LENESAS

-
»
1
i
<
Q
-
c
D

RX130 Group

Renesas Starter Kit
Smart Configurator Tutorial Manual
For e2 studio

RENESAS 32-Bit MCU
RX Family / RX100 Series

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Renesas Electronics
www.renesas.com Rev. 1.00 Jun 2017

10.

11.

12.

Notice

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits,
software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and
damages incurred by you or third parties arising from the use of these circuits, software, or information.

Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving
patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or
technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm,
application examples.

No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas
Electronics or others.

You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas
Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration,
modification, copy or otherwise misappropriation of Renesas Electronics products.

Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended

applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment;
home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication
equipment; key financial terminal systems; safety control equipment; etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life

or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (space and

undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas

Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas

Electronics product for which the product is not intended by Renesas Electronics.

When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes,
"General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are
within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation
characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out
of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products
have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them
against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of
Renesas Electronics products, such as safety design for hardware and software including but not limited to redundancy, fire control and
malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as
warranty for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please
evaluate the safety of the final products or systems manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each
Renesas Electronics product. Please investigate applicable laws and regulations that regulate the inclusion or use of controlled
substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in
compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses
occurring as a result of your noncompliance with applicable laws and regulations.

Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use,
or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall not use Renesas Electronics products or
technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction,
such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for
delivering such weapons, (2) any purpose relating to the development, design, manufacture, or use of conventional weapons, or (3) any
other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics
products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any
other party will engage in the activities described above. When exporting, selling, transferring, etc., Renesas Electronics products or
technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments
of the countries asserting jurisdiction over the parties or transactions.

Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms
and conditions described in this document, including this notice, and hold Renesas Electronics harmless, if such misuse or violation results
from your resale or making Renesas Electronics products available any third party.

This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or
Renesas Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned

subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.3.0-1 November 2016)

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.
For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well
as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the

manual.

%, The input pins of CMOS products are generally in the high-impedance state. In operation with an
unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

%, The states of internal circuits in the LSI are indeterminate and the states of register settings and
pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.
3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.

%. The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals
After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.

% When the clock signal is generated with an external resonator (or from an external oscillator)
during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm

that the change will not lead to problems.

% The characteristics of Microprocessing unit or Microcontroller unit products in the same group but
having a different part number may differ in terms of the internal memory capacity, layout pattern,
and other factors, which can affect the ranges of electrical characteristics, such as characteristic
values, operating margins, immunity to noise, and amount of radiated noise. When changing to a
product with a different part number, implement a system-evaluation test for the given product.

Disclaimer

By using this Renesas Starter Kit (RSK), the user accepts the following terms:

The RSK is not guaranteed to be error free, and the entire risk as to the results and performance of the RSK is
assumed by the User. The RSK is provided by Renesas on an “as is” basis without warranty of any kind whether
express or implied, including but not limited to the implied warranties of satisfactory quality, fitness for a particular
purpose, title and non-infringement of intellectual property rights with regard to the RSK. Renesas expressly
disclaims all such warranties. Renesas or its affiliates shall in no event be liable for any loss of profit, loss of data,
loss of contract, loss of business, damage to reputation or goodwill, any economic loss, any reprogramming or recall
costs (whether the foregoing losses are direct or indirect) nor shall Renesas or its affiliates be liable for any other
direct or indirect special, incidental or consequential damages arising out of or in relation to the use of this RSK, even
if Renesas or its affiliates have been advised of the possibility of such damages.

Precautions

The following precautions should be observed when operating any RSK product:

This Renesas Starter Kit is only intended for use in a laboratory environment under ambient temperature and humidity
conditions. A safe separation distance should be used between this and any sensitive equipment. Its use outside the
laboratory, classroom, study area or similar such area invalidates conformity with the protection requirements of the
Electromagnetic Compatibility Directive and could lead to prosecution.

The product generates, uses, and can radiate radio frequency energy and may cause harmful interference to radio
communications. However, there is no guarantee that interference will not occur in a particular installation. If this
equipment causes harmful interference to radio or television reception, which can be determined by turning the
equipment off or on, you are encouraged to try to correct the interference by one or more of the following measures;

e ensure attached cables do not lie across the equipment

e reorient the receiving antenna

e increase the distance between the equipment and the receiver

e connect the equipment into an outlet on a circuit different from that which the receiver is connected
e power down the equipment when not in use

e consult the dealer or an experienced radio/TV technician for help NOTE: It is recommended that wherever
possible shielded interface cables are used.

The product is potentially susceptible to certain EMC phenomena. To mitigate against them it is recommended that the
following measures be undertaken;

e The user is advised that mobile phones should not be used within 20m of the product when in use.
e The user is advised to take ESD precautions when handling the equipment.

The Renesas Starter Kit does not represent an ideal reference design for an end product and does not fulfil the
regulatory standards for an end product.

How to Use This Manual

1. Purpose and Target Readers

This manual is designed to provide the user with an understanding of how to use Smart Configurator for RX
together with the e? studio IDE to create a working project for the RSK platform. It is intended for users
designing sample code on the RSK platform, using the many different incorporated peripheral devices.

The manual comprises of step-by-step instructions to generate code and import it into e? studio, but does not
intend to be a complete guide to software development on the RSK platform. Further details regarding
operating the RX130 microcontroller may be found in the Hardware Manual and within the provided sample
code.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within the body
of the text, at the end of each section, and in the Usage Notes section.

In this manual, the display may differ slightly from screen shots. There is no problem in reading this manual.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of
the manual for details.

The following documents apply to the RX130 Group. Make sure to refer to the latest versions of these
documents. The newest versions of the documents listed may be obtained from the Renesas Electronics Web
site.

Document Type Description Document Title Document No.
User's Manual Describes the technical details of the RSK RSKRX130-512KB User’s R20UT3921EG
hardware. Manual
Tutorial Manual Provides a guide to setting up RSK RSKRX130-512KB Tutorial R20UT3925EG
environment, running sample code and Manual
debugging programs.
Quick Start Provides simple instructions to setup the RSKRX130-512KB Quick R20UT3926EG
Guide RSK and run the first sample. Start Guide
Smart Provides a guide to code generation and RSKRX130-512KB Smart R20UT3927EG
Configurator importing into the e? studio IDE. Configurator Tutorial Manual
Tutorial Manual
Schematics Full detail circuit schematics of the RSK. RSKRX130-512KB R20UT3920EG
Schematics
Hardware Provides technical details of the RX130 RX130-512KB Group RO1UHO0560EJ
Manual microcontroller. Hardware Manual

2. List of Abbreviations and Acronyms

Abbreviation

Full Form

ADC Analog-to-Digital Converter

API Application Programming Interface

bps bits per second

CMT Compare Match Timer

COM COMmunications port referring to PC serial port

CPU Central Processing Unit

DVvD Digital Versatile Disc

E1/E2 Lite Renesas On-chip Debugging Emulator

GUI Graphical User Interface

IDE Integrated Development Environment

IRQ Interrupt Request

LCD Liquid Crystal Display

LED Light Emitting Diode

LSB Least Significant Bit

LVD Low Voltage Detect

MCU Micro-controller Unit

MSB Most Significant Bit

PC Personal Computer

PLL Phase-locked Loop

Pmod™ This is a Digilent Pmod™ Compatible connector. Pmod™ is registered to Digilent Inc.
Digilent-Pmod_Interface_Specification

RAM Random Access Memory

ROM Read Only Memory

RSK Renesas Starter Kit

RTC Real Time Clock

SAU Serial Array Unit

SCI Serial Communications Interface

SPI Serial Peripheral Interface

TAU Timer Array Unit

TFT Thin Film Transistor

TPU Timer Pulse Unit

UART Universal Asynchronous Receiver/Transmitter

usB Universal Serial Bus

WDT Watchdog Timer

All trademarks and registered trademarks are the property of their respective owners.

http://www.digilentinc.com/index.cfm

Table of Contents

I @Y= V1 PSPPSR P PPPPPPPPPP 8
L1 PUIPOSE ... 8
1.2 FALUIES ... 8
P2 1 11 (0T [3Tox o] o PRSP 9
3. Project Creation With €2 StUAIO.........c..ccoiiiiiiiiie et 10
0 A [1o To 11 o1 Ao o PP PP 10
3 O (-7 1] o R € L= 1T o OSSR 10
4. Smart Configurator Using the €2 studio PIUg iN.........ccocvuviiiiiiiiiie e, 13
0 R [01 {0 To 11 (1 1 o] TR 13
4.2 Project Configuration using Smart Configurator — OVEIVIEW PAGEccceeeeiiurirrreieaeeaaiiiiiieeea e e e einieeeeeaeeas 14
T T O (o o] 1€ o0 110 [=1 1 o] TN o= Lo =TSR 15
431 (@ loTed S olo] 0110 U] = 11T o HA PP PURPPRP 15
N 070] o] oTo 1= o1 S o F= Yo 16
44.1 Add a software component into the ProjJECt.........ceuveeii i e 16
442 1 T 0= PP PP PR 17
4.4.3 (@] 04 o T= T LTV F= L (o T T3 18
4.4.4 INtErruPt CONLIOIEr UNL..... ...ttt e e e e e e e e e e e e e s nnnbeeeaaaeeas 20
4.45 [0 4 £ TP PP PP PPPPPPPUPPPPPPPPIRE 22
4.4.6 SCI/SCIF ASYNCNIONOUS IMOGEeeiiiiiiiiiitiiie ettt e e et e e e e e e e ibb e e e e e e e e s snnaeeeeas 26
4.4.7 Y o I 01 (o o] 1S3 Y/ o] a1 £ 1o TU FS 30 1Y o To [S 29
4.4.8 SiNGIe SCAN MOUE SL2AD.... ... eieieiie e e e e r e e e e e s e e e e aeessa st eeeeeeesanststeeeeeeeessnnnrnneees 32
4.5 PiNS CONfIQUIALION PAYE ..eeeeiiiiiiiiiiiiiie ettt oottt e e e e ek b bttt e e e e e e s bt e e e e e e e e e s e aanbbeeeeaaeesaannbbeeeaaaaeas 35
45.1 Change pin assignment of a software COMPONENt...........cooiiiiiiiiiiiie e 35
4.6 BUIldING the PrOJECT ettt e e e e e e sttt e e e e e e s e aanbbe et e e e e e e aannbaeeeaaaaeas 38
TG R T Ofo o [[11T o =11) o FO PRSP 39
L0 N @4 @ To [] (== L1 o] o IO EER 39
5.1.1 ST o Lo LT TR PP PURRPPR 41
5.1.2 TIMR COUE ...ttt ettt e e e e e Rt e sk et e Rt e R e n e e e e R e n e e n e 42
5.2 Additional INCIUAE PANS ...ttt e e e e e s bbb e e e e e e e s e snbbaeeeeaeeeaannes 43
LIRS AT (od W @ Jo [N [1 (=To | = 11T o DT PRRPT 44
5.3.1 a1 0=T 5 (U] 1 A 0T [P 44
5.3.2 De-DOUNCE TIMEN COUEeieiiieiiee ettt et e st sn e nnre e nnre e 47
5.3.3 Main SWtCh and ADC COUE..........eiiiiiieiiee ettt s e s nre e 48
LN B 1= o 18 o oo [N [1 (=To | = L1 o] o DT RUUUPURPT 53
N U 7Y g I OTe o [[g 11T o] =1 1 o] o H TR UUUPPRRPT 53
55.1 SO I O oo L= PP PU PP 53
5.5.2 Y= T W Y o I oo To [TP EUT TP 55
LN T I I I o o L= [o1 (Yo = 1o o O EER 57
ORI T=T o0 o o[To IR 1 g U= = (0] [T o 60

7. AAAItIONAl INFOIMALION <. ..o 62

ENESANS

RSKRX130-512KB

RENESAS STARTER KIT

R20UT3927EG0100
Rev. 1.00
Jun 30, 2017

1. Overview

1.1 Purpose

This RSK is an evaluation tool for Renesas microcontrollers. This manual describes how to use the e? studio

IDE Smart Configurator plug-in to create a working project for the RSK platform.

1.2 Features

This RSK provides an evaluation of the following features:
« Project Creation with e2 studio.

« Code Generation using the Smart Configurator plug-in.
« User circuitry such as switches, LEDs and a potentiometer.

The RSK board contains all the circuitry required for microcontroller operation.

R20UT3927EG0100 Rev. 1.00 nNS
Jun 30, 2017 RENES

Page 8 of 66

RSKRX130-512KB 2. Introduction

2. Introduction

This manual is designed to answer, in tutorial form, how to use the Smart Configurator plug-in for the RX
family together with the e? studio IDE to create a working project for the RSK platform. The tutorials help

explain the following:

e Project generation using e? studio

e Detailed use of the Smart Configurator plug-in for e? studio
e Integration with custom code

e Building the project in 2 studio

The project generator will create a tutorial project with two selectable build configurations:
e ‘HardwareDebug’ is a project built with the debugger support included. Optimisation is set to zero.

e ‘Release’is a project with optimised compile options (level two) and ‘Outputs debugging information’
option not selected, producing code suitable for release in a product.

These tutorials are designed to show you how to use the RSK and are not intended as a comprehensive introduction to
the e? studio debugger, compiler toolchains or the E2 emulator Lite. Please refer to the relevant user manuals for more

in-depth information.

R20UT3927EG0100 Rev. 1.00 nNS Page 9 of 66
Jun 30, 2017 RENES

RSKRX130-512KB 3. Project Creation with e? studio

3. Project Creation with e? studio

3.1 Introduction

In this section, the user will be guided through the steps required to create a new C project for the RX130
MCU, ready to generate peripheral driver code using Smart Configurator. This project generation step is
necessary to create the MCU-specific source, project and debug files.

3.2 Creating the Project

e Start e? studio and select a suitable 2’| Ep=lansis
location for the project workspace. Select a directory as workspace

2 studic uses the workspace directory to store its preferences and development artifacts,

Workspace: | [SNUEIISTETE ~ Browse...

[[] Use this as the default and do not ask again
» Recent Workspaces

G
e Inthe Welcome page, click ‘Create a new | o
C/IC++ pl'Oject’_ z D Help | @ Weicome 33] ckxiEliss
Fll ReNesas Welcome to e studio ®
* Workbench

. Create a new e? studio C/C++ project Get an overview of the features
v

Import existing e studio projects from the filesystem or Go through tutorials.
archive

. Try out the samples
Review the IDE's most fiercely contested preferences

Find out what is new.
Open a file from the filesystem

¥ Atways show Weicome at start up

5]

e In the ‘Templates for New C/C++ Project’ PE Mew C/Ce+ Project
dialog, selecting ‘Renesas RX’' ->

‘Renesas CC-RX C/C++ Executable
Project’.

e Click ‘Next'. ﬁ‘!nesas Debe GCC for Renesas RX C/C++ Executable Project
J A C/C++ Executable Project for Renesas RX
using the GCC for Renesas RX Toolchain.

GCC for Renesas RX C/C++ Library Project
A C/C++ Library Project for Renesas RX using

the GCC for Renesas RX Toolchain.

Renesas CC-RX C/C++ Executable Project

‘ ax A C/C++ Project for Renesas RX using the
i Renesas CCRX toolchain.

Templates for New C/C++ Project

Renesas RX

Renesas CC-RX C/C++ Library Project
o A/ Library Project for Renesas RX using
the Renesas CCRX toolchain.

@ < Back Next > Einish Cancel

R20UT3927EG0100 Rev. 1.00 RENESAS Page 10 of 66
Jun 30, 2017

RSKRX130-512KB 3. Project Creation with e? studio

» Enter the project name ‘SC_Tutorial" s 0 x|

CI|Ck ‘Next'. New Renesas CC-RX Executable Project —
New Renesas CC-RX Executable Project |

Project name: | SC_Tutorial

Use default location
Lacation: C:¥Workspace¥SC_Tutorial Browse...
Create Directory for Project

Choose file system: |default

Working sets
[Add project to working sets New...
Working sets: Select...

@ <Back Finish Cancel

« I the ‘Select toolchain, device & debug | [

settings’ dialog, select the options as New Renesas CC-RX Executable Project —
shown in the screenshot Opposite' Select toolchain, device & debug settings
e In ‘Toolchains’ choose ‘Renesas CCRX Toolchain Settings
Toolchain’. Language: ®c Ocs+
. Toolchain: Renesas CCRX ~
e The R5F51308AxFP MCU is found under eolchain ersion: |2 T00 =

RXlOO - RX13O -> Manage Teolchains...
RX130 - 100 pln, Device Settings Configurations

. Target Device: | RSF51208AxFP Create Hardware Debug Configuration
e Click ‘Next'.
Unlock Devices... E2 Lite (RX) ~

Endian: | Little ~
[] Create Debug Configuration

Project Type: | Default R Simulator i

Create Release Configuration

@ <Back | MNea> |[Fmish || Cancel

e In the ‘Select Coding Assistant Settings’ EN

dialog, select ‘Smart Configurator’. New Renesas CC-RX Exacutable Project =g
Select Coding Assistant settings
e Click ‘Next'.

Use Peripheral Code Generator ©

Use FIT Module Download FIT Medules

Smart Configurator is a single User Interface that combines the functionalities of Code Generator and FIT Configurator which imports,

configures and generates different types of drivers and middleware modules.

Smart Configurater encompasses unified clock configuration view, interrupt configuration view and pin configuration view.

Hardware rescurces conflict in peripheral modules, interrupts and pins occurred in different types of drivers and middleware modules
ill be notified.

(Smart Configurator is available only for the supported devices)

Jojensijuo) Jews

User Application

Driver and Middleware

Driver Code FIT Modules
Configured in GUI Selected in GUI
and Generated and Imported

MCU Hardware

haaaaaaaaaaaasaaaanaaann syl

® = =

R20UT3927EG0100 Rev. 1.00 RENESANAS Page 11 of 66
Jun 30, 2017

RSKRX130-512KB 3. Project Creation with e? studio

e Click ‘Next'.

New Renesas CC-RX Executable Project —l

Settings The Contents of Files to be Generated

‘What kind of initializaticn routine would you like to create?

[Use I/O Library
Murnber of 1/0 Strearns!

20 :

® < Back Finish Cancel

e A summary dialog will appear, click

Finish® to complete the Project | | yew renesas cc.RX Executable Project —
genel’atlon . Summary of project "SC_Tuterial”
TOOLCHAIN NAME : Renesas CCRX

TOOLCHAIM VERSION : v2.07.00

GENERATION FILES:

@ < Back Next » Cancel

e You may be prompted to open the Smart B Open Associsted Perspective?
Conflgurator perspecuve C“Ck ‘Yes, tO "y Th_\s kind of prcuect\sassu-ciated with the C/C++ perspective. Do you want to open
open the Smart Configurator perspective. s perspecivenon?

k. * 4

[] Remember my decision
Yes Mo

e Wait for file generation to start. Progress Information

@O Smart Configurator operation in progress

k. * 4

Preparing startup code...

Cancel

R20UT3927EG0100 Rev. 1.00 RENESANAS Page 12 of 66
Jun 30, 2017

RSKRX130-512KB 4. Smart Configurator Using the e? studio plug in

4. Smart Configurator Using the e? studio plug in

4.1 Introduction

Smart Configurator plug-in for the RX130 has been used to generate the sample code discussed in this
document. Smart Configurator for e? studio is a plug-in tool for generating template ‘C’ source code and
project settings for the RX130. When using Smart Configurator, it supports user with a visual way of
configuring the target device, clocks, software components, hardware resources and interrupts for the project;
thereby bypassing the need, in most cases, to refer to sections of the Hardware Manual.

Once the user has configured the project, the ‘Smart Configurator’ function is used to generate three code
modules for each specific MCU feature selected, general folder, r_bsp folder, r_config folder and r_pincfg
folder. These code modules are hame ‘Config_xxx.h’, ‘Config_xxx.c’, and ‘Config_xxx_user.c’, where ‘xxx’ is
an acronym for the relevant MCU feature, for example ‘CMT’. Within these code modules, the user is then
free to add custom code to meet their specific requirement. Custom code should be added, whenever
possible, in between the following comment delimiters:

/* Start user code for adding. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */

Smart Configurator will locate these comment delimiters, and preserve any custom code inside the delimiters
on subsequent code generation operations. This is useful if, after adding custom code, the user needs to re-
visit Smart Configurator to change any MCU operating parameters.

By following the steps detailed in this Tutorial, the user will generate an e? studio project called SC_Tutorial.
The fully completed Tutorial project is contained on the RSK Web Installer (https://www.renesas.com/rskrx130-
512kb/install) and may be imported into e? studio by following the steps in the Quick Start Guide. This
Tutorial is intended as a learning exercise for users who wish to use the Smart Configurator to generate their
own custom projects for e? studio.

The SC_Tutorial project uses interrupts for switch inputs, the ADC module, the 8-Bit Timer, the Compare
Match Timer (CMT), the Serial Communications Interface (SCI) and uses these modules to perform A/D
conversion and display the results via the Virtual COM port to a terminal program and also on the LCD display
on the RSK.

Following a tour of the key user interface features of Smart Configurator in ‘Clocks configuration page’,
‘Components page’, ‘Pins configuration page’ and ‘Building the Project’, the reader is guided through each of
the peripheral function configuration pages, familiarised with the structure of the template code, and adding
their own code to the user code areas provided by the Smart Configurator.

The Smart Configurator installer is contained on the RSK Web Installer. This installer must be run before
proceeding to the next section.

R20UT3927EG0100 Rev. 1.00 RENESAS Page 13 of 66
Jun 30, 2017

https://www.renesas.com/rskrx130-512kb/install
https://www.renesas.com/rskrx130-512kb/install

RSKRX130-512KB

4. Smart Configurator Using the e? studio plug in

4.2

Project Configuration using Smart Configurator — Overview page

In this section, a brief tour of Smart Configurator is presented. For further details of the Smart Configurator
paradigm and reference, refer to the Smart Configurator User Guide.
You can download the latest document from: https://www.renesas.com/smart-configurator.

From the e? studio menus, select ‘Window -> Perspective -> Open Perspective -> Other.

Perspective’ dialog shown in Figure 4-1, select ‘Smart Configurator’ and click ‘OK’.

The Smart Configurator initial view is displayed as illustrated in Figure 4-2.

Smart Configurator provides GUI features for configuration of MCU sub systems.

P8 Open Perspective

HEIC/C++ (default)
m:”sICnde Generator
7'QL.‘QSADebug

%JJava

E;"\JJEVE Browsing

ngJava Type Hierarchy
EfRemote System Explorer
{5 Resource

= Scripting

g
ﬁ:Target Explorer
éuTeam Synchrenizing

%Tracing

Cancel

Figure 4-1 Open Perspective Dialog

file Edit Navigate Search Project RenesasViews Run Window Help
45 Debug || & sC_Tutorial Hardwareebug ~ o | ® - R BB @i v Qi vil
[Project Explorer 52 EE Y= 8 #5CTtoralsdg 2 =8
v (5 SC_Tutorial P ; -
5 Includes Overview information (o=}
B sre = General Information ®
[£) 5C_Tutorial HardwareDebug Jaunch
0k SCTutorial.scfg This editor allows you to modify the settings stored in configuration file (.scfg)
Board
Allow board and device selection
Application under
Clocks ‘development
Allow clock configuration Components
| Mcdieware |
Components Device
Allow software component selection and configuration driver ‘ I0S ‘
-~ pi
Pins
andp For selected
Interrupt
Allow generalinterrupt configuration and interrupt configuration for selected software component
~ Current Configuration
Version Coniguration
Generic(v=360) r_bsp(used)
Overview [Board Clocks | Components Pins| Intemupts
2 Console 22 % BIE| M BE~[~= O [Configuration Problems &3
Smart Configurator Qutput Oftems
1e4000001: File generated:src\smc_gen\general\r_cg_bsc.h ~ Description = Tpe
Meseeeel2: File generated:src\swe_gen\r_pincfg\Pin.h
1eseeee12: File generated:src\smc_gen\r_pincfg\Pin.c
hesepepe2: File generated:src\smc_gen\general\r_snc_interrupt.c
1MB6eeepa2: File generated:srchsmc_gen\general\r_snc_interrupt.h
2: Code generation is successful
1M@3000004: File modified:src\sme_gen\r_config\r_bsp_config.h
v
Oitems selected

Figure 4-2 Overview page

4 MCUPackage 52

]

a2

LB B

In the ‘Open

B Bl
=8
¥ =0
B0

Once the user has

configured all required MCU sub systems and peripherals, the user can click the ‘Generate Code’ button,
resulting in a fully configured e? studio project that builds and runs without error.

R20UT3927EG0100 Rev. 1.00

Jun 30, 2017

RENESAS

Page 14 of 66

https://www.renesas.com/smart-configurator

RSKRX130-512KB 4. Smart Configurator Using the e? studio plug in

4.3 Clocks configuration page

Clocks configuration page configures clocks of the device selected. Clock source, frequency, PLL settings and
clock divider settings can be configured for the output clocks.

4.3.1 Clocks configuration

Figure 4-3 shows a screenshot of Smart Configurator with the Clocks tab. Click on the ‘Clocks’ tab.
Configure the system clocks as shown in the figure. In this tutorial, we are using the on-board 8 MHz crystal
resonator for our main clock oscillation source and the PLL circuit is in operation. The PLL output is used as
the main system clock and the divisors should be set as shown in Figure 4-3.

iﬁ;‘ SC_Tutorialscfg I3 = B
Clocks configuration % &
VCC: | 33 U]
v Main dock PLL circuit
Oscillation source; | Resonator - Freguency Division: SCKCR (FCLK[3:01) FlashiF clodk (FCLK)
- 1 - 320 (MHZ
Frequency: | & (MHz) x1/2 * LAl
Wait time: 32768 = | 512 (us) Frequency Multipliestion: SCKCR (ICLK[3:0) System clock (ICLK)
i hd > —— xi - 320 [MHz)
Sub-clock SCKCR [PCLKBI301 peripheral module clock (PCLKE)
—e— x1 - 320 (MHz)
SCKCR (PCLKD[30]) peripheral module clock {PCLKD)
x1 - 320 [MHz)
HOCO clock
CACMCLK
& (MHz)
LOCO clock
\.

I'WDT-dedicated low-speed clock

Overview | Board Components Pins | Interrupts
Figure 4-3 Clocks Configuration page

R20UT3927EG0100 Rev. 1.00 RENESAS Page 15 of 66
Jun 30, 2017

RSKRX130-512KB 4. Smart Configurator Using the e? studio plug in

4.4 Components page

Drivers and middleware are handled as software components in Smart Configurator. The Components page

allows user to select and configure software components.
{85 *SC_Tutorialscfg 52

Software component configuration
Components = -

%

type filter text

v [= Startup
v [= Generic
& rbsp
== Drivers
= Middleware
= Application

Overview | Board Clocks Pins | Interrupts
Figure 4-4 Components page
4.4.1 Add asoftware component into the project
Smart Configurator supports two types of software components: Code Generator and Firmware Integration

Technology. In the following sub-sections, the reader is guided through the steps to configure the MCU for a
simple project containing interrupts for switch inputs, timers, ADC and a SCI by component of Code Generator.

Click ‘Add component’ % icon.

8% SC_Tutorial.scfg 53
Software component configuration

Components = :%:D » Configure

&

type filter text

v (= Startup
w [= Generic
E r_bsp
= Drivers
= Middleware
= Applicaticn

Figure 4-5 Add a Code Generator component (1)

In ‘Software Component Selection’ dialog -> Type, select ‘Code Generator'.
P New Component

Software Component Selection |

Select compenent from those available in list

Functicn |All w
Type All ~
; All
gl Firmware Integration Technclog
Code Generator
Compeonents Type Version ~
£ 8-Bit Timer Code Generator 1.0.0
E Buses Code Generator 1.0.0
B8 Clock Frequency Accuracy Mea... Code Generator 1.0.0

Figure 4-6 Add a Code Generator component (2)

R20UT3927EG0100 Rev. 1.00 RENESAS Page 16 of 66
Jun 30, 2017

RSKRX130-512KB

4. Smart Configurator Using the e? studio plug in

4.4.2 8-Bit Timer

TMRO will be used as an interval timer for generation of accurate delays. Select ‘8-Bit Timer’ as shown in
Figure 4-7 below then click ‘Next'.

E New Component

Software Component Selection -E-

Select component from those available in list

Function | All ~
Type 8 Code Generator ~
Filter | |
~
Components Type Version 2
H 3-Bit Timer Code Generator 1.0.0 I
B Buses Code Generator 1.00
Clock Frequency Accuracy Mea... Code Generator 1.00
Comparator Code Generator 1.00
$Compare Match Timer Code Generator 111
ECumplementary PWM Mode Ti.. Code Generator 1.1.0 W
< >

Show only last version

Description

This software component generates two units (unit 0, unit 1) of an on-chip 8-bit timer
(TMR) medule that comprise two 8-bit counter channels, totaling four channels,

Download more software components

Configure general settings...

® < Back I Mext » I | Finish | Cancel

Figure 4-7 Select 8-Bit Timer

In ‘Add new configuration for selected component’ dialog -> Resource, select ‘TMRO’ as shown in Figure 4-8

below then click ‘Finish’.

PR New Component

&-Bit Timer

Configuration name: Config_TMRO |
Count mode: &bit ~
Resource:

® < Back Mext » Cancel

Figure 4-8 Select Resource — TMRO

R20UT3927EG0100 Rev. 1.00

Jun 30, 2017

RENESAS

Page 17 of 66

RSKRX130-512KB

4. Smart Configurator Using the e? studio plug in

In ‘Config_ TMRO’ configure TMRO as shown in Figure 4-9. This timer is configured to generate a high priority
interrupt every 1ms. We will use this interrupt later in the tutorial to provide an API for generating high
accuracy delays required in our application.

485 *SC_Tutorial.scfg 52 = 8
Software component configuration o =)
Components = £ Configure
- Count setting
W%
Clock source |PcLksi024 |
type filter text
Counter clear ICIeared by compare match A VI
v [= Startup
v [= Generic Compare match A value (TCORA) I‘I I Ims VI
& rbsp
v G Drivers Compare match B value (TCORB) I‘I I |ms |
=4 T?:TIE!S TMOO0 cutput setting
& Config TMRO [JEnable TMOO output
= Middleware
= Applicaticn No change
No change
Interrupt setting
Ena ble TCORA compare match interrupt (CMIAQ)
[Enable TCORE compare match interrupt (CMIBO)
[Enable TCNT overflow interrupt (OVIO)
Priority | Level 10 ~|

443

Figure 4-9 Config_TMRO setting

Compare Match Timer

CMTO and CMT1 will be used as timers in de-bouncing of switch interrupts.

Click ‘Add component’ & icon. In ‘Software Component Selection’ dialog -> Type, select ‘Code Generator’.
Select ‘Compare Match Timer’ as shown in Figure 4-10 then click ‘Next'.

PR New Component

Software Component Selection tlj-

Select component from those available in list

Function | All

Type 1Cu~de Generator

Filter |

Components Type Version

8 Clock Frequency Accuracy Mea... Code Generator 1.00
EComparator Code Generator 1.0.0

1 Compare Match Timer Code Ganer.gur 1kl |
$C\:»mplementarj,r PWM ModeTi.. Code Generator 1.1.0

Continuous Scan Mode S124D Code Generator 1.00

B CRC Caleulator Code Generator 1.00

< >

Show only last version

Description

This software component provides configurations for 16-bit/32-bit timer with module
CMT/CMTW and can generate interrupts at set intervals,

Download more software components

Configure general settings...

® < Back I Mext > I | Finish | Cancel

Figure 4-10 Select Compare Match Timer

R20UT3927EG0100 Rev. 1.00

Jun 30, 2017

RENESAS

Page 18 of 66

RSKRX130-512KB 4. Smart Configurator Using the e? studio plug in

In ‘Add new configuration for selected component’ dialog -> Resource, select ‘CMTO’ as shown in Figure 4-11
below then click ‘Finish’.

E New Component

Add new config ion for sel d p
Compare Match Timer
Configuration name: |CDﬂﬁg7CMT1 |
Resource: |CMT1 ~ |

CMT1 |

® < Back Mext » Cancel
Figure 4-11 Select Resource - CMTO

In the ‘Config_CMTOQ’ configures CMTO as shown in Figure 4-12. This timer is configured to generate a high
priority interrupt after 20ms. This timer is used as our short switch de-bounce timer later in this tutorial.

48t *5C_Tutorial.scfg &2
Software component configuration

Components =] = Configure

Count clock setting

i (O PCLK/S (® PCLE/32 (O PCLK/128 (O PCLK/S512
type filter text
Compare match setting
v [= Startup
v (= Generic Interval value I20 I Ims VI (Actual value: 20.000000)
f r_bsp Register value (CMCOR) |19999 |
w [Drivers
v (= Timers Enable compare match interrupt (CMI0)
@& Config CMTO Priority [Lever 10 |
@& Config_TMRO

Figure 4-12 Config_CMTO setting

Click ‘Add component’ % icon. In ‘Software Component Selection’ dialog -> Type, select ‘Code Generator’.
Select ‘Compare Match Timer’ then click ‘Next’. In ‘Add new configuration for selected component’ dialog ->
Resource, select ‘CMT1’ as shown in Figure 4-13 below then click ‘Finish’.

PE New Component

Add new configuration for selected component
Compare Match Timer
Configuration name: Config_CMT1 |
Resource: CMT1 ~
@ < Back Nesxt » Cancel

Figure 4-13 Select Resource — CMT1

R20UT3927EG0100 Rev. 1.00 RENESAS Page 19 of 66
Jun 30, 2017

RSKRX130-512KB

4. Smart Configurator Using the e? studio plug in

Navigate to the ‘Config_ CMT1’ and configure CMT1 as shown in Figure 4-14. This timer is configured to

generate a high priority interrupt after 200ms

this tutorial.

. This timer is used as our short switch de-bounce timer later in

48t =SC_Tutorial.scfg 52

Components

type filter text

v [= Startup
W [= Generic
& rbsp
w [== Drivers
w = Timers
& Config_CMT1
& Config_CMTO

Software component configuration

Configure

Count clock setting

(O PCLK/S (O PCLK/32

Compare match setting

Interval value

Register value (CMCOR)

Enable compare match interrupt (CMIT)

Pricrity

VI (Actual value: 200.000000)

O PCLK/128

I 200 I I ms
[12499 |

[Level 10 |

Figure 4-14 Config_CMT1 setting

4.4.4 Interrupt Controller Unit

Referring to the RSK schematic, SW1 is connected to IRQ1 (P31) and SW2 is connected to IRQ2 (P32).
SW3 is connected IRQ6(P16) and the ADTRGON. Tutorial used ADTRGOn and will be configured later in

§4.4.8.

Click ‘Add component’ % icon. In ‘Software Component Selection’ dialog -> Type, select ‘Code Generator’.
Select ‘Interrupt Controller’ as shown in Figure 4-15 then click ‘Next'.

PR New Component

Software Component Selection

Select component from those available in list

Function | All ~
Type 1Cu~de Generator VI
Filter | |
Components Type Version =
B 12C Master Mode Code Generator 1.00
1 12C Slave Mode Code Generator 1.0.0
H Interrupt Controller Code Generator 1.20 I
H# Low Power Consumption Code Generator 1.1.0
B Low Power Timer Code Generator 1.00
B Mormal Mode Timer Code Generator 1.00 v
< >

Show only last version
Description

Interrupt Controller configures the interrupt requests generated by ICU: Software
interrupt, NMI pin interrupt and IRQ External pin interrupts,

Download more software components

Configure general settings...

® < Back I

Mext > I

[Fnish || Cancel

Figure 4-15 Select Interrupt Controller

R20UT3927EG0100 Rev. 1.00

Jun 30, 2017

RENESAS

Page 20 of 66

RSKRX130-512KB

4. Smart Configurator Using the e? studio plug in

In ‘Add new configuration for selected component’ dialog -> Resource, select ‘ICU’ as shown in Figure 4-16

below then click ‘Finish’.

PS New Component

Add new configuration for selected component

Interrupt Controller

Configuration name: Config_ICU |
Resource: Icu ~
® < Back Mext » Cancel

Figure 4-16 Select resource — ICU

Navigate to the ‘Config_ICU’, configure these two interrupts as falling edge triggered as shown in Figure 4-17

below.

@:} *5C Tutorial.scfg &3
Components az =1 _%:b =
.

type filter text

~ [= Startup
v [= Generic
& rbsp
~ = Drivers
v [= Interrupt
& Config_ICU
v = Timers
& Config_CMT1
& Config_CMTO
& Config_TMRO
= Middleware
= Application

Software component configuration

Configure
Software interrupt setting
[Software interrupt Friority | Lewel 15 (highest)
NMI pin interrupt setting
[CINMI pin interrupt Detection type | Falling edge Digital filter | Nofilter (MHzZ)
IRQ0 setting
ClirQo Dretection type |Low level Cigital filter |Nofilter [hHz)
Friority | Lewel 15 (highest)
IRO1 setting
Erat Detection type |Falling edge «| Digital filter | No filter {MHz)
Priority | Level 15 (highest) ~
IRQ2 setting
IRQE Detection type |Falling edge ~ Digital filter | No filter [MHzZ)
Pricrity | Level 15 (highest) ~
IRQ3 setting
JIrRQ2 Detection type | Low level Digital filter | Nofilter (MHz)
Friority | Lewel 15 (highest)
IR(Q4 setting
JirRc4 Detection type | Lowlevel Digital filter [N filter [WHZ)
Friority | Lewel 13 (highest)
IRQ5 setting
[Jiras Dretection type |Low level Digital filter [Nofilter (hiHz)
Priority |Lewel 15 (highest)
IROE setting
[JIrRQE Detection type |Low level Digital filter [Nofilter (hHz
Friority | Lewel 15 (highest)
IRQ7 setting
CJira7 Detection type | Lowt level Digital filter | Nofilter [MHzZ)
Friority | Lewel 15 (highest)

Figure 4-17 Config_ICU setting

R20UT3927EG0100 Rev. 1.00
Jun 30, 2017

RENESAS

Page 21 of 66

RSKRX130-512KB

4. Smart Configurator Using the e? studio plug in

4.4.5 Ports

Referring to the RSK schematic, LEDO is connected to PD3, LED1 is connected to PD4, LED2 is connected to
PE6 and LED3 is connected to PE7. P17 is used as one of the LCD control lines, together with PB2, PC2 and

PC3.

Click ‘Add component’ % icon. In ‘Software Component Selection’ dialog -> Type, select ‘Code Generator’.
Select ‘Ports’ as shown in Figure 4-18 then click ‘Next'.

PR New Component

Software Component Selection

Select component from those available in list

Function | All ~
Type 1CDdE Generator VI
Filter | |
Components Type Version 2
Phase Counting Mode Timer Code Generator 1.20
B Port Output Enable Code Generator 1.0.0
1 Ports Code Generﬁor 1.2.0 I
H# PWM Mode Timer Code Generator 110
Real Time Clock Code Generator 1.00
Remote Control Signal Receiver Code Generator 1.00 v
< >

Show only last version

Description

This software compeonent provides configurations for General Purpose Input/Cutput.
Common features such as reading, writing, and setting the direction of ports and pins
can be configured, Enabling features such as open-drain outputs and internal pull-
ups are also supported.

Download more software components

Configure general settings...

® < Back I Mext » I | Finish | Cancel

Figure 4-18 Select Ports

In ‘Add new configuration for selected component’ dialog -> Resource, select ‘PORT’ as shown in Figure 4-19

below then click ‘Finish’.

PR New Component

Add new configuration for selected component -E-
Ports
Configuration name: Config_PORT |
Resource: PORT ~

@ < Back Next > Cancel

Figure 4-19 Select resource — PORT

R20UT3927EG0100 Rev. 1.00
Jun 30, 2017

RENESAS

Page 22 of 66

RSKRX130-512KB 4. Smart Configurator Using the e? studio plug in

‘PORTL, ‘PORTB’, ‘PORTC’, ‘PORTD’, ‘PORTE!' tick box is checked as shown in Figure 4-20 below.

48k *SC_Tutorial.scfg 52

Software component configuration
Components = - Configure

% o Port selection PORT1 PORTB PORTC PORTD PORTE

type filter text

v = Startup [JrPoORTO PORT1
~ [= Generic
& rbsp [JPORT2 [drorT3
w [2= Drivers
v [Interrupt [JPORT4 [JPoRTS
& Config_ICU
v (= VO Ports [OrorTA PORTB
& Config_PORT
v (= Timers |EA rORTC| |41 PORTD|
& Config_CMT1
@ Config_CMTO PORTE OrortH
& Config_TMRO
= Middleware [JroRT
[= Application

Figure 4-20 Select Port selection

Navigate to the ‘Ports’ configure these four I/O lines and LCD control lines as shown in Figure 4-21, Figure
4-22, Figure 4-23, Figure 4-24 and Figure 4-25 below. Ensure that the ‘Output 1’ tick box is checked, except
PC3. Select ‘PORT1' tab.

{8 *SC_Tutorial.scfg 53
Software component configuration
Components =] :'..=:;> ~ Configure
% Port selection PORT1 PORTE PORTC PORTD PORTE
type filter text
v & Startup I Apply to all
v [= Generic Unused In Out Pull-up CMOS output Cutput 1 High-drive output
@& rbsp
~ [= Drivers P12
Int it
v e .:'Eg:riig_lcu @ Unused Oin O 0ut Pull-up | CMOS output Output 1 High-drive cutput
w [I/O Ports
&+ Config_PORT Pi3
v [= Timers @Unused Olin O 0ut Pull-up CMOS output Cutput 1 High-drive output
& Config_CMT1
& Config_CMTO P14
@ Config TMRO @ Unused Clin O0ut Pull-up CMOS output Cutput 1 High-drive output
= Middleware
Applicati
(= Application P15
@ Unused Clin O0ut Pull-up CMOS output Cutput 1 High-drive output
P16
@ Unused Clin O0ut Pull-up CMOS output Cutput 1 High-drive output
P17
OUnused Oln Pull-up CMOS output ~ Output 1| [High-drive output

Figure 4-21 1/O ports — Portl

R20UT3927EG0100 Rev. 1.00 RENESAS Page 23 of 66
Jun 30, 2017

RSKRX130-512KB

4. Smart Configurator Using the e? studio plug in

{8 *SC_Tutorial.scfg &3

Software component configuration

Components az =] j-,=:€> » Configure
%= Port selection PORT1 PORTE PORTC PORTD PORTE
type filter text
v & Startup [JApply to all
~ [Generic Unused In Out Pull-up CMOS output Cutput 1 High-drive output
@& rbsp
~ [= Drivers PBO
v (& Interrupt ®Unused Oin (O 0ut Pull-up |CMOS Output 1 High-drive output
& Config ICU p output Cutput gh-driv tput
~ [= |/O Ports
& Config_PORT Pat
v [= Timers ®Unused Olin O0ut Pull-up CMOS output Cutput 1 High-drive output
& Config_CMT1
& Config_CMTO pE2
* Config TMRO D Unused (Oin | @ Out Pull-up
- CMOS output n{)ut ut 1| []High-drive cutput
= Middleware P e - E 9 P
Applicati
(== Application B3
@ Unused Oin (O0ut Pull-up CMOS output Output 1 High-drive output
PB4
@ Unused Cin O0Out Pull-up CMOS output Output 1 High-drive output
PB5
@ Unused Clin O0ut Pull-up CMOS output Cutput 1 High-drive output
PB6
@ Unused Clin O0ut Pull-up CMOS output Cutput 1 High-drive output
PB7
@ Unused Oin O 0ut Pull-up |CMOS output Output 1 High-drive output
Figure 4-22 1/O ports — PortB
{85 *SC_Tutorial.scfg &3
Software component configuration
Components az =] }:5 ~ Configure
% = Port selection PORT1 PORTE FORTC PORTD PORTE
type filter text
v (= Startup [Apply te all
w (= Generic Unused In Out Pull-up CMOS output Cutput 1 High-drive output
& rbsp
w [Drivers PCo
v (& Inferrupt @Unused Oln O 0ut Pull CMOS output o 1 High-dri
nus: n u ull-up Output igh-drive output
& Config_ICU P outpu p g P
v = /O Ports
&+ Config_PORT pCt
~ [Timers @Unused Oin O0ut Pull-up CMOS output Output 1 High-drive output
& Config_CMT1
@ Config CMTO pc2
& Config_TMRO O Unused Pull-up CMOS output ~ Output 1] [] High-drive output
(= Middleware
Application
= Appl oc2
OUnused Oln Pull-up CMOS output ~| Ooutput1 [JHigh-drive output
PC4
@ Unused Oin O 0ut Pull-up | CMOS output Output 1 High-drive output
PC5
®Unused Oin O0ut Pull-up | CMOS output Output 1 High-drive cutput
PCh
@ Unused Oin (O 0ut Pull-up CMOS output Output 1 High-drive output
PC7
@ Unused Oin (O0ut Pull-up CMOS output Output 1 High-drive output

Figure 4-23 1/O ports — PortC

R20UT3927EG0100 Rev. 1.00

Jun 30, 2017

RENESAS

Page 24 of 66

RSKRX130-512KB

4. Smart Configurator Using the e? studio plug in

{8 *SC_Tutorial.scfg &3

Software component configuration

Components

=
LEE

Configure

PORTE PORTC PORTD PORTE

% = Port selection PORT1
type filter text
v & Startup [JApply to all
v = G.ener\c Unused In Out Pull-up Cutput 1 High-drive output
@& rbsp
~ [= Drivers PDO
v (& Interrupt ®Unused Oin (O 0ut Pull-up |CMOS Output 1 High-drive output
& Config ICU p output Output gh-driv tput
~ [= |/O Ports
& Config_PORT PO
v [= Timers ®Unused Olin O0ut Pull-up CMOS output Cutput 1 High-drive output
& Config_CMT1
@ Config_CMTO pPD2
@& Config TMRO @ Unused Oin (O0ut Pull-up CMOS output Cutput 1 High-drive output
= Middleware
(== Application P03
OUnused Ol Pull-up [[] High-drive cutput
PD4
O Unused Pull-up [JHigh-drive output
PD3
@ Unused Clin O0ut Pull-up Cutput 1 High-drive output
PD6
@ Unused Clin O0ut Pull-up Cutput 1 High-drive output
PD7
@ Unused Oin O 0ut Pull-up Output 1 High-drive output
Figure 4-24 1/O ports — PortD
{85 *SC_Tutorial.scfg &3
Software component configuration
Components az =] }:5 ~ Configure
% = Port selection PORT1 PORTE PORTC PORTD PORTE
type filter text
v (= Startup [Apply te all
w (= Generic Unused In Out Pull-up Cutput 1 High-drive output
& rbsp
w [Drivers PEO
v & Interrupt @Unussd Oln OOut | [Pullbup | CMOS Output1 [] High-dive output
& Config ICU nus: n u ull-up output Output igh-drive output
v = /O Ports
&+ Config_PORT Pl
~ [Timers @Unused Oin O0ut Pull-up CMOS output Output 1 High-drive output
& Config_CMT1
f Config_CMTO pE2
@ Config TMRO @ Unused Clin O0ut Pull-up CMOS output Cutput 1 High-drive output
(= Middleware
(= Application .
@ Unused Clin O0ut Pull-up CMOS output Cutput 1 High-drive output
PE4
@ Unused Oin O 0ut Pull-up Output 1 High-drive output
PE5
@®Unused Oin O0ut Pull-up Output 1 High-drive output
PEG
OUnused Dl Pull-up [] High-drive output
PET
OUnused Ol Pull-up [[] High-drive cutput

Figure 4-25 1/O ports — PortE

R20UT3927EG0100 Rev. 1.00

Jun 30, 2017

RENESAS

Page 25 of 66

RSKRX130-512KB

4. Smart Configurator Using the e? studio plug in

4.4.6 SCI/SCIF Asynchronous Mode

In the RX130-512KB SCI1 is connected via a Renesas RL78/G1C to provide a USB virtual COM port as

shown in the schematic.

Click ‘Add component’ & icon. In ‘Software Component Selection’ dialog -> Type, select ‘Code Generator’.
Select ‘SCI/SCIF Asynchronous Mode’ as shown in Figure 4-26 then click ‘Next'.

PS New Component

Software Component Selection

Select component from those available in list

Functicn | All ~
Type 1CDde Generator VI
Filter | |
Components Type Version ol
8 PWM Mode Timer Code Generator 110
Real Time Clock Code Generator 1.00
Remote Control Signal Receiver Code Generator 1.00
B sCI/sCIF Asynchronous Mode Code Generator 1.0.0 I
SCI/SCIF Clock Synchronous M... Code Generator 1.00
Single Scan Mode S12AD Code Generator 110 v
< >

Show only last version

Description

processor) asynchronous mode.

This software component provides configurations for SCI(SCIF) single(multi-

Download more software components
C

onfigure general settings...

< Back

©) [

Mext >

[Fnish || Cancel

Figure 4-26 Select SCI/SCIF Asynchronous Mode

In ‘Add new configuration for selected component’ dialog -> Work mode, select ‘Transmission/Reception’ as

shown in Figure 4-27 below.

PR New Component

SCI/SCIF Asynchronous Mode

Configuration name:

[Config_scig

Work mode:

Transmission

Resource: .
Reception

Transmission

Transmission/Reception
Multi-processor Transmissicn
Multi-processor Reception
Multi-processor Transmissicn/Reception

()

< Back

Mext >

Cancel

Figure 4-27 Select Work mode — Transmission/Reception

R20UT3927EG0100 Rev. 1.00
Jun 30, 2017

RENESAS

Page 26 of 66

RSKRX130-512KB

4. Smart Configurator Using the e? studio plug in

In ‘Resource’, select ‘SCI1’ as shown in Figure 4-28 below.

PR New Component

Add new figuration for selected P + _E_
SCI/SCIF Asynchronous Mode
Configuration name: |CDr1f|'g_SC\3 |
Work mode: Transmission/Reception ~
Resource: | SCI8 ~ |

® < Back Mext » Cancel

Figure 4-28 Select Resource — SCI1

Ensure that the ‘Configuration name’ updates to ‘Config_SCI1’ as shown in Figure 4-29 below then click

‘Finish’.

PR New Component

Add new configuration for selected component -E-
SCI/SCIF Asynchronous Mode
Configuration name: ICcmfl'g_SCH
Work mode: Transmissicn/Reception ~
Resource: scn ~
® < Back Next > Cancel

Figure 4-29 Ensure Configuration name - Config_SCI1

R20UT3927EG0100 Rev. 1.00

Jun 30, 2017

RENESAS

Page 27 of 66

RSKRX130-512KB 4. Smart Configurator Using the e? studio plug in

Configure SCI1 as shown in Figure 4-30. Ensure the ‘Start bit edge detection’ is set as ‘Falling edge on
RXD1 pin’ and the ‘Bit rate’ is set to 19200 bps. All other settings remain at their defaults.

8% =5C_Tutorial.scfg 32
Software component configuration
Components = 2w Configure
%'T Start bit edge detection setting
- (O Low level on RXD1 pin (®) Falling edge on RXD1 pin
type filter text
. * Data length setting
v (= Starup O 9bits @ & bits O7bits
~ [= Generic
& rbsp Parity setting
~ (= Drivers ® Mone () Even O 0dd
v = Interrupt . .
& Config_ICU Stop bit length setting
v [VO Ports ®1bit O 2bits
&? CDn'ig,PtORT Transfer direction setting
~ ommunications
& Config_sCl1 @ LsB-first) MSB-first
v (= Timers Transfer rate setting
y Config_CMT1
*.. o '|g_ Transfer clock Internal clock ~
& Config_CMTO
& Config_TMRO 16 cycles for 1-bit period
= Middleware
@ Application Bit rate I1QEDD vI (bps) (Actual value: 19230768, Error: 0.160%)
[[] Enable medulation duty correction
SCK1 pin function SCK is not used v
Noise filter setting
[JEnable noise filter
Clock signal divided by 1
Hardware flow control setting
(®) None QcsiE (CQRTSI#
Data handling setting
Transmit data handling Data handled in interrupt service routine v
Receive data handling Data handled in interrupt service routine ~
Interrupt setting
Enable reception error interrupt (ERIT)
TXI1, RXI1, TEI, ERIT priority Level 15 (highest) ~
Callback functicn setting
[Transmissicn end Reception end Recepticn errer
Figure 4-30 Config_SCI1 setting
R20UT3927EG0100 Rev. 1.00 RENESAS Page 28 of 66

Jun 30, 2017

RSKRX130-512KB 4. Smart Configurator Using the e? studio plug in

4.4.7 SPI Clock Synchronous Mode

In the RSKRX130-512KB SCI6 is used as an SPI master for the Pmod LCD on the PMOD1 connector as

shown in the schematic. Click ‘Add component’ & icon. In ‘Software Component Selection’ dialog -> Type,
select ‘Code Generator’. Select ‘SPI Clock Synchronous Mode’ as shown in Figure 4-31 then click ‘Next'.

PR New Component

Software Component Selection -Ha-

Select component from those available in list

Functicn | All ~
Type 1CDde Generator VI
Filter | |
Components Type Version ol
$S\ng|e Scan Mode 512AD Code Generator 110
H# Smart Card Interface Mode Code Generator 1.0.0
1 5P| Clock Synchronous Made Code Gen erator 1.0.0 |
B spl Operation Mode Code Generator 1.00
$V\:|Ilage Detection Circuit Code Generator 1.00
H# Watchdog Timer Code Generator 1.00 v
< >

Show only last version

Description

This component provides clock synchronous operation of RSP or SCI (Simple SPI
bus). It includes 4 transfer modes: Slave transmit/receive, Slave transmit, Master
transmit/receive and Master transmit.

Download more software components

Configure general settings...

® < Back I Next > I | Finish | Cancel

Figure 4-31 Select SPI Clock Synchronous Mode

Ensure Operation, select ‘Master transmit only’ as shown in Figure 4-32 below.
E New Component

Add new configuration for selected component -Ha-

5PI Clock Synchronous Mode

Configuration name: |Config,SC\8 |

Operation: Slave transmit/receive w

Slave transmit/receive
Resource: .

Slave transmit only

IMaster transmit/receive

® < Back Mext » Cancel

Figure 4-32 Select Operation — Master Transmit only

R20UT3927EG0100 Rev. 1.00 RENESANAS Page 29 of 66
Jun 30, 2017

RSKRX130-512KB

4. Smart Configurator Using the e? studio plug in

In ‘Resource’, select ‘SCI6’ as shown in Figure 4-33 below.

PR New Component

Add new figuration for selected P + _E_
5PI Clock Synchronous Mode
Configuration name: Config_SCI& |
Operation: Master transmit only ~
Resource: SCI8 ~
sC18
schz
RSPIO
SCI5
SCI0
SCIg
sCI
® < Back Mext > Cancel

Figure 4-33 Select Resource — SCI6

Ensure that the ‘Configuration name’ updates to ‘Config_SCI6’ as shown in Figure 4-34 below then click

‘Finish’

PR New Component

Add new configuration for selected component -E-
5PI Clock Synchronous Mode
Configuration name: ICunfl’g_SC\S I
Operation: Master transmit only ~
Rescurce: SCle ~
® < Back Next > Cancel

Figure 4-34 Ensure Configuration name - Config_SCI6

R20UT3927EG0100 Rev. 1.00
Jun 30, 2017

RENESAS

Page 30 of 66

RSKRX130-512KB

4. Smart Configurator Using the e? studio plug in

Configure SCI6 as shown in Figure 4-35. Ensure the ‘Transfer direction’ is set as ‘MSB-first’ and the ‘Bit rate’

is set to 8000 kbps. All other settings remain at their defaults.

48k *SC_Tutorial.scfg 52
Software component configuration

Components Configure

SRE I g
Transfer directicn setting

() LSB-first

W

type filter text

v (= Startup Data inversion setting
v = G__eneric (® Mormal
& rbsp
v [= Drivers Transfer speed setting
v = Interrupt
= Config ICU Transfer clock
& Lonfig |
ve IJO Ports Bit rate
& Cenfig_PORT
v (&= Communications [CJEnable modulation duty correction
& Config_SCI6)
* Config_SCI1 Cleck setting
w [= Timers [JEnable clock delay
& Config_CMT1
& Cenfig_CMTO Data handling setting
= Config_TMRO
= Mid:lew:?elg_ Transmit data handling
Application
= Appl Interrupt setting
TXI6, TEIG pricrity
Callback function setting
[Transmissicn end

() Inverted

Internal clock (SCKE pin functions as clock cutput pin) ~

(kbps) (Actual value: 8000, Errer: 0%)

[JEnable cleck pelarity inversion

Data handled in interrupt service routine

Lewvel 15 (highest)

Figure 4-35 Config_SCI6

setting

R20UT3927EG0100 Rev. 1.00

LENESAS
Jun 30, 2017 -2

Page 31 of 66

RSKRX130-512KB

4. Smart Configurator Using the e? studio plug in

448 Single Scan Mode S12AD

We will be using the S12AD on Single Scan Mode on the ANOOO input, which is connected to the RV1
potentiometer output on the RSK. The conversion start trigger will be via the pin connected to SW3. Click

‘Add component’ & icon. In ‘Software Component Selection’ dialog -> Type, select ‘Code Generator’. Select
‘Single Scan Mode S12AD’ as shown in Figure 4-36 then click ‘Next'.

PS New Component

Software Component Selection -Ha-

Select component from those available in list

Functicn | All ~
Type .1CDde Generator VI
Filter | |
Components Type Version ol
B8 sCI/SCIF Asynchronous Mode Code Generator 1.00
SCI/SCIF Clock Synchronous M... Code Generator 1.0.0
H Single Scan Mode S12AD Code Generator 1.1.0 |
B Smart Card Interface Mode Code Generator 1.00
SPI Clock Synchronous Mode Code Generator 1.00
7 SPI Operation Mode Code Generator 1.00 v
< >

Show only last version

Description

This software component provides single scan mode configurations for 12-Bit A/D
Converter which the analog inputs of up to 8 (unit 0) and 21 (unit 1) channels
arbitrarily selected are converted for only cnce in ascending channel order.

Download more software components

Configure general settings...

® < Back I Next > I | Finish | Cancel

Figure 4-36 Select Single Scan Mode S12AD

In ‘Add new configuration for selected component’ dialog -> Resource, select ‘'S12AD0’ as shown in Figure

4-37 below then click ‘Finish’.

PR New Component

Add new configuration for selected component -E-

Single Scan Mode 512AD
Configuration name: Config_S12AD0 |

Resource: S12AD0 ~

@ < Back Next » Cancel

Figure 4-37 Select resource — S12ADO0

R20UT3927EG0100 Rev. 1.00
Jun 30, 2017

RENESAS

Page 32 of 66

RSKRX130-512KB

4. Smart Configurator Using the e? studio plug in

Configure S12ADO0 as shown in Figure 4-38 and Figure 4-39. Ensure the ‘Analog input channel’ tick box for
ANOOO is checked and the ‘Start trigger source’ is set to ‘A/D conversion start trigger pin’. All other settings

remain at their defaults.

{8} SC_Tutorial.scfg 53

Software component configuration

.

type filter text

v [= Startup
v [Generic
f.: r_bsp
 [= Drivers
w [Interrupt
& Config_ICU
v [= I/OPorts
& Config_PORT
 [= Communications
& Config_5CI6
& Config_5CI1
w [= A/D Converter
& Config_S12AD0
w [= Timers
& Config_CMT1
& Config_CMTO
& Config_TMRO
= Middleware
= Applicaticn

Components = _%:9 -

Configure

~ Basic setting
Analeg input mode setting
[Double trigger mode

Analog input channel setting

EJanoo [anoot [anooz [Jano02 [ANo04
[J anoos [J anooe [anoo7 [Jamo1s [an017
[anos [ano1g [anD20 [an021 [anD22
[JaND22 [JaND24 [JaNo2s [JaNO26 [JAN027
[]AND28 []aNo29 [ANG30 AN

[Temperature sensor cutput [internal reference voltage
Conversion start trigger setting

Start trigger source

IND conversion start trigger pin

Interrupt setting

Enable AD conversion end interrupt (S12ADI0) Pricrity | Level 15 (highest)

~ Advance setting

Add/Average AD value setting

[Jamooo ANOOT ANDO4
ANOOS ANOOG ANDT7
ANO1E ANOTS
ANC23 AND24
AND28 AND29

Temperature sensor output Internal reference voltage

A/D conversion select
® High-speed (O Low-current
High-Potential reference voltage setting

@ AVCCO O VREFHO

Low-Potential reference voltage setting

(® AVSS0 (O) VREFLO

Self diagnosis setting

Maode Unused v

oV

Disconnection detection assist setting
Charge setting Unused ~

2 ADCLK

Data registers setting

Data placement Right-alignment ~
Automatic clearing Disable automatic cleaning ~
Addition/Average mode select Addition mode ~
Addition count 1-time: ~
Data storage buffer setting

(® Disable (Z) Enable

Window function setting

(® Disable (O) Enable

‘Window function setting
(® Disable (O Enable

Figure 4-38 Config_S12ADO0 setting (1)

R20UT3927EG0100 Rev. 1.00
Jun 30, 2017

RENESAS

Page 33 of 66

RSKRX130-512KB

4. Smart Configurator Using the e? studio plug in

Window A/B operation setting

Window A/B complex condition

A/D comparisen A setting
Reference data O for comparison
Reference data 1 for comparison
[Use comparator for ANOOD
|| Use comparator for ANOOT
|| Use comparator for ANDD2Z
|| Use comparator for ANDO3

[] Use comparator for ANDO

["] Use comparator for ANDOS

["] Use comparator for ANDDG

["] Use comparator for ANDOT

["] Use comparator for AND16
[Use comparator for ANOT7
[Use comparator for ANO1S
[Use comparator for ANO19
|| Use comparator for AND20
|| Use comparator for ANO21
|| Use comparator for AND22

[] Use comparator for AND23

["] Use comparator for AND24

["] Use comparator for AND25

["] Use comparator for AND26

["] Use comparator for AND27
[Use comparator for AN028
[Use comparator for AN029
[Use comparator for AN0O30

| | Use comparator for ANO31
|| Use comparator for Temperature sensor output

|| Use comparator for Internal reference voltage

A/D comparisen B setting
Reference data O for comparison
Reference data 1for comparison

Compatizon B channel

Input sampling time setting
AMOQ0/Self-diagnosis
ANDDT

ANDIZ

ANDDE

AN

ANDE

ANDG

ANDT

ANDTE-ANDIT
Temperature sensor output

Internal reference wvoltage

Event link control setting

ELC scan end event generaticn condition

[JEnable comparisen window A] Enable comparisen window B

[S1ZADWUMELC is output in other cases)

alle

olla

[01e3 | w9 (Actualvalue 0.188)
[0.183 | e hctustvalue 0188y
0183 | iug iActual value 0188
[0.183 | e hctustvalue 0188y
[0.183 | s hetuelvalue 0188
[01e3 | e hetuslvalue 0188
[0.183 | s hetuelvalue 0188
0183 | iug iActual value 0188
[0.183 | e hctustvalue 0188y
[0.183 | iug iActual value 0188
[01e3 | e hetuslvalue 0188

(Total conversion time: 1.562us)

On completion of all scans

Figure 4-39 Config_S12ADO setting (2)

R20UT3927EG0100 Rev. 1.00 RENESANS

Jun 30, 2017

Page 34 of 66

RSKRX130-512KB 4. Smart Configurator Using the e? studio plug in

4.5 Pins configuration page

Smart Configurator assigns pins to the software components that are added to the project. Assignment of the
pins can be changed using the Pins page.

48k *SC_Tutorial.scfy i3

Pin configuration

Hardware Resource = laz 6%
Type filter text
2o "

#f Clock generator
v ‘-5'; Voltage detection circuit
wi VD2
i??, Clock frequency accuracy measurement circu
HE Interrupt controller unit
v iar Multi-function timer pulse unit 2
w MTUO
MTUT
MTUZ
MTUZ
MTU4
w MTUS
{7, Port output enable 2
v b 8-bit timer
wi TMRO
ni TMR1
w TMR2
w TMR3
v #f# Serial communications interface
wd SCI0
& san
i SCI5
& SC6
e SCI8
we SCI9
i 5CH2
& Remote control signal receiver
v ﬂ-tg 12C bus interface v
£ >

Pin Function Pin Number
Owerview |Board | Clocks CDmpDnentsInterrupts

Figure 4-40 Pin configuration page

45.1 Change pin assignment of a software component

To change the pin assignment of a software component in the Pin Function list, click 58 to change view to
show by Software Components.

48% *SC_Tutorial.scfg &3

Pins Configuration

Software Components =| lal .{,%

Type filter text

Figure 4-41 Change view to show by Software Components

R20UT3927EG0100 Rev. 1.00 RENESAS Page 35 of 66
Jun 30, 2017

RSKRX130-512KB

4. Smart Configurator Using the e? studio plug in

Select the Config_ICU of Software Components. In the Pin Function list -> Assignment column, change the
pin assignment IRQ1 to P31, IRQ2 to P32. Ensure the ‘Enable’ tick box of IRQ1 and IRQ2 are checked, as

shown in Figure 4-42.

i‘:} *SC_Tutorial.scfg &8
Pin configuration
Software Components

Type filter text

v o bsp Enabled
' r_bsp

v ﬁ; 8-Bit Timer
' Config_TMRO

W ﬁ; Compare Match Timer
w' Config_CMTO
' Config_CMT1

v % Interrupt Controller
& Cenfig_ICU

w oo Ports
& Config PORT

W _-,5‘; SCI/SCIF Asynchronous Mode
& Cenfig_sCI1

W _-,5‘; SPI Cleck Synchronous Mode
& Cenfig_SCI6

OO0 0O00ORNIC

Pin Function Pin Number

Overview Board | Clocks | Components | Pins | Interrupts

= laz 6% Pin Function

Type pin function

Function Assignment Pin Number
IRCO Mot assigned Mot assigned
| IeT] P31/MTIOCAD,/ TMCIZ/CTS1#/RTS12/5512/TS1/IRQT | 19
[RGz _ P33/MTIOCOC/TMO3/TXD6/SMOSIE/SSDAG/TSO/IROZ...] 18
IRC:3 Not assigned Mot assigned
IRC4 Not assigned Mot assigned
IRQ5 Not assigned Mot assigned
IRQE Mot assigned Mot assigned
IRQ7 Mot assigned Mot assigned
NMI Mot assigned Mot assigned

Direction

Mone
|

|

Mone
Mone
Mene
MNone
MNone
MNone

=0
& &

A B e ed

Remarks

Figure 4-42 Configure pin assignment - Config_ICU

Select the Config_SCI1 of Software Components. In the Pin Function list -> Assignment column, Ensure the
‘Enable’ tick box of RXD1 and TXD1 are checked and Assignment column of RXD1 is P30 and TXD1 is P26

as shown in Figure 4-43.

{8} *SC_Tutorial.scfg &3

Pin configuration
Software Components

%

Type filter text

v & orbsp Enabled
' r_bsp

v & 8-Bit Timer
' Config_TMRO

v ‘3; Compare Match Timer
' Config_CMTO
' Config_CMT1

v ‘3; Interrupt Controller
& Config_ICU

v ‘3: Ports
& Config_PORT

W 2 SCI/SCIF Asynchronous Mode
& Config_5CI1

~ g 5Pl Clock Synchronous Mode
& Config_SCI6

i] v Jf]

Pin Function Pin Number

Overview | Board | Clocks | Components | Pins | Interrupts

Pin Function

Type pin function

Function
CT51#
RTS1#
RXD1
SCK1
TXD1

Assignment Pin Mumber

Not assigned Mot assigned

Not assigned Mot assigned
LP30/MTIOCAE/ POES/ TMRIZ/RXD1/SMISO1/SSCLT/TS..| 20

Not assigned Mot assigned
LP26/MTIOC2A/TMOT/TXD1/SMOSIT/SSDAT/TS4 | 22

Direction
Mone
Mone

|

Mone

0

= O
(CR=

2| R s

Remarks

Figure 4-43 Configure pin assighment - Config_SCI1

R20UT3927EG0100 Rev. 1.00
Jun 30, 2017

RENESAS

Page 36 of 66

RSKRX130-512KB

4. Smart Configurator Using the e? studio plug in

Select the Config_SCI6 of Software Components. In the Pin Function list -> Assignment column, Ensure the
‘Enable’ tick box of SCK6 and SMOSI6 are checked and Assignment column of SCK6 is PB3, SMOSI6 is PB1

as shown in Figure 4-44.,

Software Components

i‘:} *SC_Tutorial.scfg &8

Pin configuration

Type filter text

w

w

ﬁ; r_bsp
' r_bsp

ﬁ; 8-Bit Timer
' Config_TMRO

- Compare Match Timer
w' Config_CMTO
' Config_CMT1

£ Interrupt Controller
& Cenfig_ICU

24 Ports
& Config PORT

25 SCI/SCIF Asynchronous Mode
& Cenfig_sCI1

._SPI Clock Synchronous Mode

& Cenfig_SCI6

Pin Function Pin Number

= laz 6% Pin Function

Type pin function

Enabled Function
SCK6
O] SsMIs06
SMOSIE
[ss62

£

Overview Board | Clocks | Components | Pins | Interrupts

Assignment

Pin Number

[FEZ/MTIOCOA/MTIOCAA TIMO0/POE3E/SCKE 1522 57

Mot assigned

Mot assigned

LPB1/MTIOCOC/MTIOCAC/TMCID/TXDE/SMOSI6/SSDA...| 59

Mot assigned

Mot assigned

LU =T

Direction
10

Mone

10

Mone

= 0

& &

Remarks

Figure 4-44 Configure pin assignment - Config_SCI6

Select the Config_S12ADO0 of Software Components. In the Pin Function list -> Assignment column, Ensure
the ‘Enable’ tick box of ANO0O, AVCCO, AVSS0 and ADTRGO# are checked and Assignment column of ANOOO
is P40, ADTRGO# is P16 as shown in Figure 4-45.

&
Pi

Software Components

SC_Tutorial.scfg 1

n configuration

Type filter text

=] laz sz Pin Function

Type pin function

w .-F: r_bsp
Wi r_bsp

w f; 8-Bit Timer
i Config_TMRO

w ﬁ: Compare Match Timer
w Config_CMTO

W Config_CMT1
v ﬁ‘; Interrupt Controller
& Config_ICU
w Ports

-

@& Config_PORT
~ M SO/SCIF Asynchronous Mode
& Config_SCI1
472 SPI Cleck Synchronous Mode
& Config_SCI6
~ & Single Scan Mode S12AD

s

w

Enabled Function
ADTRGO=
ANOOO
ANOO1
ANOOZ
ANOO
ANON4
ANOOS
ANDDE
ANOOT
ANO1E
ANOTT
ANO1E
ANOTZ
ANO20
ANO21

& Config_512AD0

AND22

ANO23
ANO24
ANO25
ANO26
ANDZT
ANOZ8
AND29
ANO30
ANO31
AVCCD
AVSS0
VREFHO
VREFLO

DOEEOO0O0000000000000000O000C00RE

Pin Function Pin Number

Overview | Board | Clocks | Compenents | Pins | Interrupts

Assignment

Pin Number

LP16/MTIOC3C MTIOCIDI TMO2 TXDT/SMOSIT/SSDAT. | 30
|

P40/ANDOO

95

Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned

Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned
Mot assigned

Mot assigned Mot assigned
Mot assigned Mot assigned
LAVCCD] o7
[Avssa] =2

Mot assigned
Mot assigned

Mot assigned
Mot assigned

Direction

!

!

None
None
MNone
Nene
MNone
MNone
None
None
None
None
Nene
MNone
MNone
None
None
None
None
None
MNone
MNone
MNone
MNone
None

MNone
Nene

1
-

Remarks

= 8
GRS

| & | e e

Figure 4-45

Configure pin assignment - Config_S12ADO0

R20UT3927EG0100 Rev. 1.00

Jun 30, 2017

RENESAS

Page 37 of 66

RSKRX130-512KB 4. Smart Configurator Using the e? studio plug in

Peripheral function configuration is now complete. Save the project using the File -> Save, then click
‘felGenerate Code’ at location of Figure 4-46.

{84 5C_Tutorial.scfg 52 = (m]

Pin configuration

Figure 4-46 Generate Code Button

The Console pane should report ‘Code generation is successful’, as shown Figure 4-47 below.

& Console i3 =% gi E |="E'i=?'=' 8
Smart Cenfigurater Qutput
Ma4aae@el: File generated:srchsmc_geni\generalhr_cg_rspi.h "

Ma4aae@el: File generated:srchsmc_geni\generalhr_cg_remc.h
Me4pae@el: File generated:srchsmc_geni\generalhr_smc_entry.h
Ma4aae@el: File generated:srchsmc_geni\generalir_cg_poe.h
Ma4aap@el: File generated:srchsmc_genigeneralir_cg_rtc.h
Me4p@a@@el: File generated:srchsmc_genigeneralhr_cg_cmt.h
Me4pae@el: File generated:srchsmc_genigeneralhr_cg_riic.h
Me4pae@el: File generated:srchsmc_genigeneralir_cg_doc.h
Me4@@e@el: File generated:srchsmc_genigeneralir_cg_tmr.h
Ma4@aepel: File generated:srci\smc_gen\general\r_cg crc.h
Ma4e@e001: File generated:srch\smc_gen'\generalir_cg lvd.h
Ma4eee001: File generated:srch\smc_gen'\general\r_cg cmpb.h
Me4e@e001: File generated:srch\smc_gen\generali\r_cg elc.h
M4e@e001: File generated:srch\smc_gen\generali\r_cg lpt.h
Me4e@e001: File generated:srch\smc_gen'\general\r_cg bsc.h
Meseeerl2: File generated:srcismc_gen\r_pincfg\Pin.h

Meseeerl2: File generated:srcismc_gen\r_pincfg\Pin.c

MeeeeeRe2: File generated:srci\smc_gen\general\r_smc_interrupt.c
MeeeeeRe2: File generated:srci\smc_gen\general\r_smc_interrupt.h
Meeaespa: Code generation is successful

Me3eaeres: File modified:srchsmc_gen\r_confighr_bsp_config.h

Figure 4-47 Smart Configurator console

4.6 Building the Project

The project template created by Smart Configurator can now be built. In the Project Explorer pane expand the
‘src’ folder then smc_gen folder.

[Project Explorer &7 O ¥ = 0
~ &-5 SC_Tutorial
[t Includes
w [src

v [Z= smc_gen
== Config_CMTO
= Config_CMT1
= Config_ICU
= Config_PORT
== Config_512AD0
&= Config_SCI1
= Config_5CI6
= Config_TMRO
= general
= rbsp
7= r_config
= r_pincfg

[SC_Tutorial.c

= trash

=| SC_Tutorial HardwareDebug.launch

8 SC_Tutorial.scfg

Figure 4-48 Generated folder structure

FE

Switch back to the ‘C/C++’ perspective using the button on the top right of the e? studio workspace. Use

‘Build Project’ from the ‘Project’ menu or the button to build the tutorial. The project will build with no
errors.
R20UT3927EG0100 Rev. 1.00 RENESAS Page 38 of 66

Jun 30, 2017

RSKRX130-512KB 5. User Code Integration

5. User Code Integration

In this section, the remaining application code is added to the project. Source files found on the RSK Web
Installer are copied into the workspace and the user is directed to add code in the user areas of the code
generator files.

Code must be inserted in to the user code area in many files in this project, in the areas delimited by
comments as follows:

/* Start user code for _xxxxx_. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */

Where _xxxx_ depends on the particular area of code, i.e. ‘function’ for insertion of user functions and
prototypes, ‘global’ for insertion of user global variable declarations, or ‘include’ for insertion of pre-processor
include directives. User code inserted inside these comment delimiters is protected from being overwritten by
Smart Configurator, if the user needs to subsequently change any of the Smart Configurator-generated code.

5.1 LCD Code Integration

API functions for the Okaya LCD display are provided with the RSK. Locate the files ascii.h, r_okaya_lcd.h,
ascii.c, and r_okaya_lcd.c on the RSK Web Installer. These files can be found in the Tutorial project for e?
studio. Copy these files into the C:\Workspace\SC_Tutorial\src directory. The files will be automatically added
to the project as shown in Figure 5-1.

[y Project Explorer E3 =R=SN
w =5 SC_Tutorial [HardwareDebug]
f_f' Binaries
B Includes
v 2 src
(= smc_gen
[asciic
[h| asciih
[€] r_okaya_lcd.c
r_ckaya_lcd.h
[SC_Tutorial.c
Figure 5-1 Adding files to the project

R20UT3927EG0100 Rev. 1.00 RENESAS Page 39 of 66
Jun 30, 2017

RSKRX130-512KB 5. User Code Integration

In the e? studio Project Tree, expand the ‘src\smc_gen\general’ folder and open the file ‘r_cg_userdefine.h’ by
double-clicking on it. Insert the following #defines in between the user code delimiter comments as shown

below.

/* Start user code for function. Do not edit comment generated here */

#define TRUE (¢))
#define FALSE ()

/* End user code. Do not edit comment generated here */

In the e? studio Project Tree, expand the ‘src’ folder and open the file ‘SC_Tutorial.c’ by double-clicking on it.
Add header files near the declarations ‘#include r_smc_entry.h'.

#include "r_smc_entry.h"

#include "r_okaya lcd.h"
#include "r_cg userdefine.h"

Scroll down to the ‘main’ function and insert the highlighted code as shown below into the beginning of the
‘main’ function:

void main(void)

{
/* Initialize the debug LCD */
R_LCD_InitQ);
/* Displays the application name on the debug LCD */
R_LCD_Display(0, (uint8_t *)" RSKRX130-512KB ");
R_LCD_Display(1l, (uint8_t *)'" Tutorial ");
R_LCD Display(2, (uint8_t *)" Press Any Switch ");
while (1U)
{ -
}

}

R20UT3927EG0100 Rev. 1.00 .zEN ESNS Page 40 of 66

Jun 30, 2017

RSKRX130-512KB 5. User Code Integration

5.1.1 SPICode

The Okaya LCD display is driven by the SPI Master that was configured using Smart Configurator in §4.4.7. In
the e? studio Project Tree, expend the 'src\smc_gen\Config_SCI6’ folder and open the file Config_SCI6.h’ by
double-clicking on it. Insert the following code in the user code area at the end of the file:

/* Start user code for function. Do not edit comment generated here */

/* Exported functions used to transmit a number of bytes and wait for completion */
MD_STATUS R_SCI6_SPIMasterTransmit(uint8 t * const tx_buf, const uintl6_t tx_num);

/* End user code. Do not edit comment generated here */

Now, open the Config_SCI6_user.c file and insert the following code in the user area for global:
/* Start user code for global. Do not edit comment generated here */

/* Flag used locally to detect transmission complete */
static volatile uint8_t sci6_txdone;

/* End user code. Do not edit comment generated here */

Insert the following code in the transmit end call-back function for SCI6:

static void r_Config_SCI6_callback_transmitend(void)
/* Start user code for r_Config_SCI16_callback_transmitend. Do not edit comment generated here */
sci6_txdone = TRUE;

/* End user code. Do not edit comment generated here */

}

Now insert the following function in the user code area at the end of the file:

/* Start user code for adding. Do not edit comment generated here */

Function Name: R_SCI16_SPIMasterTransmit
Description : This function sends SPI6 data to slave device.
Arguments : tx_buf -

transfer buffer pointer

t>x_num -

buffer size
Return Value : status -

MD_OK or MD_ARGERROR

Ok X Ok X X Ok XN\

MD_STATUS R_SCI6_SPIMasterTransmit (uint8_t * const tx_buf,
const uintl6_t tx_num)
{

MD_STATUS status = MD_OK;

/* Clear the flag before initiating a new transmission */
sci6_txdone = FALSE;

/* Send the data using the APl */
status = R_Config_SCI6_SPI_Master_Send(tx_buf, tx_num);

/* Wait for the transmit end flag */
while (FALSE == sci6_txdone)

/* Wait */
3

return (status);

}

/
* End of function R_SCI6_SPIMasterTransmit

/

This function uses the transmit end callback function to perform flow control on the SPI transmission to the
LCD, and is used as the main API call in the LCD code module.

R20UT3927EG0100 Rev. 1.00 RENESAS Page 41 of 66
Jun 30, 2017

RSKRX130-512KB 5. User Code Integration

5.1.2 TMR Code

The LCD code needs to insert delays to meet the timing requirements of the display module. This is achieved
using the dedicated timer which was configured using Smart Configurator in §4.4.2. In the e? studio Project
Tree, expend ‘src\smc_gen\Config_ TMRO’ folder and open the file ‘Config_TMRO0.h’ and insert the following
code in the user area for function at the end of the file:

/* Start user code for function. Do not edit comment generated here */
void R_TMR_MsDelay(const uintl6_t millisec);

/* End user code. Do not edit comment generated here */

Open the file Config_ TMRO_user.c and insert the following code in the user area for global at the beginning of
the file:

/* Start user code for global. Do not edit comment generated here */
static volatile uint8_t one_ms_delay complete = FALSE;

/* End user code. Do not edit comment generated here */

Scroll down to the r_Config_ TMRO_cmiaO_interrupt function and insert the following line in the user code
area:

static void r_Config_TMRO_cmiaO_interrupt(void)

{
/* Start user code for r_Config_TMRO_cmiaO_interrupt. Do not edit comment generated here */
one_ms_delay complete = TRUE;
/* End user code. Do not edit comment generated here */

¥

Then insert the following function in the user code area at the end of the file:

/* Start user code for adding. Do not edit comment generated here */

/
* Function Name: R_TMR_MsDelay

* Description : Uses TMRO to wait for a specified number of milliseconds
* Arguments : uintl6_t millisecs, number of milliseconds to wait

* Return Value : None

void R_TMR_MsDelay (const uintl6_t millisec)
{

uintl6é_t ms_count = O;

do
{
R_Config_TMRO_Start();
while (FALSE == one_ms_delay_complete)

{
/* Wait */

(o)

R_Config_TMRO_Stop();
one_ms_delay complete = FALSE;
ms_count++;
3} while (ms_count < millisec);
}
/
End of function R_TMR_MsDelay

R20UT3927EG0100 Rev. 1.00 RENESAS Page 42 of 66
Jun 30, 2017

RSKRX130-512KB 5. User Code Integration

5.2 Additional include paths

Before the project can be built the compiler needs some additional include paths added. Select the
SC_Tutorial project in the Project Explorer pane. Right click in the Project Explorer window, and select

'Properties’. Navigate to ‘C/C++ Build -> Settings ->Compiler -> Source and click the £ button as shown in
Figure 5-2.

E Properties for SC_Tutorial

type filter text Settings =10 v v

Resource -
Builders v & Compiler Include file directories €5 &8 5l & -

) 1 5o
v C/C++ Build & source ${TCINSTALL}/include "

Build Variables @ quECt "Hworkspace_loc:/${ProjNamel/src/sme_gen/r_bsp}”

Change Toslchain Versi (3 List "Hworkspace_loc:/${ProjNamel/src/smc_gen/r_config}”

w @ Optimize "Hworkspace_loc:/${ProjNamel/src/smc_gen/Config_PORT}"

@ Advanced "${workspace_loc:/${ProjName}/src/smec_gen/Config_ICU}"

. "${workspace_loc:/${ProjName}/src/sme_gen/Config_TMRO}"
Enviranment "${workspace_loc:/${ProjName}/src/sme_gen/Config_CMTO}"
Legging = cpu "${work;pace_|Dc:f&{DrDJ.Name}fsrdsmc_genfCan!g_CMﬂ}"
Settings % BICPID :?{workipace_!Dc:i?l;'ErDJ.Name}{srcf:smc_gen{EunEg_E!E"
Tool Chain Editor g - Heastome nanifonfie SOIAE

C/C++ General @@ MISRA CRule Check Preinclude files LR Iﬁl .&|

v Assembler

Source
@ Object
2 List
@ Miscellanecus
(22 User
w [Linker
@ Input
8 List
(&2 Optimize Defines 28 8 5 8
@ Section
8 User

< > P P

@ Concel
Figure 5-2 Adding additional search paths

Dependency Scan

Device ’
Miscellanecus

@ User

v

Project References
Run/Debug Settings

‘ w

In the ‘Add directory path’ dialog, click the ‘Workspace’ button and in the ‘Folder selection’ dialog browse to the
‘SC_Tutorial/src’ folder and click ‘OK’. e? studio formats the path as show in Figure 5-3 below.
P Add directory path

Directory:

| $fworkspace_loc:/${ProjName}/src)

[o]4 Cancel File system...

Figure 5-3 Adding workspace search path

‘Settings’ dialog will appear, click ‘Yes’ to complete the include file directories.

& Changes made will not be reflected in the index until it is rebuilt. Do you wish to
rebuild it now?

Yes MNo

Figure 5-4 Settings dialog

-

Select ‘Build Project’ from the ‘Project’ menu, or use the button. e? studio will build the project with no
errors.

The project may now be run using the debugger as described in 86. The program will display ‘RSKRX130-
512KB Tutorial Press Any Switch’ on three lines in the LCD display.

R20UT3927EG0100 Rev. 1.00 RENESANAS Page 43 of 66
Jun 30, 2017

RSKRX130-512KB 5. User Code Integration

5.3 Switch Code Integration

API functions for user switch control are provided with the RSK. Locate the files rskrx130_512kbdef.h,
r_rsk_switch.h and r_rsk_switch.c on the RSK Web Installer. These files can be found in the Tutorial project
for e? studio. Copy these files into the C:\Workspace\SC_Tutorial\src directory.

The switch code uses interrupt code in the files Config_ICU.h, Config_ICU.c and Config_ICU_user.c and timer
code in the files Config_ CMTO0.h, Config_ CMTO0.c and Config_ CMTO_user.c, Config_ CMT1.h, Config CMT1.c
and Config_CMT1_user.c as described in 84.4.3 and 84.4.4. Itis necessary to provide additional user code in
these files to implement the switch press/release detection and de-bouncing required by the API functions in
r_rsk_switch.c.

5.3.1 Interrupt Code

In the e? studio Project Tree, expand the ‘src/smc_gen/Config_ICU’ folder and open the file ‘Config_ICU.h’ by
double-clicking on it. Insert the following code in the user code area at the end of the file:

/* Start user code for function. Do not edit comment generated here */

/* Function prototypes for detecting and setting the edge trigger of ICU_IRQ */

uint8_t R_ICU_IRQIsFallingEdge(const uint8_t irg_no);

void R_ICU_IRQSetFallingEdge(const uint8_t irg_no, const uint8_t set_f_edge);

void R_ICU_IRQSetRisingEdge(const uint8_t irg_no, const uint8_t set_r_edge);

/* End user code. Do not edit comment generated here */

R20UT3927EG0100 Rev. 1.00 RENESAS Page 44 of 66
Jun 30, 2017

RSKRX130-512KB

5. User Code Integration

Now, open the Config_ICU.c file and insert the following code in the user code area at the end of the file:

/* Start user code for adding. Do not edit comment generated here */

Function Name: R_ICU_IRQIsFallingEdge

Description : This function returns 1 if the specified ICU_IRQ is set to
falling edge triggered, otherwise O.

Arguments uint8_t irg_no

Return Value : 1 if falling edge triggered, O if not

o oX X XN

uint8_t R_ICU_IRQIsFallingEdge (const uint8_t irg_no)
uint8_t falling_edge_trig = 0xO0;
if (ICU.IRQCR[irqg_no]-.BYTE & _04_ICU_IRQ EDGE_FALLING)

falling_edge_trig = 1;
}

return (falling_edge_trig);

* N\

End of function R_ICU_IRQIsFallingEdge

/

* Function Name: R_ICU_IRQSetFallingEdge

* Description : This function sets/clears the falling edge trigger for the

* specified ICU_IRQ.

* Arguments uint8_t irg_no

* uint8_t set_T _edge, 1 if setting falling edge triggered, O if
* clearing

*

Return Value : None

void R_ICU_IRQSetFallingEdge (const uint8_t irg_no, const uint8_t set_f_edge)
if (1 == set_fT_edge)
ICU. IRQCR[irg_no].BYTE |= _04 ICU_IRQ EDGE_FALLING;
}

else

ICU. IRQCR[irg_no].BYTE &= (uint8_t) ~ 04 ICU_IRQ EDGE_FALLING;

* N\

End of function R_ICU_IRQSetFallingEdge

/

* Function Name: R_ICU_IRQSetRisingEdge

* Description : This function sets/clear the rising edge trigger for the

* specified ICU_IRQ.

* Arguments uint8_t irg_no

* uint8_t set_r_edge, 1 if setting rising edge triggered, O if
* clearing

*

Return Value : None

void R_ICU_IRQSetRisingEdge (const uint8_t irg_no, const uint8_t set_r_edge)
if (1 == set_r_edge)
ICU. IRQCR[irg_no].BYTE |= _08 ICU_IRQ_EDGE_RISING;
else
ICU. IRQCR[irg_no].BYTE &= (uint8_t) ~ 08_ICU_IRQ EDGE_RISING;

}

/
* End of function R_ICU_IRQSetRisingEdge

/* End user code. Do not edit comment generated here */

R20UT3927EG0100 Rev. 1.00 RENESAS
Jun 30, 2017

Page 45 of 66

RSKRX130-512KB 5. User Code Integration

Open the Config_ICU_user.c file and insert the following code in the user code area for include near the top of
the file:

/* Start user code for include. Do not edit comment generated here */

/* Defines switch callback functions required by interrupt handlers */
#include "r_rsk_switch.h"

/* End user code. Do not edit comment generated here */
In the same file insert the following code in the user code area inside the function r_Config_ICU_irgl_interrupt:

/* Start user code. Do not edit comment generated here */

/* Switch 1 callback handler */
R_SWITCH_IsrCallbackl();

/* End user code. Do not edit comment generated here */

In the same file insert the following code in the user code area inside the function r_Config_ICU_irg2_interrupt:

/* Start user code. Do not edit comment generated here */

/* Switch 2 callback handler */
R_SWITCH_IsrCallback2();

/* End user code. Do not edit comment generated here */

R20UT3927EG0100 Rev. 1.00 RENESAS Page 46 of 66
Jun 30, 2017

RSKRX130-512KB 5. User Code Integration

5.3.2 De-bounce Timer Code

In the e? studio Project Tree, expand the ‘src\smc_gen\Config CMTO' folder and open the
‘Config_CMTO_user.c’ file and insert the following code in the user code area for include near the top of the
file:

/* Start user code for include. Do not edit comment generated here */

/* Defines switch callback functions required by interrupt handlers */
#include "'r_rsk switch.h"

/* End user code. Do not edit comment generated here */

In the ‘Config_CMTO_user.c’ file, insert the following code in the user code area inside the function
r_Config_CMTO_cmiO_interrupt:

/* Start user code for r_Config_CMTO_cmiO_interrupt. Do not edit comment generated here */

/* Stop this timer - we start it again in the de-bounce routines */
R_Config_CMTO_Stop();

/* Call the de-bounce call back routine */
R_SWITCH_DebouncelsrCallback();

/* End user code. Do not edit comment generated here */

In the e? studio Project Tree, expand the ‘src\smc_gen\Config CMT1' folder and open the
‘Config_ CMT1_user.c’ file and insert the following code in the user code area for include near the top of the
file:

/* Start user code for include. Do not edit comment generated here */

/* Defines switch callback functions required by interrupt handlers */
#include "'r_rsk switch.h"

Open the ‘Config_ CMT1_user.c’ file and insert the following code in the user code area inside the function
r_Config_ CMT1_cmil _interrupt:

/* Start user code for r_Config_CMT1 cmil_interrupt. Do not edit comment generated here */

/* Stop this timer - we start it again in the de-bounce routines */
R_Config_CMT1_Stop();

/* Call the de-bounce call back routine */
R_SWITCH_DebouncelsrCallback();

/* End user code. Do not edit comment generated here */

R20UT3927EG0100 Rev. 1.00 RENESAS Page 47 of 66
Jun 30, 2017

RSKRX130-512KB 5. User Code Integration

5.3.3 Main Switch and ADC Code

In this part of the tutorial we add the code to act on the switch presses to activate A/D conversions and display
the result on the LCD. In 84.4.8 we configured the ADC to be triggered from the ADTRGO# pin, SW3. In this
code, we also perform software triggered A/D conversion from the user switches SW1 and SW2, by
reconfiguring the ADC trigger source on-the-fly once an SW1 or SW2 press is detected.

In the e? studio Project Tree, expand the ‘src\smc_gen\general’ folder and open the file ‘r_cg_userdefine.h’.
Insert the following code the user code area, resulting in the code shown below

/* Start user code for function. Do not edit comment generated here */

#define TRUE (¢D)
#define FALSE)

extern volatile uint8_t g_adc_trigger;

/* End user code. Do not edit comment generated here */

In the e? studio Project Tree, expand the ‘src’ folder and Open the file ‘SC_Tutorial.c’ and add the highlighted
code, resulting in the code shown below:

#include "r_smc_entry.h"
#include "r_okaya_lcd._h"
#include "r_rsk_switch.h"
#include "Config_S12AD0.h"
#include "r_cg userdefine_h"

/* Variable for flagging user requested ADC conversion */
volatile uint8_t g_adc_trigger = FALSE;

/* Prototype declaration for cb_switch_press */
static void cb_switch_press (void);

/* Prototype declaration for get_adc */
static uintl6_t get_adc(void);

/* Prototype declaration for lcd_display_adc */
static void lcd_display adc (const uintl6_t adc_result);

R20UT3927EG0100 Rev. 1.00 RENESAS Page 48 of 66
Jun 30, 2017

RSKRX130-512KB

5. User Code Integration

Next add the highlighted code below in the main function and the code inside the while loop, resulting in the

code shown below:

void main(void)

{
/* Initialize the switch module */
R_SWITCH_InitQ);
/* Set the call back function when SW1 or SW2 is pressed */
R_SWITCH_SetPressCal lback(cb_switch_press);
/* Initialize the debug LCD */
R_LCD_InitQ);
/* Displays the application name on the debug LCD */
R_LCD_Display(0, (uint8_t *)" RSKRX130-512KB "");
R_LCD_Display(1, (uint8_t *)" Tutorial ");
R_LCD Display(2, (uint8_t *)" Press Any Switch ");
/* Start the A/D converter */
R_Config_S12AD0_Start();
while (1U)
uintlé_t adc_result;
/* Wait for user requested A/D conversion flag to be set (SW1 or SW2) */
if (TRUE == g_adc_trigger)
{
/* Call the function to perform an A/D conversion */
adc_result = get_adc();
/* Display the result on the LCD */
Icd_display_adc(adc_result);
/* Reset the flag */
g_adc_trigger = FALSE;
by
/* SW3 is directly wired into the ADTRGOn pin so will
cause the interrupt to fire */
else if (TRUE == g_adc_complete)
{
/* Get the result of the A/D conversion */
R_Config_S12AD0_Get_ValueResult(ADCHANNELO, &adc_result);
/* Display the result on the LCD */
Icd_display_adc(adc_result);
/* Reset the flag */
g_adc_complete = FALSE;
by
else
/* do nothing */
by
3
3

Then add the definition for the switch call-back, get adc and lcd _display_adc functions below the main

function, as shown below:

/

* Function Name : cb_switch_press

* Description : Switch press callback function. Sets g_adc_trigger flag.
* Argument I none

* Return value : none

static void cb_switch_press (void)

{
/* Check if switch 1 or 2 was pressed */
ifT (g_switch_flag & (SWITCHPRESS_ 1 | SWITCHPRESS_2))
R20UT3927EG0100 Rev. 1.00 .zEN ESNS Page 49 of 66

Jun 30, 2017

RSKRX130-512KB 5. User Code Integration

/* Set the flag indicating a user requested A/D conversion is required */
g_adc_trigger = TRUE;

/* Clear flag */
g_switch_flag = 0x0;

¥
ks
/
* End of function cb_switch_press
/
/
* Function Name : get_adc
* Description : Reads the ADC result, converts it to a string and displays
* it on the LCD panel.
* Argument I none
* Return value : uintl6_t adc value
/
static uintl6é_t get _adc (void)
{
/* A variable to retrieve the adc result */
uintl6_t adc_result;
/* Stop the A/D converter being triggered from the pin ADTRGOn */
R_Config_S12AD0_Stop();
/* Start a conversion */
R_S12ADO_SWTriggerStart();
/* Wait for the A/D conversion to complete */
while (FALSE == g_adc_complete)
/* Wait */
3
/* Stop conversion */
R_S12ADO_SWTriggerStop(Q);
/* Clear ADC flag */
g_adc_complete = FALSE;
R_Config_S12AD0_Get_ValueResult(ADCHANNELO, &adc_result);
/* Set AD conversion start trigger source back to ADTRGOn pin */
R_Config_S12AD0_Start();
return (adc_result);
ks
/
* End of function get_adc
/
/
* Function Name : lcd_display_adc
* Description : Converts adc result to a string and displays
* it on the LCD panel.
* Argument : uintl6é_t adc result
* Return value : none
/

static void lcd_display_adc (const uintl6_t adc_result)

/* Declare a temporary variable */
uint8_t a;

/* Declare temporary character string */
char Icd_buffer[11] = " ADC: XXXH";

/* Convert ADC result into a character string, and store in the local.
Casting to ensure use of correct data type. */

a = (uint8_t)((adc_result & O0xO0F00) >> 8);

Icd_buffer[6] = (char)((a < Ox0A) ? (a + 0x30) : (a + 0x37));

a = (uint8_t)((adc_result & 0x00F0) >> 4);

R20UT3927EG0100 Rev. 1.00 RENESAS
Jun 30, 2017

Page 50 of 66

RSKRX130-512KB

5. User Code Integration

lcd_buffer[7] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));

a = (uint8_t)(adc_result & 0x000F);

Icd_buffer[8] = (char)((a < Ox0A) ? (a + 0x30) : (a + 0x37));

/* Display the contents of the local string lcd_buffer */
R_LCD Display(3, (uint8_t *)lcd_buffer);

NS

End of function lcd_display_adc

In the e? studio Project Tree, expand the ‘src\smc_gen\Config_S12AD0’ folder and open the file
‘Config_S12ADO0.h’ by double-clicking on it. Insert the following code in the user code area for function,

resulting in the code shown below:

/* Start user code for function. Do not edit comment generated here */

/* Flag indicates when A/D conversion is complete */
extern volatile uint8_t g_adc_complete;

/* Functions for starting and stopping software triggered A/D conversion */

void R_S12ADO_SWTriggerStart(void);
void R_S12ADO_SWTriggerStop(void);

/* End user code. Do not edit comment generated here */

Open the file ‘Config_S12ADO0.c’ by double-clicking on it. Insert the following code in the user code area for

adding at the end of the file, as shown below:

/* Start user code for adding. Do not edit comment generated here */

/

* Function Name: R_S12ADO_SWTriggerStart

* Description : This function starts the AD converter.
* Arguments : None

*

Return Value : None

void R_S12ADO_SWTriggerStart(void)

IR(S12AD, S12ADIO) = OU;
IEN(S12AD, S12ADI0) = 1U;
S12AD.ADCSR.BIT.ADST = 1U;

3

/
End of function R_S12AD0 SWTriggerStart

/

* Function Name: R_S12ADO_SWTriggerStop

* Description : This function stops the AD converter.
* Arguments : None

*

Return Value : None

void R_S12ADO_SWTriggerStop(void)

S12AD.ADCSR.BIT.ADST = 0U;

IEN(S12AD, S12ADI0) = 0U;

IR(S12AD, S12ADIO) = OU;
}

/
End of function R_S12ADO_SWTriggerStop

/* End user code. Do not edit comment generated here */

R20UT3927EG0100 Rev. 1.00 RENESAS
Jun 30, 2017

Page 51 of 66

RSKRX130-512KB 5. User Code Integration

Open the file Config_S12AD0_user.c and insert the following code in the user code area for global, resulting in
the code shown below:

/* Start user code for global. Do not edit comment generated here */

/* Flag indicates when A/D conversion is complete */
volatile uint8_t g_adc_complete;

/* End user code. Do not edit comment generated here */

Insert the following code in the user code area of the r_Config_S12ADO0 _interrupt function, resulting in the
code shown below:

static void r_Config_S12ADO_interrupt(void)
/* Start user code for r_Config_S12ADO_interrupt. Do not edit comment generated here */
g_adc_complete = TRUE;

/* End user code. Do not edit comment generated here */

}

Select ‘Build Project’ from the ‘Project’ menu, or use the button. e? studio will build the project with no
errors.

The project may now be run using the debugger as described in 86. When any switch is pressed, the
program will perform an A/D conversion of the voltage level on the ADPOT line and display the result on the
LCD panel. Return to this point in the Tutorial to add the UART user code.

R20UT3927EG0100 Rev. 1.00 RENESAS Page 52 of 66
Jun 30, 2017

RSKRX130-512KB 5. User Code Integration

54 Debug Code Integration

API functions for trace debugging via the RSK serial port are provided with the RSK. Locate the files
r_rsk_debug.h and r_rsk_debug.c on the RSK Web Installer. These files can be found in the RSKRX130-
512KB_Tutorial project for e studio. Copy these files into the C:\Workspace\SC_Tutorial\src directory.

In the r_rsk_debug.h file, ensure the following macro definition is included:

/* Macro for definition of serial debug transmit function - user edits this */
#define SERIAL_DEBUG_WRITE (R_SCI1_AsyncTransmit)

This macro is referenced in the r_rsk_debug.c file and allows easy re-direction of debug output if a different
debug interface is used.

5.5 UART Code Integration
55.1 SCI Code

In the e? studio Project Tree, expand the ‘src\smc_gen\Config_SCI1’ folder and open the file ‘Config_SCI1.h’
by double-clicking on it. Insert the following code in the user code area at the end of the file:

/* Start user code for function. Do not edit comment generated here */

/* Exported functions used to transmit a number of bytes and wait for completion */
MD_STATUS R_SCI1_AsyncTransmit(uint8_t * const tx_buf, const uintl6_t tx_num);

/* Character is used to receive key presses from PC terminal */
extern uint8_t g_rx_char;

/* End user code. Do not edit comment generated here */

Open the file ‘Config_SCI1_user.c.' Insert the following code in the user area for global near the beginning of

the file:
/* Start user code for global. Do not edit comment generated here */

/* Global used to receive a character from the PC terminal */
uint8_t g_rx_char;

/* Flag used locally to detect transmission complete */
static volatile uint8_t scil_txdone;

/* End user code. Do not edit comment generated here */

In the same file, insert the following code in the user code area inside the
r_Config_SCI1_callback_transmitend function:

static void r_Config_SCIl1_callback_transmitend(void)

/* Start user code for r_Config_SCl1 _callback_transmitend. Do not edit comment generated here */
scil_txdone = TRUE;

/* End user code. Do not edit comment generated here */

}

R20UT3927EG0100 Rev. 1.00 RENESAS Page 53 of 66
Jun 30, 2017

RSKRX130-512KB 5. User Code Integration

In the same file, insert the following code in the user code area inside the r_Config_SCI1_callback_receiveend

function:

void r_Config_SCI1_callback_receiveend(void)

{
/* Start user code for r_Config_SCIl1_callback_receiveend. Do not edit comment generated here */
/* Check the contents of g _rx char */
iIT ((Cc” == g_rx_char) || ("C" == g_rx_char))
{
g_adc_trigger = TRUE;
}
/* Set up SCI1 receive buffer and callback function again */
R_Config_SCl1_Serial_Receive((uint8_t *)&g_rx_char, 1);
/* End user code. Do not edit comment generated here */
3

At the end of the file, in the user code area for adding, add the following function definition:

Function Name: R_SCI1_AsyncTransmit
Description : This function sends SCI1 data and waits for the transmit end flag.
Arguments : tx_buf -

transfer buffer pointer

t>x_num -

buffer size
Return Value : status -

MD_OK or MD_ARGERROR

Ok X ok X X Ok XN\

/
MD_STATUS R_SCI1_AsyncTransmit (uint8_t * const tx_buf, const uintl6_t tx_num)

{
MD_STATUS status = MD_OK;

/* clear the flag before initiating a new transmission */
scil_txdone = FALSE;

/* Send the data using the API */
status = R_Config_SCI1_Serial_Send(tx_buf, tx_num);

/* Wait for the transmit end flag */
while (FALSE == scil_txdone)

/* Wait */

return (status);

}

/
* End of function R_SCI1_AsyncTransmit

R20UT3927EG0100 Rev. 1.00 RENESAS
Jun 30, 2017

Page 54 of 66

RSKRX130-512KB 5. User Code Integration

55.2 Main UART code

Open the file ‘SC_Tutorial.c’. Add the following declaration to near the top of the file:

#include "r_smc_entry.h"
#include "r_okaya lcd.h"
#include "'r_rsk switch.h"
#include "r_rsk debug.h"
#include "Config_S12ADO.h"
#include "Config_SCI1.h"
#include "r_cg userdefine_h"

/* Variable for flagging user requested ADC conversion */
volatile uint8_t g_adc_trigger = FALSE;

/* Prototype declaration for cb_switch_press */
static void cb_switch_press (void);

/* Prototype declaration for get_adc */
static uintl6_t get_adc(void);

/* Prototype declaration for lcd _display_adc */
static void lcd_display_adc (const uintl6_t adc_result);

/* Prototype declaration for uart_display_adc */
static void uart_display _adc(const uint8_t adc_count, const uintl6_t adc_result);

/* Variable to store the A/D conversion count for user display */
static uint8_t adc_count = 0;

Add the following highlighted code to the user code area in the main function:

void main(void)

{
/* Initialize the switch module */
R_SWITCH_InitQ);
/* Set the call back function when SW1 or SW2 is pressed */
R_SWITCH_SetPressCallback(cb_switch_press);
/* Initialize the debug LCD */
R_LCD_InitQ);
/* Displays the application name on the debug LCD */
R_LCD_Display(0, (uint8_t *)" RSKRX130-512KB "");
R_LCD_Display(1, (uint8_t *)" Tutorial ");
R_LCD _Display(2, (uint8_t *)" Press Any Switch ");
/* Start the A/D converter */
R_Config_S12AD0_Start();
/* Set up SCI1 receive buffer and callback function */
R_Config_SCl11_Serial_Receive((uint8_t *)&g_rx_char, 1);
/* Enable SCI1 operations */
R_Config_SCl1_Start();
while (1U)
{
uintl6é_t adc_result;
/* Wait for user requested A/D conversion flag to be set (SW1 or SW2) */
if (TRUE == g_adc_trigger)
{
/* Call the function to perform an A/D conversion */
adc_result = get_adc();
/* Display the result on the LCD */
Icd_display_adc(adc_result);
/* Increment the adc_count */
iT (16 == (++adc_count))
adc_count = 0;
by
/* Send the result to the UART */
uart_display_adc(adc_count, adc_result);
R20UT3927EG0100 Rev. 1.00 .zEN ESNS Page 55 of 66

Jun 30, 2017

RSKRX130-512KB 5. User Code Integration

/* Reset the flag */
g_adc_trigger = FALSE;
}

/* SW3 is directly wired into the ADTRGOn pin so will
cause the interrupt to fire */

else if (TRUE == g_adc_complete)

{
/* Get the result of the A/D conversion */
R_Config_S12AD0_Get_ValueResult(ADCHANNELO, &adc_result);

/* Display the result on the LCD */
Icd_display_adc(adc_result);

/* Increment the adc_count */
if (16 == (++adc_count))

adc_count = 0;

}

/* Send the result to the UART */
uart_display_adc(adc_count, adc_result);
/* Reset the flag */
g_adc_complete = FALSE;

3

else
/* do nothing */

}
}

¥
Then, add the following function definition in the end of the file:

/

* Function Name : uart_display_adc

* Description : Converts adc result to a string and sends it to the UARTL.
* Argument : uint8_t : adc_count

* uintl6_t: adc result

* Return value : none

/
static void uart_display_adc (const uint8_t adc_count, const uintl6_t adc_result)

/* Declare a temporary variable */
char a;

/* Declare temporary character string */
static char uart_buffer[] = "ADC xH Value: »xxxH\r\n";

/* Convert ADC result into a character string, and store in the local.
Casting to ensure use of correct data type. */

a = (char)(adc_count & 0x000F);

uart_buffer[4] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));

a = (char)((adc_result & 0OxOF00) >> 8);

uart_buffer[14] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));

a = (char)((adc_result & 0x00F0) >> 4);

uart_buffer[15] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));

a = (char)(adc_result & 0x000F);

uart_buffer[16] = (char)((a < 0x0A) ? (a + 0x30) : (a + 0x37));

/* Send the string to the UART */
R_DEBUG_Print(uart_buffer);

}

/
* End of function uart_display_adc

/

Select ‘Build Project’ from the ‘Build’ menu. e? studio will build the project with no errors.

The project may now be run using the debugger as described in 86. Connect the RSK G1CUSBO port to a
USB port on a PC. If this is the first time the RSK has been connected to the PC then a device driver will be
installed automatically. Open Device Manager, the virtual COM port will now appear under 'Port (COM &
LPT)' as 'RSK USB Serial Port (COMX)', where x is a number.

R20UT3927EG0100 Rev. 1.00 RENESAS Page 56 of 66
Jun 30, 2017

RSKRX130-512KB 5. User Code Integration

Open a terminal program, such as HyperTerminal, on the PC with the same settings as for SCI1 (see §4.4.6).
When any switch is pressed, or when ‘c’ is sent via the COM port, the program will perform an A/D conversion
of the voltage level on the ADPOT line and display the result on the LCD panel and send the result to the PC
terminal program via the SCI1. Return to this point in the Tutorial to add the LED user code.

5.6 LED Code Integration

Open the file ‘SC_Tutorial.c’. Add the following declaration to the user code area for include near the top of
the file:

#include "r_smc_entry.h"
#include "r_okaya lcd.h"
#include "r_rsk_switch._h"
#include "r_rsk_debug.h"
#include "'rskrx130_512kbdef.h"
#include "Config_S12ADO.h"
#include "Config_SCI1_h"
#include "r_cg_userdefine._h"

/* Variable for flagging user requested ADC conversion */
volatile uint8_t g_adc_trigger = FALSE;

/* Prototype declaration for cb_switch_press */
static void cb_switch_press (void);

/* Prototype declaration for get_adc */
static uintl6_t get_adc(void);

/* Prototype declaration for lcd_display_adc */
static void lcd_display_adc (const uintl6_t adc_result);

/* Prototype declaration for uart_display_adc */
static void uart_display_adc(const uint8_t adc_count, const uintl6_t adc_result);

/* Variable to store the A/D conversion count for user display */
static uint8_ t adc_count = 0;

/* Prototype declaration for led_display_count */
static void led_display_count(const uint8_t count);

Add the following highlighted code in the main function:

void main(void)

{
/* Initialize the switch module */
R_SWITCH_InitQ);
/* Set the call back function when SW1 or SW2 is pressed */
R_SWITCH_SetPressCal lback(cb_switch_press);
/* Initialize the debug LCD */
R_LCD_InitQ);
/* Displays the application name on the debug LCD */
R_LCD_Display(0, (uint8_t *)" RSKRX130-512KB ");
R_LCD Display(1, (uint8_t *)" Tutorial ");
R_LCD Display(2, (uint8_t *)" Press Any Switch ");
/* Start the A/D converter */
R_Config_S12AD0_Start();
/* Set up SCI1 receive buffer and callback function */
R_Config_SCIl1_Serial_Receive((uint8_t *)&g_rx_char, 1);
/* Enable SCI1 operations */
R_Config_SCIl1_Start();
while (1U)
uintl6é_t adc_result;
/* Wait for user requested A/D conversion flag to be set (SW1 or SW2) */
if (TRUE == g_adc_trigger)
{
R20UT3927EG0100 Rev. 1.00 .(EN ESNS Page 57 of 66

Jun 30, 2017

RSKRX130-512KB

5. User Code Integration

}
/*

/* Call the function to perform an A/D conversion */
adc_result = get_adc();

/* Display the result on the LCD */
Icd_display_adc(adc_result);

/* Increment the adc_count and display using the LEDs */
if (16 == (++adc_count))

adc_count = 0;

3

led_display_count(adc_count);

/* Send the result to the UART */
uart_display_adc(adc_count, adc_result);
/* Reset the flag */

g_adc_trigger = FALSE;

SW3 is directly wired into the ADTRGOn pin so will
cause the interrupt to fire */

else if (TRUE == g_adc_complete)

{

}

/* Get the result of the A/D conversion */
R_S12ADO_Get_ValueResult(ADCHANNELO, &adc_result);

/* Display the result on the LCD */
Icd_display_adc(adc_result);

/* Increment the adc_count and display using the LEDs */
if (16 == (++adc_count))

adc_count = 0;
led_display_count(adc_count);
/* Send the result to the UART */
uart_display_adc(adc_count, adc_result);

/* Reset the flag */
g_adc_complete = FALSE;

else

}
}

/* do nothing */

R20UT3927EG0100 Rev. 1.00 RENESAS

Jun 30, 2017

Page 58 of 66

RSKRX130-512KB

5. User Code Integration

Then, add the following function definition at the end of the file:

/
* Function Name : led_display_count
* Description : Converts count to binary and displays on 4 LEDSO-3
* Argument I uint8_t count
* Return value : none
/
static void led_display_count (const uint8_t count)
{
/* Set LEDs according to lower nibble of count parameter */
LEDO = (uint8_t)((count & 0x01) ? LED_ON : LED_OFF);
LED1 = (uint8_t)((count & 0x02) ? LED_ON : LED_OFF);
LED2 = (uint8_t)((count & 0x04) ? LED_ON : LED_OFF);
LED3 = (uint8_t)((count & 0x08) ? LED_ON : LED_OFF);
ks
/
* End of function led_display_count
/

}®

Select ‘Build Project’ from the ‘Build’ menu, or use the
errors.

" button. e? studio will build the project with no

The project may now be run using the debugger as described in 86. The code will perform the same but now

the LEDs will display the adc_count in binary form.

R20UT3927EG0100 Rev. 1.00 RENESAS
Jun 30, 2017

Page 59 of 66

RSKRX130-512KB

6. Debugging the Project

6. Debugging the Project

In the Project Explorer pane, ensure that the ‘SC_Tutorial' project is selected. To enter the debug

configurations, click upon the arrow next to the debug

P8 Debug Configurations

Create, manage, and run configurations

type filter text

[E] C/C++ Application

[T] €/C++ Remote Application

= EASE Script

[€] GDB Hardware Debugging

[£] GDB OpenOCD Debugging

[£7] GDB Simulator Debugging (RH250)
Java Applet
Java Application

= Launch Group

[Ek Remote Application

‘X‘a Remote Debugger
Remote Java Application

~ [£7 Renesas GDB Hardware Debugging

[£7] SC_Tutorial HardwareDebug

[£7 Renesas Linux Application

[£7] Renesas Simulator Debugging (R¥, RL78)

‘E Target Communication Framework

Filter matched 17 of 19 items

@

button and select ‘Debug Configuration’.

MName: | SC_Tuterial HardwareDebug

Main . %5 Debugger| = Startup % Source| [Common

Project:

[5C_Tutorial

Browse...

C/C++ Application:

| HardwareDebug/5C_Tutorialx

Build (if required) before launching

Build Configuration: | Select Automatically

() Enable auto build
(®) Use workspace settings

Mariables... Search Project... Browse...

() Disable auto build
Configure Workspace Settings...

Revert Apply

Figure 6-1 Debug Configurations

In order to run the project there are two setting under ‘Renesas GDB Hardware Debugging’ -> ‘Debugger’ ->
‘Connection Settings’ that need modifying.
Ensure that in debug configuration that the ‘Power Target From The Emulator(MAX 200mA)’ is set to Yes ,
and the ‘Extal Frequency’ is set to the correct frequency, this can be found from the device schematics (in the
case of RSKRX130-512KB the setting should be 8.0000).
For more information on powering the RSKRX130-512KB please refer to the User Manual.

Main | %5 Debugger

v Clock

Supply Voltage

Register Setting

Main Clock Source
Extal Frequency[MHz]
Permit Clock Source Change On Writing Int Yes

w CPU Operating Mode

= Startup| [Common EE/ Source

Debug hardware: | E2 Lite (RX) ~ | Target Device: | RSF51308

GDB Settings Connection Settings Debug Tool Settings

EXTAL

~ Connection with Target Board

Emulator [Auto)
Connection Type Fine
IMag Clock Frequency[MHz] 6.00
Fine Baud Rate[Mbps] 1.50
Hot Plug No

~ Power

Power Target From The Emulator (MAX EDD

.oV

Single Chip

Figure 6-2 Connection Settings

R20UT3927EG0100 Rev. 1.00
Jun 30, 2017

RENESAS

Page 60 of 66

RSKRX130-512KB

6. Debugging the Project

Connect the E2 Lite to the PC and the RSK E1 connector. Connect the Pmod LCD to the PMOD1 connector.
In the Project Explorer pane, ensure that the ‘SG_Tutorial’ project is selected. To debug the project, click the

i button. The dialog shown in Figure 6-3 will be displayed.

P Confirm Perspective Switch

views for displaying the debug stack, variables and breakpeint management.

Do you want to open this perspective now?

I.@.I This kind of launch is configured to cpen the Debug perspective when it suspends.
-

This Debug perspective is designed to support application debugging. It incorporates

Yes No

Figure 6-3 Perspective Switch Dialog

Click ‘Remember my decision’ to skip this dialog later. Click ‘Yes’' to confirm that the debug window
perspective will be used. The debugger will start up and the code will stop at the Smart Configurator function

‘PowerOn_Reset PC’ as shown in Figure 6-4.

PR Workspace - Debug - 5C_Tuten gen/r_bsp/board/generic_rc130/resetprg.c - e2 studio

File Edit Source Refactor Mavigate Search Project RenesasViews Run Window Help

45 Debug ~ || [£7 SC_Tuterial HardwareDebug v N
YR R LS AR R

4% Debug 32
~ [&7 SC_Tutorial HardwareDebug [Renesas GDB Hardware Debugging]
v [SC_Tutorialx [1]
w o Thread #1 1 (single core) (Suspended : Signal : SIGTRAP: Trace/breakpoint trap)
= PowerDN_Reset_PC() at resetprg.c: 127 Oxfff81999
o re-elf-gdb (7.8.2)
w GDB server

resetprg.c &%
& 127 181999 -~ void PowerON_Reset PC(void)

128 {

129 /* Stack pointers are setup prior to calling this function -
138

131 /* Initialize the Interrupt Table Register */
132 = #if _ RENESAS_VERSION__ >= @x@101888@

133 fff819a7 set_inth{{void *)_ sectop("CIVECT"});

134 ~ #else

135 set_intb((unsigned long)_ sectop("CHVECT"));
136 #endif

137

138 {* Switch to high-speed operation */

1329 fffe19be operating_frequency_set();

140 fff819b3 1pt_clock source_select();

| &-% -8

| |ea == 8

see comments above

Y

Figure 6-4 Debugger start up screen

For more information on the e? studio debugger refer to the Tutorial manual. To run the code click the L&
button. The debugger will stop again at the beginning of the main function. Press UF¥ again to run the code.

R20UT3927EG0100 Rev. 1.00 RENESAS
Jun 30, 2017

Page 61 of 66

RSKRX130-512KB

7. Additional Information

7. Additional Information

Technical Support

For details on how to use e? studio, refer to
the help file by opening e? studio, then
selecting Help > Help Contents from the
menu bar.

Window | Help

SE
& v @ igs! Welcome

{(7) Help Contents
7 Search
Dynarnic Help

For information about the RX130 group microcontroller refer to the RX130 Group Hardware Manual.

For information about the RX assembly language, refer to the RX Family Software Manual.

Technical Contact Details

Please refer to the contact details listed in section 9 of the “Quick Start Guide”.

General information on Renesas microcontrollers can be found on the Renesas website at:

https://lwww.renesas.com/

Trademarks

All brand or product names used in this manual are trademarks or registered trademarks of their respective

companies or organisations.

Copyright

This document may be, wholly or partially, subject to change without notice. All rights reserved. Duplication of
this document, either in whole or part is prohibited without the written permission of Renesas Electronics

Europe Limited.

© 2017 Renesas Electronics Europe Limited. All rights reserved.
© 2017 Renesas Electronics Corporation. All rights reserved.
© 2017 Renesas System Design Co., Ltd. All rights reserved.

R20UT3927EG0100 Rev. 1.00
Jun 30, 2017

RRENESAS

Page 62 of 66

https://www.renesas.com/

REVISION HISTORY

RSKRX130-512KB Smart Configurator Tutorial Manual

Rev.

Date

Description

Page

Summary

1.00

Jun 30, 2017

First Edition issued

C-1

Renesas Starter Kit Manual: Smart Configurator Tutorial Manual

Publication Date: Rev. 1.00 Jun 30, 2017

Published by: Renesas Electronics Corporation

ENESANS

SALES OFFICES Renesas Electronics Corporation http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Dusseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, JIn Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.

No.777C, 100 Feet Road, HAL Il Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.

12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea

Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2017 Renesas Electronics Corporation. All rights reserved.
Colophon 4.1

RX130 Group

LENESAS

Renesas Electronics Corporation R20UT3927EG0100

	1. Overview
	1.1 Purpose
	1.2 Features

	2. Introduction
	3. Project Creation with e2 studio
	3.1 Introduction
	3.2 Creating the Project

	4. Smart Configurator Using the e2 studio plug in
	4.1 Introduction
	4.2 Project Configuration using Smart Configurator – Overview page
	4.3 Clocks configuration page
	4.3.1 Clocks configuration

	4.4 Components page
	4.4.1 Add a software component into the project
	4.4.2 8-Bit Timer
	4.4.3 Compare Match Timer
	4.4.4 Interrupt Controller Unit
	4.4.5 Ports
	4.4.6 SCI/SCIF Asynchronous Mode
	4.4.7 SPI Clock Synchronous Mode
	4.4.8 Single Scan Mode S12AD

	4.5 Pins configuration page
	4.5.1 Change pin assignment of a software component

	4.6 Building the Project

	5. User Code Integration
	5.1 LCD Code Integration
	5.1.1 SPI Code
	5.1.2 TMR Code

	5.2 Additional include paths
	5.3 Switch Code Integration
	5.3.1 Interrupt Code
	5.3.2 De-bounce Timer Code
	5.3.3 Main Switch and ADC Code

	5.4 Debug Code Integration
	5.5 UART Code Integration
	5.5.1 SCI Code
	5.5.2 Main UART code

	5.6 LED Code Integration

	6. Debugging the Project
	7. Additional Information

