Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Renesas Starter Kit for R8C/27

User's Manual
RENESAS 16-BIT SINGLE-CHIP
MICROCOMPUTER
M16C FAMILY / R8C/Tiny SERIES

Table of Contents

Chapter 1. Preface	1
Chapter 2. Purpose	2
Chapter 3. Power Supply	3
3.1. Requirements	3
3.2. Power – Up Behaviour	3
Chapter 4. Board Layout	4
4.1. Component Layout	4
4.2. Board Dimensions	5
Chapter 5. Block Diagram	6
Chapter 6. User Circuitry	7
6.1. Switches	7
6.2. LEDs	7
6.3. Potentiometer	7
6.4. Serial port	8
6.5. LCD Module	8
6.6. Option Links	g
6.7. Oscillator Sources	13
6.8. Reset Circuit	13
6.9. LIN Interface	13
Chapter 7. Modes	14
7.1. Boot mode	14
7.2. Single chip mode	14
Chapter 8. Programming Methods	15
Chapter 9. Headers	16
9.1. Microcontroller Headers	16
9.2. Application Headers	17
Chapter 10. Code Development	19
10.1. Overview	19
10.2. Mode Support	19
10.3. Breakpoint Support	19
10.4. Memory Map	20
Chapter 11. Component Placement	21
Chapter 12. Additional Information	22

Chapter 1. Preface

Cautions

This document may be, wholly or partially, subject to change without notice.

All rights reserved. Duplication of this document, either in whole or part is prohibited without the written permission of Renesas Solutions Corporation.

Trademarks

All brand or product names used in this manual are trademarks or registered trademarks of their respective companies or organisations.

Copyright

© Renesas Solutions Corp. 2007. All rights reserved.

© Renesas Technology Europe Ltd. 2007. All rights reserved.

© Renesas Technology Corp. 2007. All rights reserved.

Website: http://www.eu.renesas.com/ (Europe)

http://www.renesas.com/ (Global)

Glossary

ADC	Analog Digital Converter	LCD	Liquid Crystal Display
CPU	Central Processing Unit	LED	Light Emitting Diode
DAC	Digital Analog Converter	LIN	Local Interconnect Network
E8a	E8a On-chip debugger module	LSI	Large Scale Integration
IRQ	Interrupt ReQuest		

Chapter 2. Purpose

This Renesas Starter Kit is an evaluation tool for Renesas microcontrollers.

Features include:

- Renesas Microcontroller Programming.
- User Code Debugging.
- User Circuitry such as Switches, LEDs and potentiometer(s).
- User or Example Application.
- Sample peripheral device initialisation code.

The Renesas Starter Kit board contains all the circuitry required for microcontroller operation.

NOTE: This manual describes the technical details of the Renesas Starter Kit for R8C/27 hardware. The Quick Start Guide and Tutorial Manual provide details of the software installation and debugging environment.

Chapter 3. Power Supply

3.1. Requirements

This Renesas Starter Kit operates from a 3V to 5V power supply.

A diode provides reverse polarity protection only if a current limiting power supply is used.

All Renesas Starter Kit boards are supplied with an E8a debugger. This product is able to power the Renesas Starter Kit board with up to 300mA. When the Renesas Starter Kit is connected to another system then that system should supply power to the Renesas Starter Kit.

All Renesas Starter Kit boards have an optional centre positive supply connector using a 2.1mm barrel power jack.

Warning

The Renesas Starter Kit is neither under nor over voltage protected. Use a centre positive supply for this board.

3.2. Power – Up Behaviour

When the Renesas Starter Kit is purchased the Renesas Starter Kit board has the 'Release' or stand alone code from the example tutorial code pre-programmed into the Renesas microcontroller. On powering up the board the user LEDs will start to flash. After 200 flashes, or after pressing a switch the LEDs will flash at a rate controlled by the potentiometer.

Chapter 4. Board Layout

4.1. Component Layout

The following diagram shows the top layer component layout of the board.

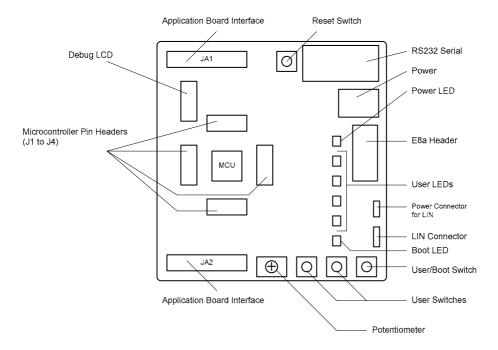


Figure 4-1: Board Layout

4.2. Board Dimensions

The following diagram gives the board dimensions and connector positions. All through hole connectors are on a common 0.1" grid for easy interfacing.

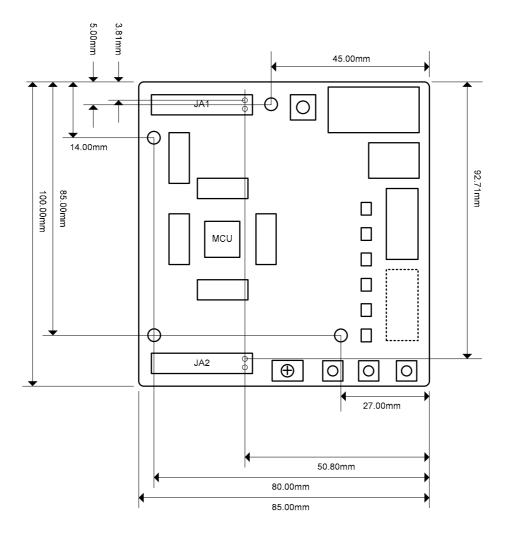


Figure 4-2 : Board Dimensions

Chapter 5. Block Diagram

Figure 5-1 is representative of the CPU board components and their connectivity.

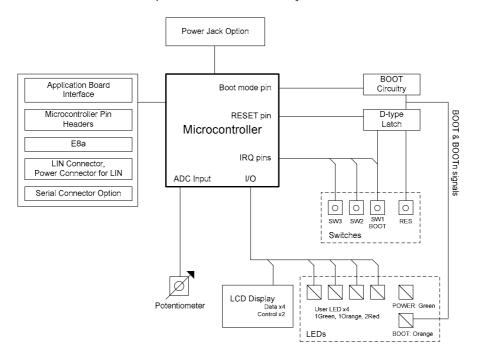


Figure 5-1: Block Diagram

Figure 5-2 is representative of the connections required to the Renesas Starter Kit.

Figure 5-2: Renesas Starter Kit Connections

Chapter 6. User Circuitry

6.1. Switches

There are four switches located on the board. The function of each switch and its connection are shown in Table 6-1.

Switch	Function	Microcontroller
RES	When pressed, the board microcontroller is reset.	RESET Pin3
SW1/BOOT*	Connects to an IRQ input for user controls.	INT1 Pin10
	The switch is also used in conjunction with the RES switch to place	(Port 1, pin 7)
	the device in BOOT mode when not using the E8a debugger.	
SW2*	Connects to an IRQ Interrupt input for user controls.	INT3 Pin23
		(Port 3, pin 3)
SW3*	Connects to a Key In Interrupt input for user controls	KIO Pin22
		(Port 1, pin 0)

Table 6-1: Switch Functions

6.2. LEDs

There are six LEDs on the CPU board. The green 'POWER' LED lights when the board is powered. The orange 'BOOT' LED indicates the device is in BOOT mode when lit. The four user LEDs are connected to an IO port and will light when their corresponding port pin is set low.

Table 6-2, below, shows the LED pin references and their corresponding microcontroller port pin connections.

LED Reference	Colour	Microcontroller Port	Microcontroller Pin Number
(As shown on silkscreen)		Pin function	
LED0	Green	Port 0.0	32
LED1	Orange	Port 0.1	31
LED2	Red	Port 0.2	30
LED3	Red	Port 0.3	29

Table 6-2: LED Port

6.3. Potentiometer

A single turn potentiometer is connected to AN11 (P1.3) of the microcontroller. This may be used to vary the input analog voltage value to this pin between VREF and Ground.

^{*}Refer to schematic for detailed connectivity information.

6.4. Serial port

The microcontroller programming serial port 1 is connected to the RS232 transceiver. This serial port can optionally be connected to the RS232 transceiver as well by fitting option resistors. The connections to be fitted are listed in the Table 6-3.

Description	Function	Fit for RS232
TxD1	Programming Serial Port	R43
RxD1	Programming Serial Port	R44

Table 6-3: Serial Port settings

A Secondary serial port is connected to the application headers. This is shared with the LIN module.

6.5. LCD Module

A LCD module is supplied to be connected to the connector J8. This should be fitted so that the LCD module lies over J1. Care should be taken to ensure the pins are inserted correctly into J8. The LCD module uses a 4 bit interface to reduce the pin allocation. No contrast control is provided; this is set by a resistor on the supplied display module. The module supplied with the Renesas Starter Kit only supports 5V operation.

Table 6-4 shows the pin allocation and signal names used on this connector.

	J8					
Pin	Circuit Net Name	Device	Pin	Circuit Net Name	Device	
		Pin			Pin	
1	Ground	-	2	5V Only	-	
3	No Connection	-	4	LCD_RS	14	
5	R/W (Wired to Write only)	-	6	LCD_E	13	
7	No Connection	-	8	No Connection	-	
9	No Connection	-	10	No Connection	-	
11	LCD_D4	28	12	LCD_D5	27	
13	LCD_D6	26	14	LCD_D7	25	

Table 6-4: LCD Module Connections

6.6. Option Links

Table 6-5 below describes the function of the option links associated with Power configuration. The default configuration is indicated by **BOLD** text.

	Option Link Settings				
Reference	Function	Fitted	Alternative (Removed)	Related To	
R16	Power Supply	Connects J5 to Board_VCC	J5 disconnected from	R18	
			Board_VCC		
R18	Power Supply	Connects Board_VCC to	Board_VCC disconnected from	R16, R17, R19,	
		board voltage line	board voltage line	R20, R21	
R19	Power Supply	Connects CON_5V (external	CON_5V disconnected from	R18, R20, R21	
	(External 5V)	5V) to Board_VCC	Board_VCC		
R20	Power Supply	Connects CON_3V3 (external	CON_3V3 disconnected from	R18, R19, R21	
	(External 3.3V)	3.3V) to Board_VCC	Board_VCC		
R21	MCU Power Supply	Supply to MCU	Fit Low ohm resister to	R18, R19, R20	
			measure current		
R28	User I/O Power Supply	Connects Board_VCC to	Board_VCC disconnected from		
		SW2, 3 and LED0-3	SW2, 3 and LED0-3		

Table 6-5: Power Configuration Links

Table 6-6 below describes the function of the option links associated with Clock configuration. The default configuration is indicated by **BOLD** text.

	Option Link Settings					
Reference	Function	Fitted	Alternative (Removed)	Related To		
R8	Oscillator	Connects external clock to	Connects X1 or X2 to MCU	R10, R11, R12,		
		MCU		R13, R14		
R10	Oscillator	Connects external clock to	Connects X1 or X2 to MCU	R8, R11, R12, R13,		
		MCU		R14		
R11	Oscillator	Connects X2 to MCU	Connects X1 or external	R8, R10, R12, R13,		
	(Sub clock)		clock to MCU	R14, R15		
R12	Oscillator	Connects X2 to MCU	Connects X1 or external	R8, R10, R11, R13,		
	(Sub clock)		clock to MCU	R14, R15		
R13	Oscillator	Connects X1 to MCU	Connects X2 or external clock	R8, R10, R11, R12,		
	(Main clock)		to MCU	R14		
R14	Oscillator	Connects X1 to MCU	Connects X2 or external clock	R8, R10, R11, R12,		
	(Main clock)		to MCU	R13		
R15	Oscillator	Parallel resistor for sub clock	Not fitted	R11, R12		
	(Sub clock)	(X2)				

Table 6-6: Clock Configuration Links

Table 6-7 below describes the function of the option links associated with Serial configuration. The default configuration is indicated by **BOLD** text.

	Option Link Settings					
Reference	Function	Fitted	Alternative (Removed)	Related To		
R42	RS232 Serial	Disables RS232 Serial	Enables RS232 Serial	R43, R44		
		Transceiver	Transceiver			
R43	Programming	Connects RS232 port to	Disconnected			
	Serial Port	Programming serial port				
R44	Programming	Connects RS232 port to	Disconnected			
	Serial Port	Programming serial port				

Table 6-7: Serial Configuration Links

Table 6-8 below describes the function of the option links associated with LIN configuration. The default configuration is indicated by **BOLD** text.

Option Link Settings					
Reference	Function	Fitted	Alternative (Removed)	Related To	
R63	LIN	For Master node setting	For Slave node setting	R64, R65, R66	
R64	LIN	Connects LIN-NSLP to MCU	Disconnected	R63, R65, R66	
		port P1_6			
R65	LIN	Connects LIN-RXD0 to MCU	Disconnected	R63, R64, R66	
		port P1_5			
R66	LIN	Connects LIN-TXD0 to MCU	Disconnected	R63, R64, R65	
		port P1_4			

Table 6-8: LIN Configuration Links

Table 6-9 below describes the function of the option links associated with Analog configuration. The default configuration is indicated by **BOLD** text.

Option Link Settings					
Reference Function Fitted Alternative (Removed) Related To					
R6	ADC	Connects CON_VREF	CON_VREF disconnected from	R17	
		(Reference voltage) to MCU	MCU		
R17	ADC	Connects CON_VREF to	CON_VREF disconnected from	R6	
		Board_VCC	Board_VCC		

Table 6-9: Analog Configuration Links

Table 6-10 below describes the function of the option links associated with microcontroller pin function select configuration. The default configuration is indicated by **BOLD** text.

	Option Link Settings				
Reference	Function	Fitted	Alternative (Removed)	Related To	
R46	MCU Pin Function	Connects AD3 to MCU port	Disconnected	R47	
	Select	P0_4			
R47	MCU Pin Function	Connects IO_4 to MCU port	Disconnected	R46	
	Select	P0_4			
R48	MCU Pin Function	Connects AD2 to MCU port	Disconnected	R49	
	Select	P0_5			
R49	MCU Pin Function	Connects IO_5 to MCU port	Disconnected	R48	
	Select	P0_5			
R50	MCU Pin Function	Connects IRQ1 to MCU port	Disconnected	R29, R53	
	Select	P1_7			
R53	MCU Pin Function	Connects TRIGb to MCU port	Disconnected	R29, R50	
	Select	P1_7			
R55	MCU Pin Function	Connects AD1 to MCU port	Disconnected	R56	
	Select	P0_6			
R56	MCU Pin Function	Connects IO_6 to MCU port	Disconnected	R55	
	Select	P0_6			
R57	MCU Pin Function	Connects AD0 to MCU port	Disconnected	R58	
	Select	P0_7			
R58	MCU Pin Function	Connects IO_7 to MCU port	Disconnected	R57	
	Select	P0_7			
R59	MCU Pin Function	Connects IRQ0 to MCU port	Disconnected	R60	
	Select	P4_5			
R60	MCU Pin Function	Connects TRIGa to MCU port	Disconnected	R59	
	Select	P4_5			

Table 6-10: MCU Pin Function Select Configuration Links

Table 6-11 below describes the function of the option links associated with other options. The default configuration is indicated by **BOLD** text.

	Option Link Settings						
Reference	Function	Fitted	Alternative (Removed)	Related To			
R29	SW1	Connects SW1 to MCU port	Disconnected	R50, R53			
		P4_5					
R45	E8a	Enables E8a Connection	Do not fit the option resistor				
R54	LCD Module	Connects LCD_E to MCU port	Disconnected				
		P5_4					

Table 6-11: Other Option Links

6.7.Oscillator Sources

Crystal oscillators are fitted on the board and used to supply the main/sub clock input to the Renesas microcontroller.

Table 6-12: Oscillator details the oscillators that are fitted and alternative footprints provided on this board:

Component						
Main clock (X1)	Fitted	20 MHz (HC/49U package)				
Sub clock (X2)	Fitted	32.768 kHz (90SMX package)				

Table 6-12: Oscillator

Main clock 'X1' is connected to microcontroller via the option resistors by the default.

6.8. Reset Circuit

The CPU Board includes a simple latch circuit that links the mode selection and reset circuit. This provides an easy method for swapping the device between Boot mode and Single chip mode. This circuit is not required on customers' boards as it is intended for providing easy evaluation of the operating modes of the device on the Renesas Starter Kit. Please refer to the hardware manual for more information on the requirements of the reset circuit.

The Reset circuit operates by latching the state of the boot switch on pressing the reset button. This control is subsequently used to modify the MODE pin states as required.

The MODE pin should change state only while the reset signal is active to avoid possible device damage.

The reset is held in the active state for a fixed period by a pair of resistors and a capacitor. Please check the reset requirements carefully to ensure the reset circuit on the customers' board meets all the reset timing requirements.

6.9. LIN Interface

This Renesas Starter Kit has hardware LIN interface. The interface is available on connector 'J10'. The connector 'J9' functions as power connector for LIN. The device can be operated either in Master node or Slave node. The device performs LIN communication in cooperation with Timer RA and UARTO.

For more details on LIN interface please refer to R8C/26 Group, R8C/27 Group Hardware Manual.

Chapter 7. Modes

The Renesas Starter Kit supports Boot mode and Single chip mode.

Details of programming the FLASH memory is described in the R8C/26 Group, R8C/27 Group Hardware Manual.

7.1. Boot mode

The Boot mode settings for this Renesas Starter Kit are shown in Table 7-1: Boot Mode pin settings below:

MODE	LSI State after Reset End
Low	Boot Mode

Table 7-1: Boot Mode pin settings

The software supplied with this Renesas Starter Kit supports Boot mode using an E8a and High-performance Embedded Workshop only. However, hardware exists to enter boot mode manually, do not connect the E8a in this case. Press and hold the SW1/BOOT. The mode pin is held in its boot state while reset is pressed and released. Release the boot button. The BOOT LED will be illuminated to indicate that the microcontroller is in boot mode.

When neither the E8a is connected nor the board is placed in boot mode as above, the MODE pin is pulled high by a 4.7k resistor.

When an E8a is used the MODE pin is controlled by the E8a.

7.2. Single chip mode

Because the MODE pin is pulled high, this Renesas Starter Kit will always boot in Single chip mode when the E8a is not connected and the boot switch is not depressed. Refer to R8C/26 Group, R8C/27 Group Hardware Manual for details of Single chip mode.

MODE	LSI State after Reset End	
High	Single chip Mode	

Table 7-2: Single chip Mode pin settings

Chapter 8. Programming Methods

R8C/27 Group Hardware Manual for details of programming the microcontroller without using these tools.	

Chapter 9. Headers

9.1. Microcontroller Headers

Table 9-1 to Table 9-4 show the microcontroller pin headers and their corresponding microcontroller connections. The header pins connect directly to the microcontroller pins. * Marked pins are subject to option links.

	J1					
Pin	Circuit Net Name	Device Pin	Pin	Circuit Net Name	Device Pin	
1	IIC_SCL	1	2	TMR1	2	
3	RESn	3	4	CON_XOUT	4	
5	Ground (VSS)	5	6	CON_XIN	6	
7	UC_VCC	7	8	MODE_E8B	8	

Table 9-1: J1

	J2				
Pin	Circuit Net Name	Device Pin	Pin	Circuit Net Name	Device Pin
1	IRQ0/TRIGa*	9	2	IRQ1/TRIGb*	10
3	TRISTn	11	4	MO_UD	12
5	MO_Wp	13	6	MO_Vp	14
7	SCIaCK	15	8	SCIaRX	16

Table 9-2: J2

	J3					
Pin	Circuit Net Name	Device Pin	Pin	Circuit Net Name	Device Pin	
1	SCIaTX	17	2	AD_POT	18	
3	MO_Up	19	4	P4_2/VREF	20	
5	TMR0	21	6	IRQ3	22	
7	IRQ2	23	8	IIC_SDA	24	

Table 9-3: J3

	J4					
Pin	Circuit Net Name	Device Pin	Pin	Circuit Net Name	Device Pin	
1	AD0/IO_7*	25	2	AD1/IO_6*	26	
3	AD2/IO_5*	27	4	AD3/IO_4*	28	
5	10_3	29	6	10_2	30	
7	10_1	31	8	10_0	32	

Table 9-4: J4

9.2. Application Headers

Table 9-5 and Table 9-6 below show the standard application header connections. * Marked pins are subject to option links.

	JA1						
Pin	Header Name	Circuit Net	Device	Pin	Header Name	Circuit Net	Device
		Name	Pin			Name	Pin
1	Regulated Supply 1	CON_5V	-	2	Regulated Supply 1	Ground	-
3	Regulated Supply 2	CON_3V3	-	4	Regulated Supply 2	Ground	-
5	Analogue Supply	NC	-	6	Analogue Supply	NC	-
7	Analogue Reference	CON_VREF	20	8	ADTRG	NC	-
9	ADC0	AD0*	25	10	ADC1	AD1*	26
11	ADC2	AD2*	27	12	ADC3	AD3*	28
13	DAC0	NC	-	14	DAC1	NC	-
15	IOPort0	IO_0	32	16	IOPort1	IO_1	31
17	IOPort2	IO_2	30	18	IOPort3	IO_3	29
19	IOPort4	IO_4*	28	20	IOPort5	IO_5*	27
21	IOPort6	IO_6*	26	22	IOPort7	10_7*	25
23	IRQ3	IRQ3	22	24	I ² C Bus (3rd pin)	NC	-
25	I ² C Bus	IIC_SDA	24	26	I ² C Bus	IIC_SCL	1

Table 9-5: JA1 Standard Generic Header

	JA2						
Pin	Header Name	Circuit Net	Device	Pin	Header Name	Circuit Net	Device
		Name	Pin			Name	Pin
1	Reset	RESn	3	2	External Clock Input	CON_XIN	6
3	Interrupt	NC	-	4	Regulated Supply 1	Ground	-
5	WDT overflow	NC	-	6	Serial Port	SCIaTX	17
7	Interrupt	IRQ0*	9	8	Serial Port	SCIaRX	16
9	Interrupt	IRQ1*	10	10	Serial Port	SCIaCK	15
11	Motor up/down	MO_UD	12	12	Serial Port Handshake	NC	-
13	Motor control	MO_Up	19	14	Motor control	NC	-
15	Motor control	MO_Vp	14	16	Motor control	NC	-
17	Motor control	MO_Wp	13	18	Motor control	NC	-
19	Timer Output	TMR0	21	20	Timer Output	TMR1	2
21	Timer Input	TRIGa*	9	22	Timer Input	TRIGb*	10
23	Interrupt	IRQ2	23	24	Tristate Control	TRISTn	11
25	SPARE	CON_XOUT	4	26	SPARE	AD_POT	18

Table 9-6: JA2 Standard Generic Header

Table 9-7 below show the LIN header connections.

	Ј9				
Pin	Function	Signal Name			
1	Power Supply (for LIN module)	VBAT			
2	Ground	Ground			
	J10				
Pin	Function	Signal Name			
1	Power Supply (for LIN module)	VBAT			
2	LIN Bus Line	LIN			
3	Ground	Ground			

Table 9-7: LIN Headers

Chapter 10.Code Development

10.1. Overview

Note: For all code debugging using Renesas software tools, the Renesas Starter Kit board must be connected to a Personal Computer USB port via an E8a. An E8a is supplied with the Renesas Starter Kit product.

10.2. Mode Support

High-performance Embedded Workspace connects to the Microcontroller and programs it via the E8a. Mode support is handled transparently to the user.

10.3. Breakpoint Support

High-performance Embedded Workshop supports breakpoints on the user code, both in RAM and ROM.

Double clicking in the breakpoint column in the code sets the breakpoint. Breakpoints will remain unless they are double clicked to remove them.

10.4. Memory Map

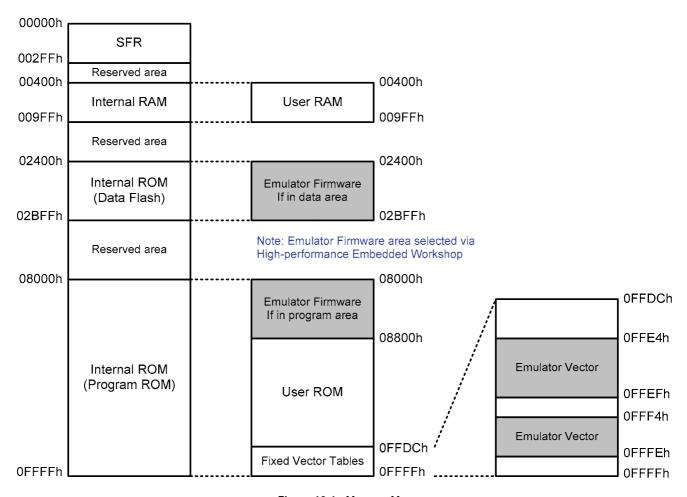


Figure 10-1: Memory Map

Chapter 11. Component Placement

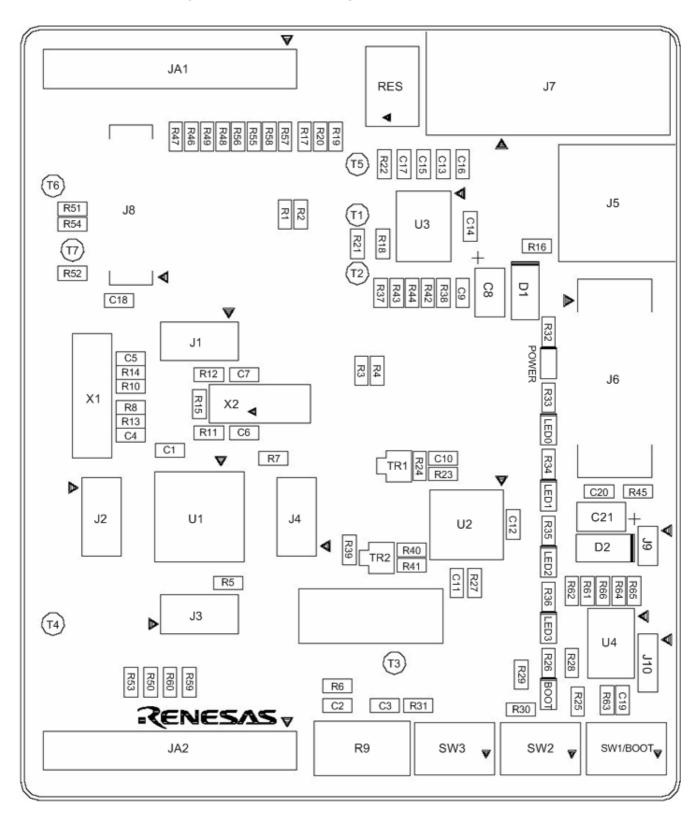


Figure 11-1: Component Placement

Chapter 12. Additional Information

For details on how to use High-performance Embedded Workshop, refer to the High-performance Embedded Workshop manual available on the CD or from the web site.

For information about the R8C/27 group microcontrollers, refer to the R8C/26 Group, R8C/27 Group Hardware Manual.

For information about the R8C/27 assembly language, refer to the R8C/Tiny Series Software Programming Manual. Online technical support and information is available at:

http://www.renesas.com/renesas_starter_kits

Technical Contact Details

America: <u>techsupport.rta@renesas.com</u>

Europe: <u>tools.support.eu@renesas.com</u>

Japan: <u>csc@renesas.com</u>

General information on Renesas Microcontrollers can be found on the Renesas website at:

http://www.renesas.com/.

Renesas Starter Kit for R8C/27

User's Manual

Publication Date Rev.3.00 Aug.31,2007

Published by: Renesas Solutions Corp.

4-1-6, Miyahara, Yodogawa-ku, Osaka City, 532-0003, Japan

 $\hbox{@2007 Renesas Solutions Corp., Renesas Technology Europe Ltd. and Renesas Technology Corp.,}\\$

All Rights Reserved.

Renesas Starter Kit for R8C/27 User's Manual

