 66
Jun 30, 2017

Navigate to the ‘Config_CMT1’ and configure CMT1 as shown in Figure 4-14. This timer is configured to
generate a high priority interrupt after 200ms. This timer is used as our short switch de-bounce timer later in
this tutorial.

Figure 4-14 Config_CMT1 setting

4.4.4 Interrupt Controller Unit

Referring to the RSK schematic, SW1 is connected to IRQ1 (P31) and SW2 is connected to IRQ2 (P32).
SW3 is connected IRQ6(P16) and the ADTRG0n. Tutorial used ADTRG0n and will be configured later in
§4.4.8.

Click ‘Add component’ icon. In ‘Software Component Selection’ dialog -> Type, select ‘Code Generator’.
Select ‘Interrupt Controller’ as shown in Figure 4-15 then click ‘Next’.

Figure 4-15 Select Interrupt Controller

RSKRX130-512KB 4. Smart Configurator Using the e2 studio plug in

R20UT3927EG0100 Rev. 1.00 Page 21 of 66
Jun 30, 2017

In ‘Add new configuration for selected component’ dialog -> Resource, select ‘ICU’ as shown in Figure 4-16
below then click ‘Finish’.

Figure 4-16 Select resource – ICU

Navigate to the ‘Config_ICU’, configure these two interrupts as falling edge triggered as shown in Figure 4-17
below.

Figure 4-17 Config_ICU setting

RSKRX130-512KB 4. Smart Configurator Using the e2 studio plug in

R20UT3927EG0100 Rev. 1.00 Page 22 of 66
Jun 30, 2017

4.4.5 Ports

Referring to the RSK schematic, LED0 is connected to PD3, LED1 is connected to PD4, LED2 is connected to
PE6 and LED3 is connected to PE7. P17 is used as one of the LCD control lines, together with PB2, PC2 and
PC3.

Click ‘Add component’ icon. In ‘Software Component Selection’ dialog -> Type, select ‘Code Generator’.
Select ‘Ports’ as shown in Figure 4-18 then click ‘Next’.

Figure 4-18 Select Ports

In ‘Add new configuration for selected component’ dialog -> Resource, select ‘PORT’ as shown in Figure 4-19
below then click ‘Finish’.

Figure 4-19 Select resource – PORT

RSKRX130-512KB 4. Smart Configurator Using the e2 studio plug in

R20UT3927EG0100 Rev. 1.00 Page 23 of 66
Jun 30, 2017

‘PORT1’, ‘PORTB’, ‘PORTC’, ‘PORTD’, ‘PORTE’ tick box is checked as shown in Figure 4-20 below.

Figure 4-20 Select Port selection

Navigate to the ‘Ports’ configure these four I/O lines and LCD control lines as shown in Figure 4-21, Figure
4-22, Figure 4-23, Figure 4-24 and Figure 4-25 below. Ensure that the ‘Output 1’ tick box is checked, except
PC3. Select ‘PORT1’ tab.

Figure 4-21 I/O ports – Port1

RSKRX130-512KB 4. Smart Configurator Using the e2 studio plug in

R20UT3927EG0100 Rev. 1.00 Page 24 of 66
Jun 30, 2017

Figure 4-22 I/O ports – PortB

Figure 4-23 I/O ports – PortC

RSKRX130-512KB 4. Smart Configurator Using the e2 studio plug in

R20UT3927EG0100 Rev. 1.00 Page 25 of 66
Jun 30, 2017

Figure 4-24 I/O ports – PortD

Figure 4-25 I/O ports – PortE

RSKRX130-512KB 4. Smart Configurator Using the e2 studio plug in

R20UT3927EG0100 Rev. 1.00 Page 26 of 66
Jun 30, 2017

4.4.6 SCI/SCIF Asynchronous Mode

In the RX130-512KB SCI1 is connected via a Renesas RL78/G1C to provide a USB virtual COM port as
shown in the schematic.

Click ‘Add component’ icon. In ‘Software Component Selection’ dialog -> Type, select ‘Code Generator’.
Select ‘SCI/SCIF Asynchronous Mode’ as shown in Figure 4-26 then click ‘Next’.

Figure 4-26 Select SCI/SCIF Asynchronous Mode

In ‘Add new configuration for selected component’ dialog -> Work mode, select ‘Transmission/Reception’ as
shown in Figure 4-27 below.

Figure 4-27 Select Work mode – Transmission/Reception

RSKRX130-512KB 4. Smart Configurator Using the e2 studio plug in

R20UT3927EG0100 Rev. 1.00 Page 27 of 66
Jun 30, 2017

In ‘Resource’, select ‘SCI1’ as shown in Figure 4-28 below.

Figure 4-28 Select Resource – SCI1

Ensure that the ‘Configuration name’ updates to ‘Config_SCI1’ as shown in Figure 4-29 below then click
‘Finish’.

Figure 4-29 Ensure Configuration name - Config_SCI1

RSKRX130-512KB 4. Smart Configurator Using the e2 studio plug in

R20UT3927EG0100 Rev. 1.00 Page 28 of 66
Jun 30, 2017

Configure SCI1 as shown in Figure 4-30. Ensure the ‘Start bit edge detection’ is set as ‘Falling edge on
RXD1 pin’ and the ‘Bit rate’ is set to 19200 bps. All other settings remain at their defaults.

Figure 4-30 Config_SCI1 setting

RSKRX130-512KB 4. Smart Configurator Using the e2 studio plug in

R20UT3927EG0100 Rev. 1.00 Page 29 of 66
Jun 30, 2017

4.4.7 SPI Clock Synchronous Mode

In the RSKRX130-512KB SCI6 is used as an SPI master for the Pmod LCD on the PMOD1 connector as

shown in the schematic. Click ‘Add component’ icon. In ‘Software Component Selection’ dialog -> Type,
select ‘Code Generator’. Select ‘SPI Clock Synchronous Mode’ as shown in Figure 4-31 then click ‘Next’.

Figure 4-31 Select SPI Clock Synchronous Mode

Ensure Operation, select ‘Master transmit only’ as shown in Figure 4-32 below.

Figure 4-32 Select Operation – Master Transmit only

RSKRX130-512KB 4. Smart Configurator Using the e2 studio plug in

R20UT3927EG0100 Rev. 1.00 Page 30 of 66
Jun 30, 2017

In ‘Resource’, select ‘SCI6’ as shown in Figure 4-33 below.

Figure 4-33 Select Resource – SCI6

Ensure that the ‘Configuration name’ updates to ‘Config_SCI6’ as shown in Figure 4-34 below then click
‘Finish’

Figure 4-34 Ensure Configuration name - Config_SCI6

RSKRX130-512KB 4. Smart Configurator Using the e2 studio plug in

R20UT3927EG0100 Rev. 1.00 Page 31 of 66
Jun 30, 2017

Configure SCI6 as shown in Figure 4-35. Ensure the ‘Transfer direction’ is set as ‘MSB-first’ and the ‘Bit rate’
is set to 8000 kbps. All other settings remain at their defaults.

Figure 4-35 Config_SCI6 setting

RSKRX130-512KB 4. Smart Configurator Using the e2 studio plug in

R20UT3927EG0100 Rev. 1.00 Page 32 of 66
Jun 30, 2017

4.4.8 Single Scan Mode S12AD

We will be using the S12AD on Single Scan Mode on the AN000 input, which is connected to the RV1
potentiometer output on the RSK. The conversion start trigger will be via the pin connected to SW3. Click

‘Add component’ icon. In ‘Software Component Selection’ dialog -> Type, select ‘Code Generator’. Select
‘Single Scan Mode S12AD’ as shown in Figure 4-36 then click ‘Next’.

Figure 4-36 Select Single Scan Mode S12AD

In ‘Add new configuration for selected component’ dialog -> Resource, select ‘S12AD0’ as shown in Figure
4-37 below then click ‘Finish’.

Figure 4-37 Select resource – S12AD0

RSKRX130-512KB 4. Smart Configurator Using the e2 studio plug in

R20UT3927EG0100 Rev. 1.00 Page 33 of 66
Jun 30, 2017

Configure S12AD0 as shown in Figure 4-38 and Figure 4-39. Ensure the ‘Analog input channel’ tick box for
AN000 is checked and the ‘Start trigger source’ is set to ‘A/D conversion start trigger pin’. All other settings
remain at their defaults.

Figure 4-38 Config_S12AD0 setting (1)

RSKRX130-512KB 4. Smart Configurator Using the e2 studio plug in

R20UT3927EG0100 Rev. 1.00 Page 34 of 66
Jun 30, 2017

Figure 4-39 Config_S12AD0 setting (2)

RSKRX130-512KB 4. Smart Configurator Using the e2 studio plug in

R20UT3927EG0100 Rev. 1.00 Page 35 of 66
Jun 30, 2017

4.5 Pins configuration page

Smart Configurator assigns pins to the software components that are added to the project. Assignment of the
pins can be changed using the Pins page.

Figure 4-40 Pin configuration page

4.5.1 Change pin assignment of a software component

To change the pin assignment of a software component in the Pin Function list, click to change view to
show by Software Components.

Figure 4-41 Change view to show by Software Components

RSKRX130-512KB 4. Smart Configurator Using the e2 studio plug in

R20UT3927EG0100 Rev. 1.00 Page 36 of 66
Jun 30, 2017

Select the Config_ICU of Software Components. In the Pin Function list -> Assignment column, change the
pin assignment IRQ1 to P31, IRQ2 to P32. Ensure the ‘Enable’ tick box of IRQ1 and IRQ2 are checked, as
shown in Figure 4-42.

Figure 4-42 Configure pin assignment - Config_ICU

Select the Config_SCI1 of Software Components. In the Pin Function list -> Assignment column, Ensure the
‘Enable’ tick box of RXD1 and TXD1 are checked and Assignment column of RXD1 is P30 and TXD1 is P26
as shown in Figure 4-43.

Figure 4-43 Configure pin assignment - Config_SCI1

RSKRX130-512KB 4. Smart Configurator Using the e2 studio plug in

R20UT3927EG0100 Rev. 1.00 Page 37 of 66
Jun 30, 2017

Select the Config_SCI6 of Software Components. In the Pin Function list -> Assignment column, Ensure the
‘Enable’ tick box of SCK6 and SMOSI6 are checked and Assignment column of SCK6 is PB3, SMOSI6 is PB1
as shown in Figure 4-44.

Figure 4-44 Configure pin assignment - Config_SCI6

Select the Config_S12AD0 of Software Components. In the Pin Function list -> Assignment column, Ensure
the ‘Enable’ tick box of AN000, AVCC0, AVSS0 and ADTRG0# are checked and Assignment column of AN000
is P40, ADTRG0# is P16 as shown in Figure 4-45.

Figure 4-45 Configure pin assignment - Config_S12AD0

RSKRX130-512KB 4. Smart Configurator Using the e2 studio plug in

R20UT3927EG0100 Rev. 1.00 Page 38 of 66
Jun 30, 2017

Peripheral function configuration is now complete. Save the project using the File -> Save, then click
‘ Generate Code’ at location of Figure 4-46.

Figure 4-46 Generate Code Button

The Console pane should report ‘Code generation is successful’, as shown Figure 4-47 below.

Figure 4-47 Smart Configurator console

4.6 Building the Project

The project template created by Smart Configurator can now be built. In the Project Explorer pane expand the
‘src’ folder then smc_gen folder.

Figure 4-48 Generated folder structure

Switch back to the ‘C/C++’ perspective using the button on the top right of the e2 studio workspace. Use

‘Build Project’ from the ‘Project’ menu or the button to build the tutorial. The project will build with no
errors.

RSKRX130-512KB 5. User Code Integration

R20UT3927EG0100 Rev. 1.00 Page 39 of 66
Jun 30, 2017

5. User Code Integration

In this section, the remaining application code is added to the project. Source files found on the RSK Web
Installer are copied into the workspace and the user is directed to add code in the user areas of the code
generator files.

Code must be inserted in to the user code area in many files in this project, in the areas delimited by
comments as follows:

/* Start user code for _xxxxx_. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */

Where _xxxx_ depends on the particular area of code, i.e. ‘function’ for insertion of user functions and
prototypes, ‘global’ for insertion of user global variable declarations, or ‘include’ for insertion of pre-processor
include directives. User code inserted inside these comment delimiters is protected from being overwritten by
Smart Configurator, if the user needs to subsequently change any of the Smart Configurator-generated code.

5.1 LCD Code Integration

API functions for the Okaya LCD display are provided with the RSK. Locate the files ascii.h, r_okaya_lcd.h,
ascii.c, and r_okaya_lcd.c on the RSK Web Installer. These files can be found in the Tutorial project for e2
studio. Copy these files into the C:\Workspace\SC_Tutorial\src directory. The files will be automatically added
to the project as shown in Figure 5-1.

Figure 5-1 Adding files to the project

RSKRX130-512KB 5. User Code Integration

R20UT3927EG0100 Rev. 1.00 Page 40 of 66
Jun 30, 2017

In the e2 studio Project Tree, expand the ‘src\smc_gen\general’ folder and open the file ‘r_cg_userdefine.h’ by
double-clicking on it. Insert the following #defines in between the user code delimiter comments as shown
below.

/* Start user code for function. Do not edit comment generated here */

#define TRUE (1)
#define FALSE (0)

/* End user code. Do not edit comment generated here */

In the e2 studio Project Tree, expand the ‘src’ folder and open the file ‘SC_Tutorial.c’ by double-clicking on it.
Add header files near the declarations ‘#include r_smc_entry.h’.

#include "r_smc_entry.h"
#include "r_okaya_lcd.h"
#include "r_cg_userdefine.h"

Scroll down to the ‘main’ function and insert the highlighted code as shown below into the beginning of the
‘main’ function:

void main(void)
{
 /* Initialize the debug LCD */
 R_LCD_Init();

 /* Displays the application name on the debug LCD */
 R_LCD_Display(0, (uint8_t *)" RSKRX130-512KB ");
 R_LCD_Display(1, (uint8_t *)" Tutorial ");
 R_LCD_Display(2, (uint8_t *)" Press Any Switch ");
 while (1U)
 {
 ;
 }
}

RSKRX130-512KB 5. User Code Integration

R20UT3927EG0100 Rev. 1.00 Page 41 of 66
Jun 30, 2017

5.1.1 SPI Code

The Okaya LCD display is driven by the SPI Master that was configured using Smart Configurator in §4.4.7. In
the e2 studio Project Tree, expend the ’src\smc_gen\Config_SCI6’ folder and open the file Config_SCI6.h’ by
double-clicking on it. Insert the following code in the user code area at the end of the file:

/* Start user code for function. Do not edit comment generated here */

/* Exported functions used to transmit a number of bytes and wait for completion */
MD_STATUS R_SCI6_SPIMasterTransmit(uint8_t * const tx_buf, const uint16_t tx_num);

/* End user code. Do not edit comment generated here */

Now, open the Config_SCI6_user.c file and insert the following code in the user area for global:

/* Start user code for global. Do not edit comment generated here */

/* Flag used locally to detect transmission complete */
static volatile uint8_t sci6_txdone;

/* End user code. Do not edit comment generated here */

Insert the following code in the transmit end call-back function for SCI6:

static void r_Config_SCI6_callback_transmitend(void)
{
 /* Start user code for r_Config_SCI6_callback_transmitend. Do not edit comment generated here */

 sci6_txdone = TRUE;

 /* End user code. Do not edit comment generated here */
}

Now insert the following function in the user code area at the end of the file:

/* Start user code for adding. Do not edit comment generated here */

/***
* Function Name: R_SCI6_SPIMasterTransmit
* Description : This function sends SPI6 data to slave device.
* Arguments : tx_buf -
* transfer buffer pointer
* tx_num -
* buffer size
* Return Value : status -
* MD_OK or MD_ARGERROR
***/
MD_STATUS R_SCI6_SPIMasterTransmit (uint8_t * const tx_buf,
 const uint16_t tx_num)
{
 MD_STATUS status = MD_OK;

 /* Clear the flag before initiating a new transmission */
 sci6_txdone = FALSE;

 /* Send the data using the API */
 status = R_Config_SCI6_SPI_Master_Send(tx_buf, tx_num);

 /* Wait for the transmit end flag */
 while (FALSE == sci6_txdone)
 {
 /* Wait */
 }

 return (status);
}

/***
* End of function R_SCI6_SPIMasterTransmit
***/

This function uses the transmit end callback function to perform flow control on the SPI transmission to the
LCD, and is used as the main API call in the LCD code module.

RSKRX130-512KB 5. User Code Integration

R20UT3927EG0100 Rev. 1.00 Page 42 of 66
Jun 30, 2017

5.1.2 TMR Code

The LCD code needs to insert delays to meet the timing requirements of the display module. This is achieved
using the dedicated timer which was configured using Smart Configurator in §4.4.2. In the e2 studio Project
Tree, expend ‘src\smc_gen\Config_TMR0’ folder and open the file ‘Config_TMR0.h’ and insert the following
code in the user area for function at the end of the file:

/* Start user code for function. Do not edit comment generated here */

void R_TMR_MsDelay(const uint16_t millisec);

/* End user code. Do not edit comment generated here */

Open the file Config_TMR0_user.c and insert the following code in the user area for global at the beginning of
the file:

/* Start user code for global. Do not edit comment generated here */

static volatile uint8_t one_ms_delay_complete = FALSE;

/* End user code. Do not edit comment generated here */

Scroll down to the r_Config_TMR0_cmia0_interrupt function and insert the following line in the user code
area:

static void r_Config_TMR0_cmia0_interrupt(void)
{
 /* Start user code for r_Config_TMR0_cmia0_interrupt. Do not edit comment generated here */

 one_ms_delay_complete = TRUE;

 /* End user code. Do not edit comment generated here */
}

Then insert the following function in the user code area at the end of the file:

/* Start user code for adding. Do not edit comment generated here */

/***
* Function Name: R_TMR_MsDelay
* Description : Uses TMR0 to wait for a specified number of milliseconds
* Arguments : uint16_t millisecs, number of milliseconds to wait
* Return Value : None
***/
void R_TMR_MsDelay (const uint16_t millisec)
{
 uint16_t ms_count = 0;

 do
 {
 R_Config_TMR0_Start();
 while (FALSE == one_ms_delay_complete)
 {
 /* Wait */
 }
 R_Config_TMR0_Stop();
 one_ms_delay_complete = FALSE;
 ms_count++;
 } while (ms_count < millisec);
}
/***
End of function R_TMR_MsDelay
***/

RSKRX130-512KB 5. User Code Integration

R20UT3927EG0100 Rev. 1.00 Page 43 of 66
Jun 30, 2017

5.2 Additional include paths

Before the project can be built the compiler needs some additional include paths added. Select the
SC_Tutorial project in the Project Explorer pane. Right click in the Project Explorer window, and select

'Properties'. Navigate to ‘C/C++ Build -> Settings ->Compiler -> Source and click the button as shown in
Figure 5-2.

Figure 5-2 Adding additional search paths

In the ‘Add directory path’ dialog, click the ‘Workspace’ button and in the ‘Folder selection’ dialog browse to the
‘SC_Tutorial/src’ folder and click ‘OK’. e2 studio formats the path as show in Figure 5-3 below.

Figure 5-3 Adding workspace search path

‘Settings’ dialog will appear, click ‘Yes’ to complete the include file directories.

Figure 5-4 Settings dialog

Select ‘Build Project’ from the ‘Project’ menu, or use the button. e2 studio will build the project with no
errors.

The project may now be run using the debugger as described in §6. The program will display ‘RSKRX130-
512KB Tutorial Press Any Switch’ on three lines in the LCD display.

RSKRX130-512KB 5. User Code Integration

R20UT3927EG0100 Rev. 1.00 Page 44 of 66
Jun 30, 2017

5.3 Switch Code Integration

API functions for user switch control are provided with the RSK. Locate the files rskrx130_512kbdef.h,
r_rsk_switch.h and r_rsk_switch.c on the RSK Web Installer. These files can be found in the Tutorial project
for e2 studio. Copy these files into the C:\Workspace\SC_Tutorial\src directory.

The switch code uses interrupt code in the files Config_ICU.h, Config_ICU.c and Config_ICU_user.c and timer
code in the files Config_CMT0.h, Config_CMT0.c and Config_CMT0_user.c, Config_CMT1.h, Config_CMT1.c
and Config_CMT1_user.c as described in §4.4.3 and §4.4.4. It is necessary to provide additional user code in
these files to implement the switch press/release detection and de-bouncing required by the API functions in
r_rsk_switch.c.

5.3.1 Interrupt Code

In the e2 studio Project Tree, expand the ‘src/smc_gen/Config_ICU’ folder and open the file ‘Config_ICU.h’ by
double-clicking on it. Insert the following code in the user code area at the end of the file:

/* Start user code for function. Do not edit comment generated here */

/* Function prototypes for detecting and setting the edge trigger of ICU_IRQ */
uint8_t R_ICU_IRQIsFallingEdge(const uint8_t irq_no);
void R_ICU_IRQSetFallingEdge(const uint8_t irq_no, const uint8_t set_f_edge);
void R_ICU_IRQSetRisingEdge(const uint8_t irq_no, const uint8_t set_r_edge);

/* End user code. Do not edit comment generated here */

RSKRX130-512KB 5. User Code Integration

R20UT3927EG0100 Rev. 1.00 Page 45 of 66
Jun 30, 2017

Now, open the Config_ICU.c file and insert the following code in the user code area at the end of the file:

/* Start user code for adding. Do not edit comment generated here */

/***
* Function Name: R_ICU_IRQIsFallingEdge
* Description : This function returns 1 if the specified ICU_IRQ is set to
* falling edge triggered, otherwise 0.
* Arguments : uint8_t irq_no
* Return Value : 1 if falling edge triggered, 0 if not
***/
uint8_t R_ICU_IRQIsFallingEdge (const uint8_t irq_no)
{
 uint8_t falling_edge_trig = 0x0;

 if (ICU.IRQCR[irq_no].BYTE & _04_ICU_IRQ_EDGE_FALLING)
 {
 falling_edge_trig = 1;
 }

 return (falling_edge_trig);
}

/***
* End of function R_ICU_IRQIsFallingEdge
***/

/***
* Function Name: R_ICU_IRQSetFallingEdge
* Description : This function sets/clears the falling edge trigger for the
* specified ICU_IRQ.
* Arguments : uint8_t irq_no
* uint8_t set_f_edge, 1 if setting falling edge triggered, 0 if
* clearing
* Return Value : None
***/
void R_ICU_IRQSetFallingEdge (const uint8_t irq_no, const uint8_t set_f_edge)
{
 if (1 == set_f_edge)
 {
 ICU.IRQCR[irq_no].BYTE |= _04_ICU_IRQ_EDGE_FALLING;
 }
 else
 {
 ICU.IRQCR[irq_no].BYTE &= (uint8_t) ~_04_ICU_IRQ_EDGE_FALLING;
 }
}

/**
* End of function R_ICU_IRQSetFallingEdge
***/

/***
* Function Name: R_ICU_IRQSetRisingEdge
* Description : This function sets/clear the rising edge trigger for the
* specified ICU_IRQ.
* Arguments : uint8_t irq_no
* uint8_t set_r_edge, 1 if setting rising edge triggered, 0 if
* clearing
* Return Value : None
***/
void R_ICU_IRQSetRisingEdge (const uint8_t irq_no, const uint8_t set_r_edge)
{
 if (1 == set_r_edge)
 {
 ICU.IRQCR[irq_no].BYTE |= _08_ICU_IRQ_EDGE_RISING;
 }
 else
 {
 ICU.IRQCR[irq_no].BYTE &= (uint8_t) ~_08_ICU_IRQ_EDGE_RISING;
 }
}

/**
* End of function R_ICU_IRQSetRisingEdge
***/

/* End user code. Do not edit comment generated here */

RSKRX130-512KB 5. User Code Integration

R20UT3927EG0100 Rev. 1.00 Page 46 of 66
Jun 30, 2017

Open the Config_ICU_user.c file and insert the following code in the user code area for include near the top of
the file:

/* Start user code for include. Do not edit comment generated here */

/* Defines switch callback functions required by interrupt handlers */
#include "r_rsk_switch.h"

/* End user code. Do not edit comment generated here */

In the same file insert the following code in the user code area inside the function r_Config_ICU_irq1_interrupt:

 /* Start user code. Do not edit comment generated here */

 /* Switch 1 callback handler */
 R_SWITCH_IsrCallback1();

 /* End user code. Do not edit comment generated here */

In the same file insert the following code in the user code area inside the function r_Config_ICU_irq2_interrupt:

 /* Start user code. Do not edit comment generated here */

 /* Switch 2 callback handler */
 R_SWITCH_IsrCallback2();

 /* End user code. Do not edit comment generated here */

RSKRX130-512KB 5. User Code Integration

R20UT3927EG0100 Rev. 1.00 Page 47 of 66
Jun 30, 2017

5.3.2 De-bounce Timer Code

In the e2 studio Project Tree, expand the ‘src\smc_gen\Config_CMT0’ folder and open the
‘Config_CMT0_user.c’ file and insert the following code in the user code area for include near the top of the
file:

/* Start user code for include. Do not edit comment generated here */

/* Defines switch callback functions required by interrupt handlers */
#include "r_rsk_switch.h"

/* End user code. Do not edit comment generated here */

In the ‘Config_CMT0_user.c’ file, insert the following code in the user code area inside the function
r_Config_CMT0_cmi0_interrupt:

 /* Start user code for r_Config_CMT0_cmi0_interrupt. Do not edit comment generated here */

 /* Stop this timer - we start it again in the de-bounce routines */
 R_Config_CMT0_Stop();

 /* Call the de-bounce call back routine */
 R_SWITCH_DebounceIsrCallback();

 /* End user code. Do not edit comment generated here */

In the e2 studio Project Tree, expand the ‘src\smc_gen\Config_CMT1’ folder and open the
‘Config_CMT1_user.c’ file and insert the following code in the user code area for include near the top of the
file:

/* Start user code for include. Do not edit comment generated here */

/* Defines switch callback functions required by interrupt handlers */
#include "r_rsk_switch.h"

Open the ‘Config_CMT1_user.c’ file and insert the following code in the user code area inside the function
r_Config_CMT1_cmi1_interrupt:

 /* Start user code for r_Config_CMT1_cmi1_interrupt. Do not edit comment generated here */

 /* Stop this timer - we start it again in the de-bounce routines */
 R_Config_CMT1_Stop();

 /* Call the de-bounce call back routine */
 R_SWITCH_DebounceIsrCallback();

 /* End user code. Do not edit comment generated here */

RSKRX130-512KB 5. User Code Integration

R20UT3927EG0100 Rev. 1.00 Page 48 of 66
Jun 30, 2017

5.3.3 Main Switch and ADC Code

In this part of the tutorial we add the code to act on the switch presses to activate A/D conversions and display
the result on the LCD. In §4.4.8 we configured the ADC to be triggered from the ADTRG0# pin, SW3. In this
code, we also perform software triggered A/D conversion from the user switches SW1 and SW2, by
reconfiguring the ADC trigger source on-the-fly once an SW1 or SW2 press is detected.

In the e2 studio Project Tree, expand the ‘src\smc_gen\general’ folder and open the file ‘r_cg_userdefine.h’.
Insert the following code the user code area, resulting in the code shown below

/* Start user code for function. Do not edit comment generated here */

#define TRUE (1)
#define FALSE (0)

extern volatile uint8_t g_adc_trigger;

/* End user code. Do not edit comment generated here */

In the e2 studio Project Tree, expand the ‘src’ folder and Open the file ‘SC_Tutorial.c’ and add the highlighted
code, resulting in the code shown below:

#include "r_smc_entry.h"
#include "r_okaya_lcd.h"
#include "r_rsk_switch.h"
#include "Config_S12AD0.h"
#include "r_cg_userdefine.h"

/* Variable for flagging user requested ADC conversion */
volatile uint8_t g_adc_trigger = FALSE;

/* Prototype declaration for cb_switch_press */
static void cb_switch_press (void);

/* Prototype declaration for get_adc */
static uint16_t get_adc(void);

/* Prototype declaration for lcd_display_adc */
static void lcd_display_adc (const uint16_t adc_result);

RSKRX130-512KB 5. User Code Integration

R20UT3927EG0100 Rev. 1.00 Page 49 of 66
Jun 30, 2017

Next add the highlighted code below in the main function and the code inside the while loop, resulting in the
code shown below:

void main(void)
{
 /* Initialize the switch module */
 R_SWITCH_Init();

 /* Set the call back function when SW1 or SW2 is pressed */
 R_SWITCH_SetPressCallback(cb_switch_press);

 /* Initialize the debug LCD */
 R_LCD_Init();

 /* Displays the application name on the debug LCD */
 R_LCD_Display(0, (uint8_t *)" RSKRX130-512KB ");
 R_LCD_Display(1, (uint8_t *)" Tutorial ");
 R_LCD_Display(2, (uint8_t *)" Press Any Switch ");

 /* Start the A/D converter */
 R_Config_S12AD0_Start();

 while (1U)
 {
 uint16_t adc_result;

 /* Wait for user requested A/D conversion flag to be set (SW1 or SW2) */
 if (TRUE == g_adc_trigger)
 {
 /* Call the function to perform an A/D conversion */
 adc_result = get_adc();

 /* Display the result on the LCD */
 lcd_display_adc(adc_result);

 /* Reset the flag */
 g_adc_trigger = FALSE;
 }
 /* SW3 is directly wired into the ADTRG0n pin so will
 cause the interrupt to fire */
 else if (TRUE == g_adc_complete)
 {
 /* Get the result of the A/D conversion */
 R_Config_S12AD0_Get_ValueResult(ADCHANNEL0, &adc_result);

 /* Display the result on the LCD */
 lcd_display_adc(adc_result);

 /* Reset the flag */
 g_adc_complete = FALSE;
 }
 else
 {
 /* do nothing */
 }
 }
}

Then add the definition for the switch call-back, get_adc and lcd_display_adc functions below the main
function, as shown below:

/**
* Function Name : cb_switch_press
* Description : Switch press callback function. Sets g_adc_trigger flag.
* Argument : none
* Return value : none
**/
static void cb_switch_press (void)
{
 /* Check if switch 1 or 2 was pressed */
 if (g_switch_flag & (SWITCHPRESS_1 | SWITCHPRESS_2))
 {

RSKRX130-512KB 5. User Code Integration

R20UT3927EG0100 Rev. 1.00 Page 50 of 66
Jun 30, 2017

 /* Set the flag indicating a user requested A/D conversion is required */
 g_adc_trigger = TRUE;

 /* Clear flag */
 g_switch_flag = 0x0;
 }
}
/**
* End of function cb_switch_press
**/

/**
* Function Name : get_adc
* Description : Reads the ADC result, converts it to a string and displays
* it on the LCD panel.
* Argument : none
* Return value : uint16_t adc value
**/
static uint16_t get_adc (void)
{
 /* A variable to retrieve the adc result */
 uint16_t adc_result;

 /* Stop the A/D converter being triggered from the pin ADTRG0n */
 R_Config_S12AD0_Stop();

 /* Start a conversion */
 R_S12AD0_SWTriggerStart();

 /* Wait for the A/D conversion to complete */
 while (FALSE == g_adc_complete)
 {
 /* Wait */
 }

 /* Stop conversion */
 R_S12AD0_SWTriggerStop();

 /* Clear ADC flag */
 g_adc_complete = FALSE;

 R_Config_S12AD0_Get_ValueResult(ADCHANNEL0, &adc_result);

 /* Set AD conversion start trigger source back to ADTRG0n pin */
 R_Config_S12AD0_Start();

 return (adc_result);
}
/**
* End of function get_adc
**/

/**
* Function Name : lcd_display_adc
* Description : Converts adc result to a string and displays
* it on the LCD panel.
* Argument : uint16_t adc result
* Return value : none
**/
static void lcd_display_adc (const uint16_t adc_result)
{
 /* Declare a temporary variable */
 uint8_t a;

 /* Declare temporary character string */
 char lcd_buffer[11] = " ADC: XXXH";

 /* Convert ADC result into a character string, and store in the local.
 Casting to ensure use of correct data type. */
 a = (uint8_t)((adc_result & 0x0F00) >> 8);
 lcd_buffer[6] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));
 a = (uint8_t)((adc_result & 0x00F0) >> 4);

RSKRX130-512KB 5. User Code Integration

R20UT3927EG0100 Rev. 1.00 Page 51 of 66
Jun 30, 2017

 lcd_buffer[7] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));
 a = (uint8_t)(adc_result & 0x000F);
 lcd_buffer[8] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));

 /* Display the contents of the local string lcd_buffer */
 R_LCD_Display(3, (uint8_t *)lcd_buffer);

}
/**
* End of function lcd_display_adc
**/

In the e2 studio Project Tree, expand the ‘src\smc_gen\Config_S12AD0’ folder and open the file
‘Config_S12AD0.h’ by double-clicking on it. Insert the following code in the user code area for function,
resulting in the code shown below:

/* Start user code for function. Do not edit comment generated here */

/* Flag indicates when A/D conversion is complete */
extern volatile uint8_t g_adc_complete;

/* Functions for starting and stopping software triggered A/D conversion */
void R_S12AD0_SWTriggerStart(void);
void R_S12AD0_SWTriggerStop(void);

/* End user code. Do not edit comment generated here */

Open the file ‘Config_S12AD0.c’ by double-clicking on it. Insert the following code in the user code area for
adding at the end of the file, as shown below:

/* Start user code for adding. Do not edit comment generated here */

/***
* Function Name: R_S12AD0_SWTriggerStart
* Description : This function starts the AD converter.
* Arguments : None
* Return Value : None
***/
void R_S12AD0_SWTriggerStart(void)
{
 IR(S12AD, S12ADI0) = 0U;
 IEN(S12AD, S12ADI0) = 1U;
 S12AD.ADCSR.BIT.ADST = 1U;
}

/***
End of function R_S12AD0_SWTriggerStart
***/

/***
* Function Name: R_S12AD0_SWTriggerStop
* Description : This function stops the AD converter.
* Arguments : None
* Return Value : None
***/
void R_S12AD0_SWTriggerStop(void)
{
 S12AD.ADCSR.BIT.ADST = 0U;
 IEN(S12AD, S12ADI0) = 0U;
 IR(S12AD, S12ADI0) = 0U;
}

/***
End of function R_S12AD0_SWTriggerStop
***/

/* End user code. Do not edit comment generated here */

RSKRX130-512KB 5. User Code Integration

R20UT3927EG0100 Rev. 1.00 Page 52 of 66
Jun 30, 2017

Open the file Config_S12AD0_user.c and insert the following code in the user code area for global, resulting in
the code shown below:

/* Start user code for global. Do not edit comment generated here */

/* Flag indicates when A/D conversion is complete */
volatile uint8_t g_adc_complete;

/* End user code. Do not edit comment generated here */

Insert the following code in the user code area of the r_Config_S12AD0_interrupt function, resulting in the
code shown below:

static void r_Config_S12AD0_interrupt(void)
{
 /* Start user code for r_Config_S12AD0_interrupt. Do not edit comment generated here */

 g_adc_complete = TRUE;

 /* End user code. Do not edit comment generated here */
}

Select ‘Build Project’ from the ‘Project’ menu, or use the button. e2 studio will build the project with no
errors.

The project may now be run using the debugger as described in §6. When any switch is pressed, the
program will perform an A/D conversion of the voltage level on the ADPOT line and display the result on the
LCD panel. Return to this point in the Tutorial to add the UART user code.

RSKRX130-512KB 5. User Code Integration

R20UT3927EG0100 Rev. 1.00 Page 53 of 66
Jun 30, 2017

5.4 Debug Code Integration

API functions for trace debugging via the RSK serial port are provided with the RSK. Locate the files
r_rsk_debug.h and r_rsk_debug.c on the RSK Web Installer. These files can be found in the RSKRX130-
512KB_Tutorial project for e2 studio. Copy these files into the C:\Workspace\SC_Tutorial\src directory.

In the r_rsk_debug.h file, ensure the following macro definition is included:

/* Macro for definition of serial debug transmit function - user edits this */
#define SERIAL_DEBUG_WRITE (R_SCI1_AsyncTransmit)

This macro is referenced in the r_rsk_debug.c file and allows easy re-direction of debug output if a different
debug interface is used.

5.5 UART Code Integration
5.5.1 SCI Code

In the e2 studio Project Tree, expand the ‘src\smc_gen\Config_SCI1’ folder and open the file ‘Config_SCI1.h’
by double-clicking on it. Insert the following code in the user code area at the end of the file:

/* Start user code for function. Do not edit comment generated here */

/* Exported functions used to transmit a number of bytes and wait for completion */
MD_STATUS R_SCI1_AsyncTransmit(uint8_t * const tx_buf, const uint16_t tx_num);

/* Character is used to receive key presses from PC terminal */
extern uint8_t g_rx_char;

/* End user code. Do not edit comment generated here */

Open the file ‘Config_SCI1_user.c.' Insert the following code in the user area for global near the beginning of
the file:
/* Start user code for global. Do not edit comment generated here */

/* Global used to receive a character from the PC terminal */
uint8_t g_rx_char;

/* Flag used locally to detect transmission complete */
static volatile uint8_t sci1_txdone;

/* End user code. Do not edit comment generated here */

In the same file, insert the following code in the user code area inside the
r_Config_SCI1_callback_transmitend function:

static void r_Config_SCI1_callback_transmitend(void)
{
 /* Start user code for r_Config_SCI1_callback_transmitend. Do not edit comment generated here */
 sci1_txdone = TRUE;

 /* End user code. Do not edit comment generated here */
}

RSKRX130-512KB 5. User Code Integration

R20UT3927EG0100 Rev. 1.00 Page 54 of 66
Jun 30, 2017

In the same file, insert the following code in the user code area inside the r_Config_SCI1_callback_receiveend
function:

void r_Config_SCI1_callback_receiveend(void)
{
 /* Start user code for r_Config_SCI1_callback_receiveend. Do not edit comment generated here */

 /* Check the contents of g_rx_char */
 if (('c' == g_rx_char) || ('C' == g_rx_char))
 {
 g_adc_trigger = TRUE;
 }

 /* Set up SCI1 receive buffer and callback function again */
 R_Config_SCI1_Serial_Receive((uint8_t *)&g_rx_char, 1);

 /* End user code. Do not edit comment generated here */
}

At the end of the file, in the user code area for adding, add the following function definition:

/***
* Function Name: R_SCI1_AsyncTransmit
* Description : This function sends SCI1 data and waits for the transmit end flag.
* Arguments : tx_buf -
* transfer buffer pointer
* tx_num -
* buffer size
* Return Value : status -
* MD_OK or MD_ARGERROR
***/
MD_STATUS R_SCI1_AsyncTransmit (uint8_t * const tx_buf, const uint16_t tx_num)
{
 MD_STATUS status = MD_OK;

 /* clear the flag before initiating a new transmission */
 sci1_txdone = FALSE;

 /* Send the data using the API */
 status = R_Config_SCI1_Serial_Send(tx_buf, tx_num);

 /* Wait for the transmit end flag */
 while (FALSE == sci1_txdone)
 {
 /* Wait */
 }
 return (status);
}

/***
* End of function R_SCI1_AsyncTransmit
***/

RSKRX130-512KB 5. User Code Integration

R20UT3927EG0100 Rev. 1.00 Page 55 of 66
Jun 30, 2017

5.5.2 Main UART code

Open the file ‘SC_Tutorial.c’. Add the following declaration to near the top of the file:

#include "r_smc_entry.h"
#include "r_okaya_lcd.h"
#include "r_rsk_switch.h"
#include "r_rsk_debug.h"
#include "Config_S12AD0.h"
#include "Config_SCI1.h"
#include "r_cg_userdefine.h"

/* Variable for flagging user requested ADC conversion */
volatile uint8_t g_adc_trigger = FALSE;

/* Prototype declaration for cb_switch_press */
static void cb_switch_press (void);

/* Prototype declaration for get_adc */
static uint16_t get_adc(void);

/* Prototype declaration for lcd_display_adc */
static void lcd_display_adc (const uint16_t adc_result);

/* Prototype declaration for uart_display_adc */
static void uart_display_adc(const uint8_t adc_count, const uint16_t adc_result);

/* Variable to store the A/D conversion count for user display */
static uint8_t adc_count = 0;

Add the following highlighted code to the user code area in the main function:

void main(void)
{
 /* Initialize the switch module */
 R_SWITCH_Init();

 /* Set the call back function when SW1 or SW2 is pressed */
 R_SWITCH_SetPressCallback(cb_switch_press);

 /* Initialize the debug LCD */
 R_LCD_Init();

 /* Displays the application name on the debug LCD */
 R_LCD_Display(0, (uint8_t *)" RSKRX130-512KB ");
 R_LCD_Display(1, (uint8_t *)" Tutorial ");
 R_LCD_Display(2, (uint8_t *)" Press Any Switch ");

 /* Start the A/D converter */
 R_Config_S12AD0_Start();

 /* Set up SCI1 receive buffer and callback function */
 R_Config_SCI1_Serial_Receive((uint8_t *)&g_rx_char, 1);

 /* Enable SCI1 operations */
 R_Config_SCI1_Start();

 while (1U)
 {
 uint16_t adc_result;

 /* Wait for user requested A/D conversion flag to be set (SW1 or SW2) */
 if (TRUE == g_adc_trigger)
 {
 /* Call the function to perform an A/D conversion */
 adc_result = get_adc();

 /* Display the result on the LCD */
 lcd_display_adc(adc_result);

 /* Increment the adc_count */
 if (16 == (++adc_count))
 {
 adc_count = 0;
 }

 /* Send the result to the UART */
 uart_display_adc(adc_count, adc_result);

RSKRX130-512KB 5. User Code Integration

R20UT3927EG0100 Rev. 1.00 Page 56 of 66
Jun 30, 2017

 /* Reset the flag */
 g_adc_trigger = FALSE;
 }

 /* SW3 is directly wired into the ADTRG0n pin so will
 cause the interrupt to fire */
 else if (TRUE == g_adc_complete)
 {
 /* Get the result of the A/D conversion */
 R_Config_S12AD0_Get_ValueResult(ADCHANNEL0, &adc_result);

 /* Display the result on the LCD */
 lcd_display_adc(adc_result);

 /* Increment the adc_count */
 if (16 == (++adc_count))
 {
 adc_count = 0;
 }

 /* Send the result to the UART */
 uart_display_adc(adc_count, adc_result);
 /* Reset the flag */
 g_adc_complete = FALSE;
 }
 else
 {
 /* do nothing */
 }
 }
}
Then, add the following function definition in the end of the file:

/**
* Function Name : uart_display_adc
* Description : Converts adc result to a string and sends it to the UART1.
* Argument : uint8_t : adc_count
* uint16_t: adc result
* Return value : none
**/
static void uart_display_adc (const uint8_t adc_count, const uint16_t adc_result)
{
 /* Declare a temporary variable */
 char a;

 /* Declare temporary character string */
 static char uart_buffer[] = "ADC xH Value: xxxH\r\n";

 /* Convert ADC result into a character string, and store in the local.
 Casting to ensure use of correct data type. */
 a = (char)(adc_count & 0x000F);
 uart_buffer[4] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));
 a = (char)((adc_result & 0x0F00) >> 8);
 uart_buffer[14] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));
 a = (char)((adc_result & 0x00F0) >> 4);
 uart_buffer[15] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));
 a = (char)(adc_result & 0x000F);
 uart_buffer[16] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));

 /* Send the string to the UART */
 R_DEBUG_Print(uart_buffer);

}

/**
* End of function uart_display_adc
**/

Select ‘Build Project’ from the ‘Build’ menu. e2 studio will build the project with no errors.

The project may now be run using the debugger as described in §6. Connect the RSK G1CUSB0 port to a
USB port on a PC. If this is the first time the RSK has been connected to the PC then a device driver will be
installed automatically. Open Device Manager, the virtual COM port will now appear under 'Port (COM &
LPT)' as 'RSK USB Serial Port (COMx)', where x is a number.

RSKRX130-512KB 5. User Code Integration

R20UT3927EG0100 Rev. 1.00 Page 57 of 66
Jun 30, 2017

Open a terminal program, such as HyperTerminal, on the PC with the same settings as for SCI1 (see §4.4.6).
When any switch is pressed, or when ‘c’ is sent via the COM port, the program will perform an A/D conversion
of the voltage level on the ADPOT line and display the result on the LCD panel and send the result to the PC
terminal program via the SCI1. Return to this point in the Tutorial to add the LED user code.

5.6 LED Code Integration

Open the file ‘SC_Tutorial.c’. Add the following declaration to the user code area for include near the top of
the file:

#include "r_smc_entry.h"
#include "r_okaya_lcd.h"
#include "r_rsk_switch.h"
#include "r_rsk_debug.h"
#include "rskrx130_512kbdef.h"
#include "Config_S12AD0.h"
#include "Config_SCI1.h"
#include "r_cg_userdefine.h"

/* Variable for flagging user requested ADC conversion */
volatile uint8_t g_adc_trigger = FALSE;

/* Prototype declaration for cb_switch_press */
static void cb_switch_press (void);

/* Prototype declaration for get_adc */
static uint16_t get_adc(void);

/* Prototype declaration for lcd_display_adc */
static void lcd_display_adc (const uint16_t adc_result);

/* Prototype declaration for uart_display_adc */
static void uart_display_adc(const uint8_t adc_count, const uint16_t adc_result);

/* Variable to store the A/D conversion count for user display */
static uint8_t adc_count = 0;

/* Prototype declaration for led_display_count */
static void led_display_count(const uint8_t count);

Add the following highlighted code in the main function:

void main(void)
{
 /* Initialize the switch module */
 R_SWITCH_Init();

 /* Set the call back function when SW1 or SW2 is pressed */
 R_SWITCH_SetPressCallback(cb_switch_press);

 /* Initialize the debug LCD */
 R_LCD_Init();

 /* Displays the application name on the debug LCD */
 R_LCD_Display(0, (uint8_t *)" RSKRX130-512KB ");
 R_LCD_Display(1, (uint8_t *)" Tutorial ");
 R_LCD_Display(2, (uint8_t *)" Press Any Switch ");

 /* Start the A/D converter */
 R_Config_S12AD0_Start();

 /* Set up SCI1 receive buffer and callback function */
 R_Config_SCI1_Serial_Receive((uint8_t *)&g_rx_char, 1);

 /* Enable SCI1 operations */
 R_Config_SCI1_Start();

 while (1U)
 {
 uint16_t adc_result;

 /* Wait for user requested A/D conversion flag to be set (SW1 or SW2) */
 if (TRUE == g_adc_trigger)
 {

RSKRX130-512KB 5. User Code Integration

R20UT3927EG0100 Rev. 1.00 Page 58 of 66
Jun 30, 2017

 /* Call the function to perform an A/D conversion */
 adc_result = get_adc();

 /* Display the result on the LCD */
 lcd_display_adc(adc_result);

 /* Increment the adc_count and display using the LEDs */
 if (16 == (++adc_count))
 {
 adc_count = 0;
 }
 led_display_count(adc_count);

 /* Send the result to the UART */
 uart_display_adc(adc_count, adc_result);
 /* Reset the flag */
 g_adc_trigger = FALSE;
 }

 /* SW3 is directly wired into the ADTRG0n pin so will
 cause the interrupt to fire */
 else if (TRUE == g_adc_complete)
 {
 /* Get the result of the A/D conversion */
 R_S12AD0_Get_ValueResult(ADCHANNEL0, &adc_result);

 /* Display the result on the LCD */
 lcd_display_adc(adc_result);

 /* Increment the adc_count and display using the LEDs */
 if (16 == (++adc_count))
 {
 adc_count = 0;
 }
 led_display_count(adc_count);

 /* Send the result to the UART */
 uart_display_adc(adc_count, adc_result);
 /* Reset the flag */
 g_adc_complete = FALSE;
 }
 else
 {
 /* do nothing */
 }
 }
}

RSKRX130-512KB 5. User Code Integration

R20UT3927EG0100 Rev. 1.00 Page 59 of 66
Jun 30, 2017

Then, add the following function definition at the end of the file:

/**
* Function Name : led_display_count
* Description : Converts count to binary and displays on 4 LEDS0-3
* Argument : uint8_t count
* Return value : none
**/
static void led_display_count (const uint8_t count)
{
 /* Set LEDs according to lower nibble of count parameter */
 LED0 = (uint8_t)((count & 0x01) ? LED_ON : LED_OFF);
 LED1 = (uint8_t)((count & 0x02) ? LED_ON : LED_OFF);
 LED2 = (uint8_t)((count & 0x04) ? LED_ON : LED_OFF);
 LED3 = (uint8_t)((count & 0x08) ? LED_ON : LED_OFF);
}
/**
* End of function led_display_count
**/

Select ‘Build Project’ from the ‘Build’ menu, or use the button. e2 studio will build the project with no
errors.

The project may now be run using the debugger as described in §6. The code will perform the same but now
the LEDs will display the adc_count in binary form.

RSKRX130-512KB 6. Debugging the Project

R20UT3927EG0100 Rev. 1.00 Page 60 of 66
Jun 30, 2017

6. Debugging the Project

In the Project Explorer pane, ensure that the ‘SC_Tutorial’ project is selected. To enter the debug
configurations, click upon the arrow next to the debug button and select ‘Debug Configuration’.

Figure 6-1 Debug Configurations

In order to run the project there are two setting under ‘Renesas GDB Hardware Debugging’ -> ‘Debugger’ ->
‘Connection Settings’ that need modifying.
Ensure that in debug configuration that the ‘Power Target From The Emulator(MAX 200mA)’ is set to Yes ,
and the ‘Extal Frequency’ is set to the correct frequency, this can be found from the device schematics (in the
case of RSKRX130-512KB the setting should be 8.0000).
For more information on powering the RSKRX130-512KB please refer to the User Manual.

Figure 6-2 Connection Settings

RSKRX130-512KB 6. Debugging the Project

R20UT3927EG0100 Rev. 1.00 Page 61 of 66
Jun 30, 2017

Connect the E2 Lite to the PC and the RSK E1 connector. Connect the Pmod LCD to the PMOD1 connector.
In the Project Explorer pane, ensure that the ‘SG_Tutorial’ project is selected. To debug the project, click the

 button. The dialog shown in Figure 6-3 will be displayed.

Figure 6-3 Perspective Switch Dialog

Click ‘Remember my decision’ to skip this dialog later. Click ‘Yes’ to confirm that the debug window
perspective will be used. The debugger will start up and the code will stop at the Smart Configurator function
‘PowerOn_Reset_PC’ as shown in Figure 6-4.

Figure 6-4 Debugger start up screen

For more information on the e2 studio debugger refer to the Tutorial manual. To run the code click the
button. The debugger will stop again at the beginning of the main function. Press again to run the code.

RSKRX130-512KB 7. Additional Information

R20UT3927EG0100 Rev. 1.00 Page 62 of 66
Jun 30, 2017

7. Additional Information

Technical Support
For details on how to use e2 studio, refer to
the help file by opening e2 studio, then
selecting Help > Help Contents from the
menu bar.

For information about the RX130 group microcontroller refer to the RX130 Group Hardware Manual.

For information about the RX assembly language, refer to the RX Family Software Manual.

Technical Contact Details

Please refer to the contact details listed in section 9 of the “Quick Start Guide”.

General information on Renesas microcontrollers can be found on the Renesas website at:
https://www.renesas.com/

Trademarks
All brand or product names used in this manual are trademarks or registered trademarks of their respective
companies or organisations.

Copyright
This document may be, wholly or partially, subject to change without notice. All rights reserved. Duplication of
this document, either in whole or part is prohibited without the written permission of Renesas Electronics
Europe Limited.

© 2017 Renesas Electronics Europe Limited. All rights reserved.
© 2017 Renesas Electronics Corporation. All rights reserved.
© 2017 Renesas System Design Co., Ltd. All rights reserved.

https://www.renesas.com/

C-1

REVISION HISTORY RSKRX130-512KB Smart Configurator Tutorial Manual

Rev. Date Description
Page Summary

1.00 Jun 30, 2017  First Edition issued

Renesas Starter Kit Manual: Smart Configurator Tutorial Manual

Publication Date: Rev. 1.00 Jun 30, 2017

Published by: Renesas Electronics Corporation

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2017 Renesas Electronics Corporation. All rights reserved.
Colophon 4.1

R20UT3927EG0100

RX130 Group

	1. Overview
	1.1 Purpose
	1.2 Features

	2. Introduction
	3. Project Creation with e2 studio
	3.1 Introduction
	3.2 Creating the Project

	4. Smart Configurator Using the e2 studio plug in
	4.1 Introduction
	4.2 Project Configuration using Smart Configurator – Overview page
	4.3 Clocks configuration page
	4.3.1 Clocks configuration

	4.4 Components page
	4.4.1 Add a software component into the project
	4.4.2 8-Bit Timer
	4.4.3 Compare Match Timer
	4.4.4 Interrupt Controller Unit
	4.4.5 Ports
	4.4.6 SCI/SCIF Asynchronous Mode
	4.4.7 SPI Clock Synchronous Mode
	4.4.8 Single Scan Mode S12AD

	4.5 Pins configuration page
	4.5.1 Change pin assignment of a software component

	4.6 Building the Project

	5. User Code Integration
	5.1 LCD Code Integration
	5.1.1 SPI Code
	5.1.2 TMR Code

	5.2 Additional include paths
	5.3 Switch Code Integration
	5.3.1 Interrupt Code
	5.3.2 De-bounce Timer Code
	5.3.3 Main Switch and ADC Code

	5.4 Debug Code Integration
	5.5 UART Code Integration
	5.5.1 SCI Code
	5.5.2 Main UART code

	5.6 LED Code Integration

	6. Debugging the Project
	7. Additional Information

