Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Renesas Starter Kit for H8SX/1648

User's Manual RENESAS SINGLE-CHIP MICROCOMPUTER H8SX FAMILY

Rev.1.00 2007.11

Table of Contents

Chapter 1. Preface	.3
Chapter 2. Purpose	.4
Chapter 3. Power Supply	.5
3.1. Requirements	.5
3.2. Power – Up Behaviour	.5
Chapter 4. Board Layout	.6
4.1. Component Layout	.6
4.2. Board Dimensions	.7
Chapter 5. Block Diagram	.8
Chapter 6. User Circuitry	.9
6.1. Switches	.9
6.2. LEDs	.9
6.3. Potentiometer	.9
6.4. Serial port	.9
6.5. Debug LCD Module	10
6.6. Option Links	11
6.7. Oscillator Sources	16
6.8. Reset Circuit	16
Chapter 7. Modes	17
7.1. Boot mode	17
7.2. User boot mode	17
7.3. User Extension mode (ROM Active)	17
7.4. Singe chip mode	17
Chapter 8. Programming Methods	18
Chapter 9. Headers	19
9.1. Microcontroller Headers	19
9.2. Application Headers	23
Chapter 10. Code Development	26
10.1. Overview	26
10.2. Compiler Restrictions	26
10.3. Mode Support	26
10.4. Breakpoint Support	26
10.5. Memory Map	27
Chapter 11. Component Placement	28
Chapter 12. Additional Information	29

Chapter 1. Preface

Cautions

This document may be, wholly or partially, subject to change without notice.

All rights reserved. Duplication of this document, either in whole or part is prohibited without the written permission of Renesas Technology Europe Limited.

Trademarks

All brand or product names used in this manual are trademarks or registered trademarks of their respective companies or organisations.

Copyright

© Renesas Technology Europe Ltd. 2007. All rights reserved.

© Renesas Technology Corporation. 2007. All rights reserved.

© Renesas Solutions Corporation. 2007. All rights reserved.

Website: <u>http://www.eu.renesas.com/</u>

Glossary

CPU	Central Processing Unit	HEW	High-performance Embedded Workshop
LED	Light Emitting Diode	RSK	Renesas Starter Kit
PC	Program Counter	E10A	E10A for Starter Kit Emulator

Chapter 2. Purpose

This RSK is an evaluation tool for Renesas microcontrollers.

This manual describes the technical details of the RSK hardware. The Quick Start Guide and Tutorial Manual provide details of the software installation and debugging environment.

Features include:

- Renesas Microcontroller Programming.
- User Code Debugging.
- User Circuitry such as Switches, LEDs and potentiometer.
- User or Example Application.
- Sample peripheral device initialisation code.

The RSK board contains all the circuitry required for microcontroller operation.

Chapter 3. Power Supply

3.1. Requirements

This RSK operates from a 5V power supply.

A diode provides reverse polarity protection only if a current limiting power supply is used.

All RSK boards are supplied with an E10A debugger. This product is able to power the RSK board with up to 300mA. When the RSK is connected to another system then that system should supply power to the RSK.

All RSK boards have an optional centre positive supply connector using a 2.0mm barrel power jack.

Warning

The RSK is neither under nor over voltage protected. Use a centre positive supply for this board.

3.2. Power - Up Behaviour

When the RSK is purchased the RSK board has the 'Release' or stand alone code from the example tutorial code pre-programmed into the Renesas microcontroller. On powering up the board the user LEDs will start to flash. After 200 flashes, or after pressing a switch the LEDs will flash at a rate controlled by the potentiometer.

Chapter 4. Board Layout

4.1. Component Layout

The following diagram shows top layer component layout of the board.

Figure 4-1: Board Layout

4.2. Board Dimensions

The following diagram gives the board dimensions and connector positions. All through hole connectors are on a common 0.1" grid for easy interfacing.

Figure 4-2: Board Dimensions

Chapter 5. Block Diagram

Figure 5-1 shows the CPU board components and their connectivity.

Figure 5-1: Block Diagram

Figure 5-2 shows the connections to the RSK.

Figure 5-2: RSK Connections

Chapter 6. User Circuitry

6.1. Switches

There are four switches located on the CPU board. The function of each switch and its connection are shown in Table 6-1.

Switch	Function	Microcontroller
RES	When pressed, the RSK microcontroller is reset.	RESn, Pin 91
SW1/BOOT*	Connects to an IRQ input for user controls.	IRQ0n , Pin 84
	The switch is also used in conjunction with the RES switch to place the device in	(Port 1 pin 0)
	BOOT mode when not using the E10A debugger.	
SW2*	Connects to an IRQ line for user controls.	IRQ1n, Pin 85
		(Port 1, pin 1)
SW3*	Connects to the ADC trigger input. Option link allows connection to IRQ line.	IRQ3n_ADTRGn,
	The option is a pair of 0R links. For more details on option links, please refer to	Pin 87
	Sec 6.6.	(Port 1, pin 3)

Table 6-1: Switch Functions

*Refer to schematic for detailed connectivity information.

6.2. LEDs

There are six LEDs on the RSK board. The green 'POWER' LED lights when the board is powered. The orange BOOT LED indicates the device is in BOOT mode when lit. The four user LEDs are connected to an IO port and will light when their corresponding port pin is set low.

Table 6-2, below, shows the LED pin references and their corresponding microcontroller port pin connections.

LED Reference (As	Colour	Microcontroller Port Pin	Microcontroller
shown on silkscreen)		function	Pin Number
LED0	Green	Port C.5	10
LED1	Orange	Port 2.3	53
LED2	Red	Port 6.6	89
LED3	Red	Port 6.7	90

Table 6-2: LED Port

6.3. Potentiometer

A single turn potentiometer is connected to channel AN0 (P5.0) of the microcontroller. This may be used to vary the input analogue voltage value to this pin between AVCC and Ground.

6.4. Serial port

Serial port SCI1 is connected to the standard RS232 header. Serial port SCI4 can optionally be connected to the RS232 header. The connections to be fitted are listed in the Table 6-3.

Description	Function	Circuit Net Name	Device Pin	Fit for RS232	Remove for RS232
SCI1	Programming serial port	TXD1	59	R31	R37, R32
SCI1	Programming serial port	RXD1	55	R30	R36, R33
SCI4	Spare Serial Port	TXD4	107	R37	R31, R32
SCI4	Spare Serial Port	RXD4	108	R36	R30, R33

Table 6-3: Serial Port settings

The SCI1 port is also available on J2 and JA2. The SCI4 port is available on J3.

6.5. Debug LCD Module

A debug LCD module is supplied to be connected to the connector LCD. This should be fitted so that the debug LCD module lies over J3. Care should be taken to ensure the pins are inserted correctly into LCD. The debug LCD module uses a 4 bit interface to reduce the pin allocation. No contrast control is provided; this is set by a resistor on the supplied display module. The module supplied with the RSK only supports 5V operation.

	LCD						
Pin	Circuit Net Name	Device	Pin	Circuit Net Name	Device		
		Pin			Pin		
1	Ground	-	2	5V Only	-		
3	No Connection	-	4	DLCDRS (P33)	62		
5	R/W (Wired to Write only)	-	6	DLCDE + 100k pull down to ground (PC4)	47		
7	No Connection	-	8	No connection	-		
9	No Connection	-	10	No connection	-		
11	DLCDD4 (PC0)	45	12	DLCDD5 (PC1)	46		
13	DLCDD6 (PC2)	116	14	DLCDD7 (PC3)	117		

Table 6-4 shows the pin allocation and signal names used on this connector.

Table 6-4 Debug LCD Module Connections

6.6. Option Links

 Table 6-5 below describes the function of the option links contained on this RSK board and associated with Serial Port Configuration. The default configuration is indicated by BOLD text.

		Option Link Settin	gs	
Reference	Function	Fitted	Alternative (Removed)	Related To
R15	Serial Port	Connects serial port SCI5 (Rx) to	Disconnects serial port SCI5	R28
	Configuration	D-type connector (SERIAL).	(Rx) from D-type connector	
			(SERIAL).	
R19	Serial Port	Disables RS232 Serial	Enables RS232 Serial	
	configuration	Transceiver	Transceiver	
R28	Serial Port	Connects serial port SCI5 (Tx) to	Disconnects serial port SCI5	R15
	Configuration	D-type connector (SERIAL).	(Tx) from D-type connector	
			(SERIAL).	
R30	Serial Port	Routes serial port SCI1 (Rx) to	Disconnects serial port SCI1 (Rx)	R31, R32, R33
	Configuration	microcontroller pins.	from microcontroller pins.	
R31	Serial Port	Routes serial port SCI1 (Tx) to	Disconnects serial port SCI1 (Tx)	R30, R32, R33
	Configuration	microcontroller pins.	from microcontroller pins.	
R32	Serial Port	Routes serial port to JA6 pins.	Disconnects serial port from	R30, R31, R33
	Configuration		JA6 pins.	
R33	Serial Port	Routes serial port to JA6 pins.	Disconnects serial port from	R30, R31, R32
	Configuration		JA6 pins.	
R36	Serial Port	Connects programming port SCI4	Disconnects programming port	R37
	Configuration	(Rx) to D-type connector (SERIAL).	SCI4 (Rx) from D-type	
			connector (SERIAL).	
R37	Serial Port	Connects programming port SCI4	Disconnects programming port	R36
	Configuration	(Tx) to D-type connector (SERIAL).	SCI4 (Tx) from D-type	
			connector (SERIAL).	

Table 6-5: Serial port configuration links.

 Table 6-6 below describes the function of the option links associated with application board interface. The default configuration is indicated by BOLD text.

	Option Link Settings					
Reference	Function	Fitted	Alternative (Removed)	Related To		
R53	Application board interface	Use AN0 of application board interface.	Connects analog channel AN0 of the MCU to AD_POT	R95		
R54	Application	Use AN6 of application board	Use DA0 of application board	R123		
	board interface	interface.	interface.			

Option Link Settings					
Reference	Function	Fitted	Alternative (Removed)	Related To	
R59	Application	Use PTRX of application board	Use RXD4 of application board	R76	
	board interface	interface.	interface.		
R66	Application	Use TRSTn of application board	Use SCK4 of application board	R79	
	board interface	interface.	interface.		
R67	Application	Use DACKn of application board	Use TCLKC of application board	R78	
	board interface	interface.	interface.		
R69	Application	Use IO_1 of application board	Use CS1n of application board	R114	
	board interface	interface.	interface.		
R70	Application	Use PTTX of application board	Use TXD4 of application board	R82	
	board interface	interface.	interface.		
R74	Application	Use ADTRGn of application board	Use IRQ3n of application board	R88	
	board interface	interface.	interface.		
R75	Application	Use A22 of application board	Use RXD5 of application board	R81	
	board interface	interface.	interface.		
R76	Application	Use RXD4 of application board	Use PTRX of application board	R59	
	board interface	interface.	interface.		
R78	Application	Use TCLKC of application board	Use DACKn of application	R67	
	board interface	interface.	board interface.		
R79	Application	Use SCK4 of application board	Use TRSTn of application board	R66	
	board interface	interface.	interface.		
R81	Application	Use RXD5 of application board	Use A22 of application board	R75	
	board interface	interface.	interface.		
R82	Application	Use TXD4 of application board	Use PTTX of application board	R70	
	board interface	interface.	interface.		
R84	Application	Use A21 of application board	Use TXD5 of application board	R90	
	board interface	interface.	interface.		
R88	Application	Use IRQ3n of application board	Use ADTRGn of application board	R74	
	board interface	interface.	interface.		
R90	Application	Use TXD5 of application board	Use A21 of application board	R84	
	board interface	interface.	interface.		
R95	Application	Connects analog channel AN0 of	Use AN0 of application board	R53	
	board interface	the MCU to AD_POT	interface.		
R114	Application	Use CS1n of application board	Use IO_1 of application board	R69	
	board interface	interface.	interface.		
R115	Application	Use IO_3 of application board	Use CS3n of application board	R116	
	board interface	interface.	interface.		

Option Link Settings					
Reference	Function	Fitted	Alternative (Removed)	Related To	
R116	Application	Use CS3n of application board	Use IO_3 of application board	R115	
	board interface	interface.	interface.		
R123	Application	Use DA0 of application board	Use AN6 of application board	R54	
	board interface	interface.	interface.		
R135	Application	Use TDO of application board	Use WDT_OVFn of application	R157	
	board interface	interface.	board interface.		
R136	Application	Use DA1 of application board	Use AN7 of application board	R150	
	board interface	interface.	interface.		
R137	Application	Use CS0n of application board	Use IO_0 of application board	R151	
	board interface	interface.	interface.		
R142	Application	Use Un of application board	Use TIOCB0 of application board	R156	
	board interface	interface.	interface.		
R143	Application	Use Up of application board	Use TIOCA0 of application board	R158	
	board interface	interface.	interface.		
R150	Application	Use AN7 of application board	Use DA1 of application board	R136	
	board interface	interface.	interface.		
R151	Application	Use IO_0 of application board	Use CS0n of application board	R137	
	board interface	interface.	interface.		
R156	Application	Use TIOCB0 of application board	Use Un of application board	R142	
	board interface	interface.	interface		
R157	Application	Use WDT_OVFn of application	Use TDO of application board	R135	
	board interface	board interface.	interface.		
R158	Application	Use TIOCA0 of application board	Use Up of application board	R143	
	board interface	interface.	interface.		

Table 6-6: Application board interface links.

 Table 6-7 below describes the function of the option links associated with E8 and E10A debuggers. The default configuration is indicated by BOLD text.

	Option Link Settings					
Reference	Function	Fitted	Alternative (Removed)	Related To		
R4	E8	Enables E8				
R118	E8	Programming Flash not using	Programming Flash using SERIAL			
		SERIAL port.	port.			
R131	E8	If fitted or J7 is set board uses User	Removed or J7 isn't set board			
		Boot Mode.	doesn't use User Boot Mode.			
R132	E10A	Enables E10A, also can be enabled	E10A is disabled, can be			
		by fitting J5.	enabled if J5 is set.			

Table 6-7: E8 and E10A debugger links.

Table 6-8 below describes the function of the option links associated with power source. The default configuration is indicated by BOLD text.

	Option Link Settings					
Reference	Function	Fitted	Alternative (Removed)	Related To		
R178	Power source	Enables power from E8.	Disable E8 power source			
R179	Power source	Board can be powered from	Board can't be powered from	R181		
		external source CON_3V3 (JA1	external source CON_3V3 (JA1			
		header pin 3)	header pin 3)			
R180	Power source	Enables power from external	Disable external power connector.			
		source.				
R181	Power source	Fitted if board is not powered	Removed if board is powered from	R179, R182		
		from external source CON_3V3	external source CON_3V3 (JA1			
		(JA1 header pin 3)	header pin 3)			
R182	Power source	Enables power to board	Disconnects power from board	R179, R183		
		peripheral devices.	peripheral devices.			
R183	Power source	Board can be powered from	Board can't be powered from	R179, R182		
		external source CON_5V (JA1	external source CON_5V (JA1			
		header pin 1)	header pin 1).			
R184	Ground	Enables ground connection to	Disconnects ground connection to			
		ADC module.	ADC module.			
R186	MCU power	Supply to MCU.	CPU current can be measured			
	supply		across R186			
R240	Power source	Enables VCC power to I2C	Disconnects VCC power from I2C	R241		
		module, disconnects 5V power	module, enables 5V power to I2C			
		from I2C module.	module			
R241	Power source	Enables 5V power to I2C module,	Disconnects 5V power from I2C	R240		
		disconnects VCC power from I2C	module, enables VCC power to			
		module.	I2C module.			

Table 6-8: Power configuration links.

 Table 6-9 below describes the function of the option links associated with clock configuration. The default configuration is indicated by

 BOLD text.

	Option Link Settings					
Reference	Ference Function Fitted		Alternative (Removed)	Related To		
R215	Clock Oscillator	On-board clock source is used	External clock source is used			
R218	Clock Oscillator	On-board clock source is used	External clock source is used			
R219	Clock Oscillator	Parallel resistor for a crystal	Not fitted			

	Option Link Settings					
Reference	Function	Fitted	Alternative (Removed)	Related To		
R220	Clock Oscillator	External Clock Source	On-board Clock Source			
R221	Clock Oscillator	External Clock Source	On-board Clock Source			

Table 6-9: Clock configuration links.

Table 6-10 below describes the function of the option links associated with reference voltage source. The default configuration is indicated by BOLD text.

	Option Link Settings						
Reference	Function	Fitted	Alternative (Removed)	Related To			
R216	Voltage	Voltage Reference set to board	Voltage Reference taken from	R223			
	Reference	Vcc signal.	external connector (JA1 pin 7).				
	Source						
R223	Voltage	Voltage Reference is taken from	Voltage Reference set to board	R216			
	Reference	external connector (JA1 pin 7).	Vcc signal.				
	Source						

Table 6-10: Voltage reference links.

 Table 6-11 below describes the function of the option links associated with analog power supply. The default configuration is indicated by

 BOLD text.

	Option Link Settings						
Reference	Function	Fitted	Alternative (Removed)	Related To			
R217	Analog Voltage	Analog voltage source from	Analog Voltage Source from	R222			
	Source	on-board Vcc.	external connector.				
R222	Analog Voltage	Analog Voltage Source from external	Analog voltage source from	R217			
	Source	connector.	on-board Vcc.				
R224	Analog Voltage	Analog Voltage Source from external	Analog voltage source from on				
	Source	connector.	board Vcc.				

Table 6-11: Analog power supply links.

 Table 6-11 below describes the function of the option links associated with MCU modes. The default configuration is indicated by BOLD text.

	Option Link Settings					
Reference	eference Function Fitted		Alternative (Removed)	Related To		
R235	MCU Mode	MCU User Boot Mode enabled, also	MCU User Boot mode disabled	R236		
		can be enabled by fitting jumper in				
		J12				
R236	MCU Mode	MCU Extended mode enabled, also	MCU Extended mode disabled	R235		
		can be enabled by fitting jumper in				
		J13				

Table 6-12: MCU mode links.

6.7. Oscillator Sources

A crystal oscillator is fitted on the RSK and used to supply the main clock input to the Renesas microcontroller. Table 6-13 details the oscillators that are fitted and alternative footprints provided on this RSK:

Component		
Crystal (X1)	Fitted	12.5 MHz (HC49/4H package)

Table 6-13: Oscillators / Resonators

6.8. Reset Circuit

The CPU Board includes a simple latch circuit that links the mode selection and reset circuit. This provides an easy method for swapping the device between Boot Mode and User mode. This circuit is not required on customers' boards as it is intended for providing easy evaluation of the operating modes of the device on the RSK. Please refer to the hardware manual for more information on the requirements of the reset circuit.

The Reset circuit operates by latching the state of the boot switch on pressing the reset button. This control is subsequently used to modify the mode pin states as required.

The mode pins should change state only while the reset signal is active to avoid possible device damage.

The reset is held in the active state for a fixed period by a pair of resistors and a capacitor. Please check the reset requirements carefully to ensure the reset circuit on the user's board meets all the reset timing requirements.

Chapter 7. Modes

This RSK supports Boot mode, User mode, MCU Extension Mode (ROM Active) and Single Chip mode.

Details of programming the FLASH memory is described in the H8SX/1648 Group Hardware Manual.

7.1. Boot mode

The boot mode settings for this RSK are shown in Table 7-1: Boot Mode pin settings below:

EMLE	MD2	MD1	MD0	LSI State after Reset End
0	0	1	0	Boot Mode

Table 7-1: Boot Mode pin settings

The software supplied with this RSK supports debugging with E10A which does not need Boot mode. To enter Boot mode manually, do not connect the E10A. Press and hold the SW1/BOOT. The BOOT LED will be illuminated to indicate that the microcontroller is in boot mode.

7.2. User boot mode

Refer to H8SX/1648 Group Hardware Manual for details of User Boot Mode. The user mode settings for this RSK are shown in Table 7-2: user Mode pin settings below:

EMLE	MD2	MD1	MD0	LSI State after Reset End
0	0	0	1	User Boot Mode

Table 7-2: User Mode pin settings

7.3. User Extension mode (ROM Active)

Refer to H8SX/1648 Group Hardware Manual for details of User Program Mode. The User Program Mode settings for this RSK are shown in Table 7-3: User Program Mode pin settings below:

EMLE	MD2	MD1	MD0	LSI State after Reset End
0	1	1	0	MCU Extension Mode (ROM Active)

Table 7-3: MCU Extension Mode (ROM Active) pin settings

7.4. Singe chip mode

This is default operating mode of this RSK. Refer to H8SX/1648 Group Hardware Manual for details of Single chip mode. The Single chip mode settings for this RSK are shown in Table 7-4: Single chip mode pin settings below:

EMLE	MD2	MD1	MD0	LSI State after Reset End
0	1	1	1	Single chip Mode

Table 7-4: Single chip Mode pin settings

Chapter 8. Programming Methods

The board is intended for use with HEW and the supplied E10A debugger. Refer to H8SX/1648 Group Hardware Manual for details of programming the microcontroller without using these tools. Please note that to use E10A debugger, jumper J5 must be fitted.

Chapter 9. Headers

9.1. Microcontroller Headers

Table 9-1 to Error! Reference source not found. show the microcontroller pin headers and their corresponding microcontroller connections. The header pins connect directly to the microcontroller pin unless otherwise stated.

		J	11		
Pin	Circuit Net Name	Device	Pin	Circuit Net Name	Device
		Pin			Pin
1	CS1n_I01	1	2	10_2	2
3	CS3n_IO3	3	4	GROUND	4
5	IO_7	5	6	UC_VCC	6
7	MD2	7	8	PIN8	8
9	PIN9	9	10	LEDO	10
11	SCK5	11	12	RXD5_A22	12
13	TXD5_A21	13	14	A20	14
15	A19	15	16	GROUND	16
17	A18	17	18	A17	18
19	A16	19	20	A15	20
21	A14	21	22	A13	22
23	GROUND	23	24	A12	24
25	UC_VCC	25	26	A11	26
27	A10	27	28	А9	28
29	A8	29	30	A7	30
31	A6	31	32	GROUND	32
33	A5	33	34	A4	34
35	A3	35	36	A2	36

Table 9-1: J1

		J	2		
Pin	Circuit Net Name	Device	Pin	Circuit Net Name	Device
		Pin			Pin
1	A1	37	2	AO	38
3	EMLE	39	4	PIN40	40
5	PIN41	41	6	IO_4	42
7	IO_5	43	8	IO_6	44
9	DLCDD4	45	10	DLCDD5	46
11	DLCDE	47	12	GROUND	48
13	TRIGa	49	14	UC_VCC	50
15	TRIGb	51	16	TMR0	52
17	LED1	53	18	SCK1	54
19	RXD1	55	20	Up_TIOCA0	56
21	Un_TIOCB0	57	22	TIOCCO	58
23	TXD1	59	24	TMR1	60
25	NMI	61	26	DLCDRS	62
27	Vp	63	28	UC_VCC	64
29	D0	65	30	D1	66
31	D2	67	32	D3	68
33	GROUND	69	34	D4	70
35	D5	71	36	D6	72

Table 9-2: J2

		~	13		
Pin	Circuit Net Name	Device	Pin	Circuit Net Name	Device
		Pin			Pin
1	D7	73	2	UC_VCC	74
3	D8	75	4	D9	76
5	D10	77	6	D11	78
7	GROUND	79	8	D12	80
9	D13	81	10	D14	82
11	D15	83	12	IRQ0n	84
13	IRQ1n	85	14	IRQ2n	86
15	IRQ3n_ADTRGn	87	16	GROUND	88
17	LED2	89	18	LED3	90
19	RESn	91	20	NC	92
21	DREQn	93	22	TENDn	94
23	TDO_WDTOVFn	95	24	GROUND	96
25	CON_XTAL	97	26	CON_EXTAL	98
27	UC_VCC	99	28	DACKn_TCLKC	100
29	TCLKD	101	30	STBYn	102
31	GROUND		32	Vn	104
33	Wp	105	34	Wn	106
35	PTTX_TXD4	107	36	PTRX_RXD4	108

Table 9-3: J3

	J4								
Pin	Circuit Net Name	Device	Pin	Circuit Net Name	Device				
		Pin			Pin				
1	TRSTn_SCK4	109	2	NC					
3	TMS	111	4	NC					
5	TDI	113	6	ТСК	114				
7	MD0	115	8	DLCDD6	116				
9	DLCDD7	117	10	ADPOT_AN0	118				
11	AN1	119	12	AN2	120				
13	CON_AVCC	121	14	AN3	122				
15	AVSS	123	16	AN4	124				
17	CON_VREF	125	18	AN5	126				
19	DA0_AN6	127	20	DA1_AN7	128				
21	AN8	129	22	AN9	130				
23	AN10	131	24	AN11	132				
25	MD1	133	26	UD	134				
27	WRn	135	28	TRISTn	136				
29	LLWRn	137	30	LHWRn	138				
31	RDn	139	32	ASn	140				
33	GROUND	141	34	BCLK	142				
35	UC_VCC	143	36	CS0n_IO0	144				

Table 9-4: J4

9.2. Application Headers

	JA1								
Pin	Generic Header Name	CPU board	Device	Pin	Generic Header Name	CPU board	Device		
		Signal Name	Pin			Signal Name	Pin		
1	5V	CON_5V	-	2	0V	GROUND	-		
3	3V3	CON_3V3	-	4	0V	GROUND	-		
5	AVCC	CON_AVCC	121	6	AVss	AVSS	123		
7	AVref	CON_VREF	125	8	ADTRG	ADTRGn	87		
9	AD0	AN0	118	10	AD1	AN1	119		
11	AD2	AN2	120	12	AD3	AN3	122		
13	DACO	DA0	127	14	DAC1	DA1	128		
15	IO_0	IO_0	144	16	10_1	10_1	1		
17	10_2	IO_2	2	18	IO_3	IO_3	3		
19	IO_4	IO_4	42	20	IO_5	IO_5	43		
21	IO_6	10_6	44	22	10_7	10_7	5		
23	IRQ3	IRQ3n	87	24	IIC_EX	NC	-		
25	IIC_SDA	SDA	8	26	IIC_SCL	IIC_SCL	9		

Table 9-5 to Table 9-9 below show the standard application header connections.

Table 9-5: JA1 Standard Generic Header

	JA2								
Pin	Generic Header Name	CPU board	Device	Pin	Generic Header Name	CPU board	Device		
		Signal Name	Pin			Signal Name	Pin		
1	RESn	RESn	91	2	EXTAL	CON_EXTAL	98		
3	NMIn	NMI	61	4	VSS1	GROUND	-		
5	WDT_OVF	WDT_OVFn	95	6	SCIaTX	TXD1	59		
7	IRQ0	IRQ0n	84	8	SCIaRX	RXD1	55		
9	IRQ1	IRQ1n	85	10	SCIaCK	SCK1	54		
11	UD	UD	134	12	CTSRTS	NC	-		
13	Up	Up	56	14	Un	Un	57		
15	Vp	Vp	63	16	Vn	Vn	104		
17	Wp	Wp	105	18	Wn	Wn	106		
19	TMR0	TMR0	52	20	TMR1	TMR1	60		
21	TRIGa	TRIGa	49	22	TRIGb	TRIGb	51		
23	IRQ2	IRQ2n	86	24	TRISTn	TRISTn	136		
25	-	-		26	-	-	-		

Table 9-6: JA2 Standard Generic Header

	JA5								
Pin	Generic Header Name	CPU board	Device	Pin	Generic Header Name	CPU board	Device		
		Signal Name	Pin			Signal Name	Pin		
1	AD4	AN4	124	2	AD5	AN5	126		
3	AD6	AN6	127	4	AD7	AN7	128		
5	CAN1TX	-	-	6	CAN1RX	-	-		
7	CAN2TX	-	-	8	CAN2RX	-	-		
9	AD8	AN8	129	10	AD9	AN9	130		
11	AD10	AN10	131	12	AD11	AN11	132		
13	TIOC0A	TIOCA0	56	14	TIOC0B	TIOCB0	57		
15	TIOCOC	TIOCCO	58	16	M2_TRISTn	-	-		
17	TCLKC	TCLKC	100	18	TCLKD	TCLKD	101		
19	M2_Up	-	-	20	M2_Un	-	-		
21	M2_Vp	-	-	22	M2_Vn	-	-		
23	M2_Wp	-	-	24	M2_Wn	-	-		

Table 9-7: JA5 Standard (Generic Header
---------------------------	----------------

	JA6									
Pin	Generic Header Name	CPU board	Device	Pin	Generic Header Name	CPU board	Device			
		Signal Name	Pin			Signal Name	Pin			
1	DREQ	DREQn	93	2	DACK	DACKn	100			
3	TEND	TENDn	94	4	STBYn	STBYn	102			
5	RS232TX	RS232TX	-	6	RS232RX	RS232RX	-			
7	SCIbRX	RXD4	108	8	SCIbTX	TXD4	107			
9	SCIcTX	TXD5	13	10	SCIbCK	SCK4	109			
11	SCIcCK	SCK5	11	12	SCIcRX	RXD5	12			
13	-	-	-	14	-	-	-			
15	-	-	-	16	-	-	-			
17	-	-	-	18	-	-	-			
19	-	-	-	20	-	-	-			
21	-	-	-	22	-	-	-			
23	-	-	-	24	-	-	-			

Table 9-8: JA6 Standard Generic Header

	JA3								
Pin	Generic Header Name	CPU board Signal Name	Device Pin	Pin	Generic Header Name	CPU board Signal Name	Device Pin		
1	A0	A0	38	2	A1	A1	37		
3	A2	A2	36	4	A3	A3	35		
5	A4	A4	34	6	A5	A5	33		
7	A6	A6	31	8	A7	A7	30		
9	A8	A8	29	10	A9	A9	28		
11	A10	A10	27	12	A11	A11	26		
13	A12	A12	24	14	A13	A13	22		
15	A14	A14	21	16	A15	A15	20		
17	DO	DO	65	18	D1	D1	66		
19	D2	D2	67	20	D3	D3	68		
21	D4	D4	70	22	D5	D5	71		
23	D6	D6	72	24	D7	D7	73		
25	RDn	RDn	139	26	WRn	WRn	135		
27	CS0n	CS0n	144	28	CS1n	CS1n	1		
29	D8	D8	75	30	D9	D9	76		
31	D10	D10	77	32	D11	D11	78		
33	D12	D12	80	34	D13	D13	81		
35	D14	D14	82	36	D15	D15	83		
37	A16	A16	19	38	A17	A17	18		
39	A18	A18	17	40	A19	A19	15		
41	A20	A20	14	42	A21	A21	13		
43	A22	A22	12	44	SDCLK	BCLK	142		
45	CS2n	CS3n	3	46	ALE	ASn	140		
47	WRHn	LHWRn	138	48	WRLn	LLWRn	137		
49	CASn	-	-	50	RASn	-	-		

Table 9-9: JA3 Standard Generic Header

Chapter 10. Code Development

10.1. Overview

Note: For all code debugging using Renesas software tools, the RSK board must be connected to a PC USB port via an E10A. An E10A pod is supplied with the RSK product.

10.2. Compiler Restrictions

The compiler supplied with this RSK is fully functional for a period of 60 days from first use. After the first 60 days of use have expired, the compiler will default to a maximum of 64k code and data. To use the compiler with programs greater than this size you need to purchase the full tools from your distributor.

Warning: The protection software for the compiler will detect changes to the system clock. Changes to the system clock back in time may cause the trial period to expire prematurely.

10.3. Mode Support

HEW connects to the Microcontroller and programs it via the E10A. Mode support is handled transparently to the user.

10.4. Breakpoint Support

HEW supports breakpoints on the user code, both in RAM and ROM.

Double clicking in the breakpoint column in the code sets the breakpoint. Breakpoints will remain unless they are double clicked to remove them.

10.5. Memory Map

Notes:1. This area is specified as the external address space when EXPE = 1 and the reserved area when EXPE = 0.

2. The on-chip RAM is used for flash memory programming. Do not clear the RAME bit in SYSCR to 0.

3. Do not access the reserved areas.

4. This area is specified as the external address space by clearing the RAME bit in SYSCR to 0.

Figure 10-1: Memory Map

Chapter 11.Component Placement

Figure 11-1: Component Placement – Top Layer

Chapter 12. Additional Information

For details on how to use High-performance Embedded Workshop (HEW, refer to the HEW manual available on the CD or from the web site.

For information about the H8SX/1648 series microcontrollers refer to the H8SX/1648 Group hardware manual.

For information about the H8SX/1648 assembly language, refer to the H8SX Series Software Manual. Online technical support and information is available at: <u>http://www.renesas.com/renesas_starter_kits</u>

Technical Contact Details

- America: <u>techsupport.rta@renesas.com</u>
- Europe: tools.support.eu@renesas.com
- Japan: <u>csc@renesas.com</u>

General information on Renesas Microcontrollers can be found on the Renesas website at: <u>http://www.renesas.com/</u>

 Renesas Starter Kit for H8SX/1648

 User's Manual

 Publication Date
 Rev.1.00 27.11.2007

 Published by:
 Renesas Technology Europe Ltd.

 Duke's Meadow, Millboard Road, Bourne End

 Buckinghamshire SL8 5FH, United Kingdom

©2007 Renesas Technology Europe and Renesas Solutions Corp., All Rights Reserved.

Renesas Starter Kit for H8SX/1648 User's Manual

Renesas Electronics Corporation 1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan