Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Renesas Starter Kit for H8SX/1668R

User's Manual

RENESAS SINGLE-CHIP MICROCOMPUTER H8SX FAMILY

Table of Contents

Chapter 1. Preface	
Chapter 2. Purpose	
Chapter 3. Power Supply	
3.1. Requirements	
3.2. Power – Up Behaviour	
Chapter 4. Board Layout	
4.1. Component Layout	
4.2. Board Dimensions	7
Chapter 5. Block Diagram	
Chapter 6. User Circuitry	
6.1. Switches	
6.2. LEDs	
6.3. Potentiometer	
6.4. Serial port	
6.5. Debug LCD Module	11
6.6. Option Links	11
6.7. Oscillator Sources	
6.8. Reset Circuit	
6.9. USB port	
Chapter 7. Modes	
7.1. Boot mode	
7.2. Singe chip mode	
Chapter 8. Programming Methods	
Chapter 9. Headers	
9.1. Microcontroller Headers	
9.2. Application Headers	
Chapter 10. Code Development	
10.1. Overview	
10.2. Compiler Restrictions	
10.3. Mode Support	
10.4. Breakpoint Support	
10.5. Memory Map	
Chapter 11. Component Placement	
Chapter 12. Additional Information	

Chapter 1. Preface

Cautions

This document may be, wholly or partially, subject to change without notice.

All rights reserved. Duplication of this document, either in whole or part is prohibited without the written permission of Renesas Technology Europe Limited.

Trademarks

All brand or product names used in this manual are trademarks or registered trademarks of their respective companies or organisations.

Copyright

© Renesas Technology Europe Ltd. 2008. All rights reserved.

© Renesas Technology Corporation. 2008. All rights reserved.

© Renesas Solutions Corporation. 2008. All rights reserved.

Website: <u>http://www.renesas.com/</u>

Glossary

CPU	Central Processing Unit	HEW	High-performance Embedded Workshop
LED	Light Emitting Diode	RSK	Renesas Starter Kit
PC	Program Counter	E10A FSK	On-chip debugger module
LCD	Liquid Crystal Display	DAC	Digital-to-Analog Converter

Chapter 2. Purpose

This RSK is an evaluation tool for Renesas microcontrollers.

This manual describes the technical details of the RSK hardware. The Quick Start Guide and Tutorial Manual provide details of the software installation and debugging environment.

Features include:

- Renesas Microcontroller Programming.
- User Code Debugging.
- User Circuitry such as Switches, LEDs and potentiometer.
- User or Example Application.
- Sample peripheral device initialisation code.

The RSK board contains all the circuitry required for microcontroller operation.

Chapter 3. Power Supply

3.1. Requirements

This RSK operates from a 5V power supply.

A diode provides reverse polarity protection only if a current limiting power supply is used.

All RSK boards are supplied with an E10A debugger.

All RSK boards have an optional centre positive supply connector using a 2.0mm barrel power jack.

Warning

The RSK is neither under nor over voltage protected. Use a centre positive supply for this board.

3.2. Power - Up Behaviour

When the RSK is purchased the RSK board has the 'Release' or stand alone code from the example tutorial code pre-programmed into the Renesas microcontroller. On powering up the board the user LEDs will start to flash. After 200 flashes, or after pressing a switch the LEDs will flash at a rate controlled by the potentiometer.

Chapter 4. Board Layout

4.1. Component Layout

The following diagram shows top layer component layout of the board.

Figure 4-1: Board Layout

4.2. Board Dimensions

The following diagram gives the board dimensions and connector positions. All through hole connectors are on a common 0.1" grid for easy interfacing.

Figure 4-2: Board Dimensions

Chapter 5. Block Diagram

Figure 5-1 shows the CPU board components and their connectivity.

Figure 5-1: Block Diagram

Figure 5-2 shows the connections to the RSK.

Figure 5-2: RSK Connections

Chapter 6. User Circuitry

6.1. Switches

There are four switches located on the CPU board. The function of each switch and its connection are shown in Table 6-1.

Switch	Function	Microcontroller
RES	When pressed, the RSK microcontroller is reset.	RESn, Pin 91
SW1/BOOT*	Connects to an IRQ input for user controls.	IRQ0n , Pin 84
	The switch is also used in conjunction with the RES switch to place the device in	(Port 1 pin 0)
	BOOT mode when not using the E10A debugger.	
SW2*	Connects to an IRQ line for user controls.	IRQ1n, Pin 85
		(Port 1, pin 1)
SW3*	Connects to the ADC trigger input. Option link allows connection to IRQ line.	IRQ3n_ADTRGn,
	The option is a pair of 0R links. For more details on option links, please refer	Pin 87
	to Sec 6.6.	(Port 1, pin 3)

Table 6-1: Switch Functions

*Refer to schematic for detailed connectivity information.

6.2. LEDs

There are six LEDs on the RSK board. The green 'POWER' LED lights when the board is powered. The orange BOOT LED indicates the device is in BOOT mode when lit. The four user LEDs are connected to an IO port and will light when their corresponding port pin is set low.

Table 6-2, below, shows the LED pin references and their corresponding microcontroller port pin connections.

LED Reference (As	Colour	Microcontroller Port Pin	Microcontroller
shown on silkscreen)		function	Pin Number
LED0	Green	Port B.3	3
LED1	Orange	Port C.2	116
LED2	Red	Port C.3	117
LED3	Red	Port 1.2	86

Table 6-2: LED Port

6.3. Potentiometer

A single turn potentiometer is connected to channel ANO (P5.0, pin 118) of the microcontroller. This may be used to vary the input analog voltage value to this pin between AVCC and Ground.

6.4. Serial port

Serial port SCI0 is connected to the standard RS232 header. Serial port SCI5 can optionally be connected to the RS232 header. The connections to be fitted are listed in the Table 6-3.

Description	Function	Circuit Net	CPU's	Fit for RS232	Remove for RS232
		Name	Pin		
SCI0	Default serial port	TXD0	52	R31	R37
SCI0	Default serial port	RXD0	51	R30	R36
SCI5	Spare Serial Port	TXD5	93	R34, R15	-
SCI5	Spare Serial Port	RXD5	94	R35, R28	-

Table 6-3: Serial Port settings

The SCI0 port is also available on J2 and JA2 (R59 and R70 must be fitted) headers. The SCI5 port is available on J3 and JA6 headers...

6.5. Debug LCD Module

A debug LCD module is supplied to be connected to the connector marked 'LCD', so that the debug LCD module lies over J2. Care should be taken to ensure the pins are inserted correctly into LCD. The debug LCD module uses a 4 bit interface to reduce the pin allocation. No contrast control is provided; this is set by a resistor on the supplied display module. The module supplied with the RSK only supports 5V operation.

Table 6-4 shows the pin allocation and signal names used on this connector.

	LCD					
Pin	Circuit Net Name	Device	Pin	Circuit Net Name	Device	
		Pin			Pin	
1	Ground	-	2	5V Only	-	
3	No Connection	-	4	DLCDRS (PA0)	134	
5	R/W (Wired to Write only)	-	6	DLCDE + 100k pull down to ground (PA2)	136	
7	No Connection	-	8	No connection	-	
9	No Connection	-	10	No connection	-	
11	DLCDD4 (PB4)	130	12	DLCDD5 (PB5)	131	
13	DLCDD6 (PB6)	132	14	DLCDD7 (PB7)	5	

Table 6-4 Debug LCD Module Connections

6.6.Option Links

Table 6-5 below describes the function of the option links contained on this RSK board and associated with Serial Port Configuration. The default configuration is indicated by **BOLD** text.

	Option Link Settings					
Reference	Function	Fitted	Alternative (Removed)	Related To		
R15	Serial Port	Connects serial port SCI5 (Tx) to	Disconnects serial port SCI5	R28, R34, R35		
	Configuration	D-type connector (J8).	(Tx) from D-type connector (J8).			
R19	Serial Port	Disables RS232 Serial	Enables RS232 Serial	-		
	configuration	Transceiver	Transceiver			
R28	Serial Port	Connects serial port SCI5 (Rx) to	Disconnects serial port SCI5	R15, R34, R35		
	Configuration	D-type connector (J8).	(Rx) from D-type connector (J8).			
R30	Serial Port	Routes on-board serial port to	Disconnects on-board serial port	R31, R32, R33		
	Configuration	SCI0 (Rx) microcontroller pin.	from the CPU's SCI0 (Rx) pin.	R36, R37		
R31	Serial Port	Routes on-board serial port to	Disconnects on-board serial port	R30, R32, R33		
	Configuration	SCI0 (Tx) microcontroller pin.	from the CPU's SCI0 (Tx) pin.	R36, R37		
R32	Serial Port	Routes serial port SCI0 (Tx) to JA6	Disconnects serial port SCI0	R30, R31, R33		
	Configuration	header.	(Tx) from JA6 header.			
R33	Serial Port	Routes serial port SCI0 (Rx) to JA6	Disconnects serial port SCI0	R30, R31, R32		
	Configuration	header.	(Rx) from JA6 header.			
R34	Serial Port	Routes on-board serial port to SCI5	Disconnects on-board serial	R15, R28, R35		
	Configuration	(Tx) microcontroller pin.	port from SCI5 (Tx) CPU pin.			
R35	Serial Port	Routes on-board serial port to SCI5	Disconnects on-board serial	R15, R28, R34		
	Configuration	(Rx) microcontroller pin.	port from SCI5 (Rx) CPU pin.			
R36	Serial Port	Connects PTRX of programming port	Disconnects programming port	R37, R31, R30		
	Configuration	to the on-board serial port (J8).	PTRX from the on-board serial			
			port (J8).			
R37	Serial Port	Connects PTTX of programming port	Disconnects programming port	R36, R30. R31		
	Configuration	to the on-board serial port (J8).	PTTX from the on-board serial			
			port (J8).			

Table 6-5: Serial port configuration links.

 Table 6-6 below describes the function of the option links associated with application board interface. The default configuration is indicated by BOLD text.

	Option Link Settings				
Reference	Function	Fitted	Alternative (Removed)	Related To	
R68	Application board interface	Use DA0 of application board interface.	Use AN6 of application board interface.	R108	
R108	Application board interface	Use AN6 of application board interface.	Use DA0 of application board interface.	R68	

Option Link Settings					
Reference	Function	Fitted	Alternative (Removed)	Related To	
R71	Application	Use DA1 of application board	Use AN7 of application board	R111	
	board interface	interface.	interface.		
R111	Application	Use AN7 of application board	Use DA1 of application board	R71	
	board interface	interface.	interface.		
R60	Application	Use ANO of application board	Use ADPOT of application	R96	
	board interface	interface.	board interface.		
R96	Application	Use ADPOT of application board	Use AN0 of application board	R60	
	board interface	interface.	interface.		
R95	Application	Use IRQ3n of application board	Use ADTRG of application board	R56	
	board interface	interface.	interface.		
R56	Application	Use ADTRGn of application board	Use IRQ3n of application board	R95	
	board interface	interface.	interface.		
R114	Application	Use TIOCA2 of application board	Use Up of application board	R69	
	board interface	interface.	interface.		
R69	Application	Use Up of application board	Use TIOCA2 of application	R114	
	board interface	interface.	board interface.		
R116	Application	Use TIOCB2 of application board	Use Un of application board	R115	
	board interface	interface.	interface.		
R115	Application	Use Un of application board	Use TIOCB2 of application	R116	
	board interface	interface.	board interface.		
R81	Application	Use TIOCA0 of application board	Use Vp of application board	R75	
	board interface	interface	interface		
R75	Application	Use Vp of application board interface	Use TIOCA0 of application	R81	
	board interface		board interface		
R90	Application	Use TIOCB0 of application board	Use Vn of application board	R84	
	board interface	interface	interface		
R84	Application	Use Vn of application board interface	Use TIOCB0 of application	R90	
	board interface		board interface		
R85	Application	Use IO5 of application board	Use Wp of application board	R86	
	board interface	interface	interface		
R86	Application	Use Wp of application board	Use IO5 of application board	R85	
	board interface	interface	interface		
R88	Application	Use IO4 of application board	Use Wn of application board	R74	
	board interface	interface	interface		
R74	Application	Use Wn of application board	Use IO4 of application board	R88	
	board interface	interface	interface		

	Option Link Settings					
Reference	Function	Fitted	Alternative (Removed)	Related To		
R67	Application	Use IO3 of application board	Use UD of application board	R78		
	board interface	interface	interface			
R78	Application	Use UD of application board	Use IO3 of application board	R67		
	board interface	interface	interface			
R82	Application	Use IO2 of application user interface	Use TxD0 for onboard RS232	R70		
	board interface		module			
R70	Application	Use TxD0 of for onboard RS232	Use IO2 of application user	R82		
	board interface	module	interface			
R76	Application	Use IO1 of application board	Use RxD0 for onboard RS232	R59		
	board interface	interface	module			
R59	Application	Use RxD0 for onboard RS232	Use IO1 of application board	R76		
	board interface	module	interface			
R79	Application	Use IO0 of application board	Use CLK0 for onboard RS232	R66		
	board interface	interface	module			
R66	Application	Use CLK0 for onboard RS232	Use IO0 of application board	R79		
	board interface	module	interface			
R54	Application	Use WDTOVF of application board	Use TDO of E10A debugger	R123		
	board interface	interface	interface			
R123	Application	Use TDO of E10A debugger	Use WDTOVF of application	R54		
	board interface	interface	board interface			

Table 6-6: Application board interface links.

 Table 6-7 below describes the function of the option links associated with E8 and E10A debuggers. The default configuration is indicated by BOLD text.

	Option Link Settings				
Reference Function Fitted Alternative (Removed) Related To					
R4	E8	Enables E8			
R132	E10A	Enables E10A, also can be enabled	E10A is disabled, can be	E10A_EN (J15)	
		by fitting J15.	enabled if J15 is set.	jumper	

Table 6-7: E8 and E10A debugger links.

Table 6-8 below describes the function of the option links associated with power source. The default configuration is indicated by BOLD text.

		Option Link Settin	gs	
Reference	Function	Fitted	Alternative (Removed)	Related To
R3	Power source	Enables external 5V power supply	Disables power supply from 'PWR'	R13, R47, R48
		from 'PWR' (J7) connector.	(J7) connector.	
R13	USB Power	Enables USB VBUS as power supply	Disables USB VBUS as power	R3, R50
	source	for this RSK board.	supply.	
R18	3V3 power	Board can be powered from external	Board can't be powered from	R24, R40, R52
	source	source CON_3V3.	external source CON_3V3.	
R22	Power source	Enables power supply for E8.	Disables E8 power supply	R3, R13
R24	Power source	Enables 3V3 power supply for	Disables 3V3 power supply for	R18, R40
		on-board devices.	on-board devices. Current can be	
			measured across R24	
R40	3V3 power	The RSK board uses on-board	The board can be powered from	R18, R24
	source	voltage regulator.	CON_3V3 header.	
R47	Power source	LCD is powered directly from	LCD is not powered directly from	R49, R51
		PWR connector or from CON_5V	PWR connector or from CON_5V	
		header	header	
R48	5V External	Board can be powered from external	Board cannot be powered from	R50, R52
	power supply	source CON_5V	external source CON_5V.	
R49	USB Power	Enables on-board debug LCD power	Disables on-board debug LCD	R13, R47, R50,
	source	supply from USB VBUS.	power supply from USB VBUS.	R51
R50	USB Power	Enables USB VBUS as 5V power	Disconnects USB VBUS from	R13
	source	supply for an external application	external application board	
		boards.	header.	
R51	Power source	Enables on-board LCD to be	Disables on-board LCD to be	R47, R49
		powered from external 5V PSU	powered from external PSU	
R52	Power source	Enables power supply for a	Disables power supply of a	R48, R50
		general application board from	general application board from	
		external 5V PSU	external 5V PSU	
R42	Ground	Enables ground connection to	Disconnects ground connection to	-
		ADC module.	ADC module.	

Table 6-8: Power configuration links.

 Table 6-9 below describes the function of the option links associated with clock configuration. The default configuration is indicated by

 BOLD text.

	Option Link Settings								
Reference	Function	Fitted	Alternative (Removed)	Related To					
R93	32.768 KHz	Routes OSC1 CPU pin to J3 header	OSC1 CPU pin and J3 header	R94, R103,					
	Clock Oscillator		are not connected	R105					
R94	32.768 KHz	Routes OSC2 CPU pin to J3 header	OSC2 CPU pin and J3 header	R93, R103,					
	Clock Oscillator		are not connected	R105					
R103	32.768 KHz	On-board low-speed clock source	External clock source is used	R93, R94, R104					
	Clock Oscillator	is used							
R105	32.768 KHz	On-board low-speed clock source	External clock source is used	R94, R93, R103					
	Clock Oscillator	is used							
R98	32.768 KHz	Parallel resistor for a crystal	Not fitted	-					
	Clock Oscillator								
R99	12 MHz Clock	Routes EXTAL CPU pin to J3	EXTAL CPU pin and J3 header	R102, R101,					
	Oscillator	header.	are not connected	R100					
R102	12 MHz Clock	Routes XTAL CPU pin to J3 and JA2	XTAL CPU pin and J3 and JA2	R99, R101,					
	Oscillator	headers	headers are not connected	R100					
R101	12 MHz Clock	On-board main clock source is	External clock source is used	R99, R102					
	Oscillator	used							
R100	12 MHz Clock	Parallel resistor for a crystal	Not fitted	-					
	Oscillator								

Table 6-9: Clock configuration links.

 Table 6-10 below describes the function of the option links associated with reference voltage source. The default configuration is indicated by BOLD text.

Option Link Settings							
Reference	ce Function Fitted		Alternative (Removed)	Related To			
R64	Voltage	Voltage Reference set to	Voltage Reference taken from	R83			
	Reference	Board_Vcc signal.	external connector.				
	Source						
R83	Voltage	Voltage Reference is taken from	Voltage Reference set to	R64			
	Reference	external connector.	Board_Vcc signal.				
	Source						

Table 6-10: Voltage reference links.

 Table 6-11 below describes the function of the option links associated with analog power supply. The default configuration is indicated by

 BOLD text.

	Option Link Settings						
Reference	Function	Fitted	Alternative (Removed)	Related To			
R21	Analog Voltage	Analog Voltage Source is set to	Analog Voltage Source is taken	R46			
	Source	on-board Vcc.	from external connector.				
R46	Analog Voltage	Analog Voltage Source is taken from	Analog voltage source is set to	R21			
	Source	external connector.	on-board Vcc.				
R137	Analog Voltage	Analog Voltage Ground is routed to	Analog Voltage Ground is	-			
	Ground	external connector.	connector. disconnected from external				
			connector.				

Table 6-11: Analog power supply links.

Table 6-12 below describes the function of the option links associated with MCU modes. The default configuration is indicated by BOLD text.

	Option Link Settings							
Reference	eference Function Fitted		Alternative (Removed)	Related To				
R44	MCU Mode,	The CPU is self powered. The CPU is power from USB		J10				
	USB unit		bus.					
R131	MCU Mode	Enables SDRAM interface.	Enables SDRAM interface.					
R130	MCU Mode,	USB dedicated clock is EXTAL × 3 USB dedicated clock is EXTAL		J13				
	USB unit	(choose this option if 16 MHz crystal	× 4 (choose this option if 12					
		is used).	MHz crystal is used).					
R133	MCU Boot mode	Serial Boot Mode is selected.	USB Boot Mode is selected.	J16				

Table 6-12: MCU mode links.

6.7. Oscillator Sources

Two crystal oscillators are fitted on the RSK and used to supply the main clock input to the Renesas microcontroller. Table 6-13 details the oscillators that are fitted and alternative footprints provided on this RSK:

Component		
Crystal (X1)	Fitted	12.0 MHz (HC49/4H package)
Crystal (X2)	Fitted	32.768 KHz

Table 6-13: Oscillators / Resonators

6.8. Reset Circuit

The CPU Board includes a simple latch circuit that links the mode selection and reset circuit. This provides an easy method for swapping the device between Boot Mode and User mode. This circuit is not required on customer's boards as it is intended for providing easy evaluation of the operating modes of the device on the RSK. Please refer to the hardware manual for more information on the requirements of the reset circuit.

The Reset circuit operates by latching the state of the boot switch on pressing the reset button. This control is subsequently used to modify the mode pin states as required.

The mode pins should change state only while the reset signal is active to avoid possible device damage.

The reset is held in the active state for a fixed period by a pair of resistors and a capacitor. Please check the reset requirements carefully to ensure the reset circuit on the user's board meets all the reset timing requirements.

6.9. USB port

This RSK has a Full-speed (12 Mbps) USB port compliant to USB 2.0 specification. It is available as J12 on the RSK. This port allows Boot mode programming using **USB Direct** connection. For more details please refer to *H8SX/1668R Group Hardware Manual*.

Chapter 7. Modes

This RSK supports two Boot modes and Single Chip mode.

Details of programming the FLASH memory is described in the H8SX/1668R Group Hardware Manual.

7.1. Boot mode

The boot mode settings for this RSK are shown in Table 7-1: Boot Mode pin settings below:

EMLE	MD2	MD1	MD0	PM2	LSI State after Reset End
0	0	1	0	0	SCI boot mode
0	0	1	0	1	USB boot mode

Table 7-1: Boot Mode pin settings

The software supplied with this RSK supports debugging with E10A which does not need Boot mode. To enter the Boot mode manually, do not connect the E10A in this case. Press and hold the SW1/BOOT. The BOOT LED will be illuminated to indicate that the microcontroller is in boot mode.

SCI boot mode: boot mode executes programming/erasure of the user MAT or user boot MAT by means of the control command and program data transmitted from the externally connected host via the on-chip SCI_4.

USB boot mode: executes programming/erasing of the user MAT by means of the control command and program data transmitted from the externally connected host via the USB.

7.2. Singe chip mode

This is default operating mode of this RSK. Refer to H8SX/1668R Group Hardware Manual for details of Single chip mode. The Single chip mode settings for this RSK are shown in Table 7-2: Single chip mode pin settings below:

EMLE	MD2	MD1	MD0	LSI State after Reset End
0	1	1	1	Single chip Mode

Table 7-2: Single chip Mode pin settings

Programming/erasure of the user MAT is executed by downloading an on-chip program. The user boot MAT cannot be programmed/erased in user program mode.

Chapter 8. Programming Methods

The board is intended for use with HEW and the supplied E10A debugger. Refer to H8SX/1668R Group Hardware Manual for details of programming the microcontroller without using these tools. Please note that to use E10A debugger, jumper E10A_EN (J15) must be fitted.

Chapter 9. Headers

9.1. Microcontroller Headers

Table 9-1 to Table 9-4 show the microcontroller pin headers and their corresponding microcontroller connections. The header pins connect directly to the microcontroller pin unless otherwise stated.

	J1							
Pin	Circuit Net Name	Device	Pin	Circuit Net Name	Device			
		Pin			Pin			
1	CS1n	1	2	CS2n	2			
3	LEDO	3	4	GROUND	4			
5	DLCDD7	5	6	UC_VCC	6			
7	MD2	7	8	TxD6	8			
9	RxD6	9	10	PM2	10			
11	A23	11	12	A22	12			
13	A21	13	14	A20	14			
15	A19	15	16	GROUND	16			
17	A18	17	18	A17	18			
19	A16	19	20	A15	20			
21	A14	21	22	A13	22			
23	GROUND	23	24	A12	24			
25	UC_VCC	-	26	A11	26			
27	A10	27	28	А9	28			
29	A8	29	30	A7	30			
31	A6	31	32	GROUND	32			
33	A5	33	34	A4	34			
35	A3	35	36	A2	36			

Table 9-1: J1

	J2							
Pin	Circuit Net Name	Device	Pin	Circuit Net Name	Device			
		Pin			Pin			
1	A1	37	2	AO	38			
3	EMLE	39	4	PM3	40			
5	PM4	41	6	UC_VCC	-			
7	NC	-	8	NC	-			
9	GROUND	-	10	VBUS_DET	46			
11	MD_CLK	47	12	GROUND	48			
13	IO0_CLK0	49	14	UC_VCC	50			
15	IO1_RxD0	51	16	IO2_TxD0	52			
17	IO3_UD	53	18	IO4_Wn	54			
19	IO5_Wp	55	20	TIOCA0_Vp	56			
21	TIOCB0_Vn	57	22	TRISTn	109			
23	106	59	24	107	60			
25	NMIn	61	26	DREQ1n	62			
27	TEND1n	63	28	UC_VCC	64			
29	D0	65	30	D1	66			
31	D2	67	32	D3	68			
33	GROUND	69	34	D4	70			
35	D5	71	36	D6	72			

Table 9-2: J2

		-	13		
Pin	Circuit Net Name	Device	Pin	Circuit Net Name	Device
		Pin			Pin
1	D7	73	2	UC_VCC	74
3	D8	75	4	D9	76
5	D10	77	6	D11	78
7	GROUND	79	8	D12	80
9	D13	81	10	D14	82
11	D15	83	12	IRQ0n	84
13	IRQ1n	85	14	LED3	86
15	IRQ3n_ADTRGn	87	16	GROUND	88
17	CON_OSC2 (*)	89	18	CON_OSC1 (*)	90
19	RESn	91	20	NC	-
21	TxD5	93	22	RxD5	94
23	WDTOVFn_TDO	95	24	GROUND	96
25	CON_XTAL (*)	97	26	CON_EXTAL (*)	98
27	UC_VCC	99	28	P1_6	100
29	P1_7	101	30	STBYn	102
31	GROUND	-	32	DACK1n	104
33	TIOCA2_Up	105	34	TIOCB2_Un	106
35	PTTX	107	36	PTRX	108

Table 9-3: J3

	J4							
Pin	Circuit Net Name	Device	Pin	Circuit Net Name	Device			
		Pin			Pin			
1	TRSTn	109	2	UC_VCC	-			
3	TMS	111	4	GROUND	-			
5	TDI	113	6	ТСК	114			
7	MD0	115	8	LED1	116			
9	LED2	117	10	ADPOT_AN0	118			
11	AN1	119	12	AN2	120			
13	CON_AVCC	121	14	AN3	122			
15	AVSS	123	16	AN4	124			
17	CON_VREF	125	18	AN5	126			
19	DA0_AN6	127	20	DA1_AN7	128			
21	MD1	129	22	DLCDD4	130			
23	DLCDD5	131	24	DLCDD6	132			
25	MD3	133	26	DLCDRS	134			
27	WRn	135	28	DLCDE	136			
29	LLWRn	137	30	LHWRn	138			
31	RDn	139	32	ASn	140			
33	GROUND	141	34	BCLK	142			
35	UC_VCC	143	36	CS0n	144			

Table 9-4: J4

9.2. Application Headers

	JA1									
Pin	Generic Header Name	CPU board	Device	Pin	Generic Header Name	CPU board	Device			
		Signal Name	Pin			Signal Name	Pin			
1	5V	CON_5V	-	2	0V	GROUND	-			
3	3V3	CON_3V3	-	4	0V	GROUND	-			
5	AVCC	CON_AVCC	121	6	AVss	CON_AVSS	123			
7	AVref	CON_VREF	125	8	ADTRG	ADTRGn	87			
9	AD0	AN0 (**)	118	10	AD1	AN1	119			
11	AD2	AN2	120	12	AD3	AN3	122			
13	DACO	DA0 (**)	127	14	DAC1	DA1	128			
15	IO_0	IO0 (**)	49	16	10_1	IO1 (**)	51			
17	10_2	IO2 (**)	52	18	IO_3	IO3 (**)	53			
19	IO_4	IO4 (**)	54	20	IO_5	IO5 (**)	55			
21	IO_6	106	59	22	IO_7	107	60			
23	IRQ3	IRQ3n (**)	87	24	IIC_EX	NC	-			
25	IIC_SDA	SDA0	-	26	IIC_SCL	SCLO	-			

Table 9-5 to Table 9-9 below show the standard application header connections.

Table 9-5: JA1 Standard Generic Header

	JA2							
Pin	Generic Header Name	CPU board	Device	Pin	Generic Header Name	CPU board	Device	
		Signal Name	Pin			Signal Name	Pin	
1	RESn	RESn	91	2	EXTAL	CON_EXTAL	97	
3	NMIn	NMIn	61	4	VSS1	GROUND	-	
5	WDT_OVF	WDTOVF	95	6	SCIaTX	TxD0 (**)	52	
7	IRQ0	IRQ0n	84	8	SCIaRX	RxD0 (**)	51	
9	IRQ1	IRQ1n	85	10	SCIaCK	CLK0 (**)	49	
11	UD	UD (**)	53	12	CTSRTS	NC	-	
13	Up	Up (**)	105	14	Un	Un (**)	106	
15	Vp	Vp (**)	56	16	Vn	Vn (**)	57	
17	Wp	Wp (**)	55	18	Wn	Wn (**)	54	
19	TMR0	TIOCA0 (**)	56	20	TMR1	TIOCA2 (**)	105	
21	TRIGa	TIOCB0	57	22	TRIGb	TIOCB2 (**)	106	
23	IRQ2	IRQ3n (**)	87	24	TRISTn	TRISTn	109	
25	-	-	-	26	-	-	-	

Table 9-6: JA2 Standard Generic Header

	JA5							
Pin	Generic Header Name	CPU board	Device	Pin	Generic Header Name	CPU board	Device	
		Signal Name	Pin			Signal Name	Pin	
1	AD4	AN4	124	2	AD5	AN5	126	
3	AD6	AN6 (**)	127	4	AD7	AN7 (**)	128	
5	CAN1TX	-	-	6	CAN1RX	-	-	
7	CAN2TX	-	-	8	CAN2RX	-	-	
9	-	-	-	10	-	-	-	
11	-	-	-	12	-	-	-	
13	-	-	-	14	-	-	-	
15	-	-	-	16	-	-	-	
17	-	-	-	18	-	-	-	
19	-	-	-	20	-	-	-	
21	-	-	-	22	-	-	-	
23	-	-	-	24	-	-	-	

Table 9-7: JA5 Standard	Generic Header
-------------------------	----------------

JA6							
Pin	Generic Header Name	CPU board	Device	Pin	Generic Header Name	CPU board	Device
		Signal Name	Pin			Signal Name	Pin
1	DREQ	DREQ1n	62	2	DACK	DACK1n	104
3	TEND	TEND1n	63	4	STBYn	NC	-
5	RS232TX	RS232TX	-	6	RS232RX	RS232RX	-
7	SCIbRX	RxD5	94	8	SCIbTX	TxD5	8
9	SCIcTX	TxD6	93	10	SCIbCK		-
11	SCIcCK	NC	-	12	SCIcRX	RxD6	9
13	-	-	-	14	-	-	-
15	-	-	-	16	-	-	-
17	-	-	-	18	-	-	-
19	-	-	-	20	-	-	-
21	-	-	-	22	-	-	-
23	-	-	-	24	-	-	-

Table 9-8: JA6 Standard Generic Header

	JA3						
Pin	Generic Header Name	CPU board Signal Name	Device Pin	Pin	Generic Header Name	CPU board Signal Name	Device Pin
1	A0	A0	38	2	A1	A1	37
3	A2	A2	36	4	A3	A3	35
5	A4	A4	34	6	A5	A5	33
7	A6	A6	31	8	A7	A7	30
9	A8	A8	29	10	А9	A9	28
11	A10	A10	27	12	A11	A11	26
13	A12	A12	24	14	A13	A13	22
15	A14	A14	21	16	A15	A15	20
17	D0	D0	65	18	D1	D1	66
19	D2	D2	67	20	D3	D3	68
21	D4	D4	70	22	D5	D5	71
23	D6	D6	72	24	D7	D7	73
25	RDn	RDn	139	26	WRn	WRn	135
27	CS0n	CS0n	144	28	CS1n	CS1n	1
29	D8	D8	75	30	D9	D9	76
31	D10	D10	77	32	D11	D11	78
33	D12	D12	80	34	D13	D13	81
35	D14	D14	82	36	D15	D15	83
37	A16	A16	19	38	A17	A17	18
39	A18	A18	17	40	A19	A19	15
41	A20	A20	14	42	A21	A21	13
43	A22	A22	12	44	SDCLK	BCLK	142
45	CS2n	CS2n	2	46	ALE	ASn	140
47	WRHn	LHWRn	138	48	WRLn	LLWRn	137
49	CASn	-	-	50	RASn	-	-

Table 9-9: JA3 Standard Generic Header

* - Optional link. By default, these signals are disconnected.

** - Optional link. Please refer to schematic for details.

Chapter 10. Code Development

10.1. Overview

Note: For all code debugging using Renesas software tools, the RSK board must be connected to a PC USB port via an E10A. An E10A pod is supplied with the RSK product.

10.2. Compiler Restrictions

The compiler supplied with this RSK is fully functional for a period of 60 days from first use. After the first 60 days of use have expired, the compiler will default to a maximum of 64k code and data. To use the compiler with programs greater than this size you need to purchase the full tools from your distributor.

Warning: The protection software for the compiler will detect changes to the system clock. Changes to the system clock back in time may cause the trial period to expire prematurely.

10.3. Mode Support

HEW connects to the Microcontroller and programs it via the E10A. Mode support is handled transparently to the user.

10.4. Breakpoint Support

HEW supports breakpoints on the user code, both in RAM and ROM.

Double clicking in the breakpoint column in the code sets the breakpoint. Breakpoints will remain unless they are double clicked to remove them.

10.5. Memory Map

Notes: 1. This area is specified as the external address space when EXPE = 1 and the reserved area when EXPE = 0.

2. The on-chip RAM is used for flash memory programming. Do not clear the RAME bit in SYSCR to 0.

3. Do not access the reserved areas.

4. This area is specified as the external address space by clearing the RAME bit in SYSCR to 0.

Figure 10-1: Memory Map

Chapter 11. Component Placement

Figure 11-1: Component Placement – Front view

Chapter 12. Additional Information

For details on how to use High-performance Embedded Workshop (HEW, refer to the HEW manual available on the CD or from the web site.

For information about the H8SX/1668R series microcontrollers refer to the H8SX/1668R Group hardware manual.

For information about the H8SX/1668R assembly language, refer to the H8SX Series Software Manual. Online technical support and information is available at: <u>http://www.renesas.com/renesas_starter_kits</u>

Technical Contact Details

- America: <u>techsupport.rta@renesas.com</u>
- Europe: tools.support.eu@renesas.com
- Japan: <u>csc@renesas.com</u>

General information on Renesas Microcontrollers can be found on the Renesas website at: <u>http://www.renesas.com/</u>

 Renesas Starter Kit for H8SX/1668R

 User's Manual

 Publication Date
 Rev.1.00 04.04.2008

 Published by:
 Renesas Technology Europe Ltd.

 Duke's Meadow, Millboard Road, Bourne End

 Buckinghamshire SL8 5FH, United Kingdom

©2008 Renesas Technology Europe and Renesas Solutions Corp., All Rights Reserved.

Renesas Starter Kit for H8SX/1668R User's Manual

Renesas Electronics Corporation 1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan