
 Quick Start Guide

R01QS0077EJ0330 Rev.3.30 Page 1 of 30
Jan.13.26

RZ/V2H
Quick Start Guide for RZ/V Multi-OS Package
Introduction
This document outlines the procedure for integrating the RZ/V Multi-OS Package into RZ/V2H AI SDK. By
integrating the Multi-OS Package, users can efficiently establish a Multi-OS environment wherein Linux
operates on the Cortex®-A55 and FreeRTOS/BareMetal runs on the Cortex-M33 and/or Cortex-R8 with
support for Inter-Processor Communication between these CPU cores.

This package requires the RZ/V Flexible Software Package (FSP) for an RTOS/BareMetal environment. The
figure below illustrates the software stack of the RZ/V Multi-OS Package with the RZ/V2H:

Here are brief descriptions of each component related to RZ/V Multi-OS Package:

• RZ/V FSP
This software package consists of production ready peripheral drivers, FreeRTOS and portable
middleware stacks and best in-case HAL drivers with low memory footprint.

• OpenAMP
The framework includes the software components required for Asymmetric Multiprocessing (AMP)
systems, such as Inter-Processor Communication.

Target Device
RZ/V2H

RZ/V2H Quick Start Guide for RZ/V Multi-OS Package

R01QS0077EJ0330 Rev.3.30 Page 2 of 30
Jan.13.26

Contents

1. Specifications .. 3

2. Verified Operation Conditions .. 3

3. Sample Program Setup ... 3
3.1 Flexible Software Package Setup ... 3
3.2 Integration of Multi-OS Package related stuff ... 3
3.3 Note for integration .. 4
3.4 Deployment of RZ/V2H AI SDK ... 5

4. Sample Program Invocation on RZ/V2H .. 5
4.1 Hardware Setup ... 5
4.2 CM33/CR8 Sample Program Setup .. 5
4.3 Note for CR8 Sample Project .. 7
4.4 CM33/CR8 Sample Program Invocation for communicating with Linux ... 7
4.4.1 CM33/CR8 Sample Program Invocation using Segger J-Link .. 7
4.4.2 CM33/CR8 Sample Program invocation from u-boot .. 10
4.4.3 CM33 Sample Program Invocation from remoteproc .. 11
4.5 CA55 Sample Program Invocation .. 11
4.6 Overview of Sample Program’s behavior .. 13
4.7 Notes for Linux-RTOS Sample Program ... 14
4.8 Notes for RTOS-RTOS Sample Program.. 15

5. CA55 1.8GHz configuration support at CA55 cold boot mode .. 16
5.1 Setup of CA55 related stuff ... 16
5.2 Setup of CM33 related stuff ... 16
5.3 Deployment of Build Artifacts to RZ/V2H EVK .. 19

6. CM33 cold boot support ... 21
6.1 Setup of CA55 related stuff ... 21
6.2 Deployment of CA55 Build Artifacts to RZ/V2H EVK .. 22
6.3 Setup of CM33 related stuff ... 22

7. Remoteproc support .. 26
7.1 Setup of CM33 related stuff ... 26
7.2 How to run CM33 firmware from remoteproc .. 29

8. Reference Documents ... 29

Revision History .. 30

RZ/V2H Quick Start Guide for RZ/V Multi-OS Package

R01QS0077EJ0330 Rev.3.30 Page 3 of 30
Jan.13.26

1. Specifications
Table 1-1 lists the on-chip peripheral modules to be used in this package.

Table 1-1 Peripheral modules to be used in this package

Peripheral module Usage
Message Handling Unit (MHU) Configure Inter-Processor Interrupt.
Serial Communications Interface with FIFO (SCIFA) Perform standard serial communications sending

and receiving console messages.
Interrupt controller (INTC) Handle the following types of interrupts as shown

below for example:
• Processors should receive interrupts during

buffered serial communications.
• MHU module fires Inter-Processor Interrupt.

General Purpose Input Output (GPIO) Configure I/O lines used by serial communications.
General Timer (GTM) Configure the tick for FreeRTOS.

2. Verified Operation Conditions
Table 2-1 shows the verified operation conditions.

Table 2-1 Verified Operation Conditions

Item Contents
Integrated Development Environment e2 studio 2025-01 or later
Toolchain GNU Arm Toolchain 13.3.Rel1 AArch32 bare-metal

target (arm-none-eabi)
Dependent Software • RZ/V Flexible Software Package (FSP) v3.1.0

• RZ/V2H AI Software Development Kit (SDK) v6.00

3. Sample Program Setup
3.1 Flexible Software Package Setup
Multi-OS Package expects RZ/V Flexible Software Package (FSP) to be installed in advance. For details on
the installation, please refer to Getting Started with RZ/V Flexible Software Package.

3.2 Integration of Multi-OS Package related stuff
This section describes how to integrate OpenAMP related stuff into RZ/V2H AI Software Development Kit
(hereinafter referred to as RZ/V2H AI SDK).

1. Carry out Step 1, Step 2 and 1-8 of Step 3 stated in How to build RZ/V2H AI SDK Source Code
showcased at AI Applications and AI SDK of RZ/V series.

2. Download Multi-OS Package (r01an7254ej0330-rzv-multi-os-pkg.zip) to a working directory and run the
commands stated below:

$ cd ${YOCTO_WORK}
$ unzip <Multi-OS Dir>/r01an7254ej0330-rzv-multi-os-pkg.zip
$ tar zxvf r01an7254ej0330-rzv-multi-os-pkg/meta-rz-features_multi-os_v3.3.0.tar.gz

Here, <Multi-OS Dir> indicates the path to the directory where Multi-OS Package is placed.

3. Add the layer for Multi-OS Package.

$ cd build
$ bitbake-layers add-layer ../meta-rz-features/meta-rz-multi-os/meta-rzv2h

https://www.renesas.com/document/apn/rzv-getting-started-flexible-software-package
https://renesas-rz.github.io/rzv_ai_sdk/latest/

RZ/V2H Quick Start Guide for RZ/V Multi-OS Package

R01QS0077EJ0330 Rev.3.30 Page 4 of 30
Jan.13.26

(Optional for remoteproc support)

4. Uncomment the following lines stated in meta-rz-features/meta-rz-multi-os/meta-rzv2h/conf/layer.conf
for enabling remoteproc support:

#MACHINE_FEATURES_append = " RZV2H_CM33_BOOT"
MACHINE_FEATURES_append = " SRAM_REGION_ACCESS"
#MACHINE_FEATURES_append = " CM33_FIRMWARE_LOAD"
#MACHINE_FEATURES_append = " CA55_CPU_CLOCKUP"
MACHINE_FEATURES_append = " CM33_REMOTEPROC"

Be sure NOT to uncomment the above-mentioned 1st, 3rd and 4th line when remoteproc support is
enabled.

(Optional for CM33 and CR8 invocation from u-boot)

5. Uncomment the following 2nd line stated in meta-rz-features/meta-rz-multi-os/meta-
rzv2h/conf/layer.conf. For details on CM33 and CR8 invocation from u-boot, please see 4.4.2.

#MACHINE_FEATURES_append = “ RZV2H_CM33_BOOT”
MACHINE_FEATURES_append = “ SRAM_REGION_ACCESS”
#MACHINE_FEATURES_append = “ CM33_FIRMWARE_LOAD”
#MACHINE_FEATURES_append = “ CA55_CPU_CLOCKUP”
#MACHINE_FEATURES_append = " CM33_REMOTEPROC"

6. Continue to carry out the remaining procedures stated in Step 3 of How to build RZ/V2H AI SDK
Source Code.

3.3 Note for integration
The peripherals which are NOT enabled enter Module Standby Mode after Linux kernel is booted up. That
means the peripherals used on CM33 side might stop working at that time. To avoid such a situation, Multi-
OS Package incorporates the patch below:

• 0002-Updated-GTM-channels-to-support-RTOS.patch

This patch prevents GTM used in RPMsg demo program from entering Module Standby Mode. If you have
any other peripherals which you would like to stop entering Module Standby implicitly, please update the
patch as shown below:

RZ/V2H Quick Start Guide for RZ/V Multi-OS Package

R01QS0077EJ0330 Rev.3.30 Page 5 of 30
Jan.13.26

 diff --git a/drivers/clk/renesas/r9a09g057-cpg.c b/drivers/clk/renesas/r9a09g057-cpg.c
index 8535afb0d7cd..dff5458deb43 100644
--- a/drivers/clk/renesas/r9a09g057-cpg.c
+++ b/drivers/clk/renesas/r9a09g057-cpg.c
@@ -336,21 +336,21 @@ static const struct rzv2h_mod_clk r9a09g057_mod_clks[] __initconst = {
 BUS_MSTOP(6, BIT(1))),
 DEF_MOD("rcpu_cmtw3_clkm", CLK_PLLCLN_DIV32, 4, 2, 2, 2,
 BUS_MSTOP(6, BIT(2))),
- DEF_MOD("gtm_0_pclk", CLK_PLLCM33_DIV16, 4, 3, 2, 3,
+ DEF_MOD_CRITICAL("gtm_0_pclk", CLK_PLLCM33_DIV16, 4, 3, 2, 3,
 BUS_MSTOP(5, BIT(10))),
- DEF_MOD("gtm_1_pclk", CLK_PLLCM33_DIV16, 4, 4, 2, 4,
+ DEF_MOD_CRITICAL("gtm_1_pclk", CLK_PLLCM33_DIV16, 4, 4, 2, 4,
 BUS_MSTOP(5, BIT(11))),
 DEF_MOD("gtm_2_pclk", CLK_PLLCLN_DIV16, 4, 5, 2, 5,
 BUS_MSTOP(2, BIT(13))),
 DEF_MOD("gtm_3_pclk", CLK_PLLCLN_DIV16, 4, 6, 2, 6,
 BUS_MSTOP(2, BIT(14))),
- DEF_MOD("gtm_4_pclk", CLK_PLLCLN_DIV16, 4, 7, 2, 7,
+ DEF_MOD_CRITICAL("gtm_4_pclk", CLK_PLLCLN_DIV16, 4, 7, 2, 7,
 BUS_MSTOP(11, BIT(13))),
- DEF_MOD("gtm_5_pclk", CLK_PLLCLN_DIV16, 4, 8, 2, 8,
+ DEF_MOD_CRITICAL("gtm_5_pclk", CLK_PLLCLN_DIV16, 4, 8, 2, 8,
 BUS_MSTOP(11, BIT(14))),
- DEF_MOD("gtm_6_pclk", CLK_PLLCLN_DIV16, 4, 9, 2, 9,
+ DEF_MOD_CRITICAL("gtm_6_pclk", CLK_PLLCLN_DIV16, 4, 9, 2, 9,
 BUS_MSTOP(11, BIT(15))),
- DEF_MOD("gtm_7_pclk", CLK_PLLCLN_DIV16, 4, 10, 2, 10,
+ DEF_MOD_CRITICAL("gtm_7_pclk", CLK_PLLCLN_DIV16, 4, 10, 2, 10,
 BUS_MSTOP(12, BIT(0))),
 DEF_MOD("wdt_0_clkp", CLK_PLLCM33_DIV16, 4, 11, 2, 11,
 BUS_MSTOP(3, BIT(10))),

Re placing the DEF_MOD of the target clock with a DEF_MOD_CRITICAL patch prevents the Linux BSP
from changing the module to standby mode.

3.4 Deployment of RZ/V2H AI SDK
With respect to the deployment of Linux kernel, device tree and root filesystem for RZ/V2H, please refer to
https://renesas-rz.github.io/rzv_ai_sdk/6.00/.

4. Sample Program Invocation on RZ/V2H
4.1 Hardware Setup
Connect J-Link to RZ/V2H EVK. For details, please refer to Getting Started with RZ/V Flexible Software
Package.

4.2 CM33/CR8 Sample Program Setup
Here are the procedures for setting up the sample program running on CM33 and CR8:

1. Extract r01an7254ej0330-rzv-multi-os-pkg.zip on your development PC.
2. Extract either of rzv2h_cm33_rpmsg_linux-rtos_demo.zip or rzv2h_cr8_rpmsg_linux-rtos_emo.zip

included in r01an7254ej0330-rzv-multi-os-pkg.
3. Open e2 studio 2025-01 and click File > Import.
4. Double-click General and select Existing Projects into Workspace as shown in Figure 4-1:

https://renesas-rz.github.io/rzv_ai_sdk/6.00/getting_started_v2h.html
https://www.renesas.com/document/apn/rzv-getting-started-flexible-software-package
https://www.renesas.com/document/apn/rzv-getting-started-flexible-software-package

RZ/V2H Quick Start Guide for RZ/V Multi-OS Package

R01QS0077EJ0330 Rev.3.30 Page 6 of 30
Jan.13.26

Figure 4-1. Import sample project (1)

5. Input the path to the directory of sample project you would like to import to Select root directory, press

Enter key and click Finish button.

Figure 4-2. Import sample project (2)

(Optional)

6. By default, RPMsg channel 0 and 1 are configured to be used on CM33 and CR8, respectively. If you
would like to change the channel, you need to open the property of MainTask#0 on FSP Smart
Configurator, specify the channel number you would like to use for Thread Control and push Generate
Project Content button. If Generate Project Content pop-up is shown, click Proceed to reflect the
changes to source code.

RZ/V2H Quick Start Guide for RZ/V Multi-OS Package

R01QS0077EJ0330 Rev.3.30 Page 7 of 30
Jan.13.26

Figure 4-3. RPMsg Channel Setting

7. Build the project from Choose Project > Build Project.
8. If building project is successfully completed, build artifacts as listed below should be generated in Debug

or Release directory of the project you imported in accordance with the active Build Configuration.
• rzv2h_<cpu>_rpmsg_linux-rtos_demo.elf
• rzv2h_<cpu>_rpmsg_linux-rtos_demo.bin

<cpu> stands for either cm33 or cr8 hereafter in this document.

4.3 Note for CR8 Sample Project
• CR8 sample project expects that CM33 and CR8 sample project are imported to the same e2 studio

workspace. Otherwise, FSP Smart Configurator won’t work for CR8 sample project.

4.4 CM33/CR8 Sample Program Invocation for communicating with Linux
4.4.1 CM33/CR8 Sample Program Invocation using Segger J-Link
Carry out the procedure shown below for invoking CM33 and/or CR8 sample program using J-Link.

1. Click Debug button as shown below:

RZ/V2H Quick Start Guide for RZ/V Multi-OS Package

R01QS0077EJ0330 Rev.3.30 Page 8 of 30
Jan.13.26

Figure 4-4. Debug Perspective Launch (1)

2. If the following Select Configuration window is shown, choose rzv2h_<cpu>_rpmsg_demo_Debug_Flat

or rzv2h_<cpu>_rpmsg_demo_Release_Flat in accordance with the build configuration you are using and
click OK.

Figure 4-5. Debug Perspective Launch (2)

If the following Confirm Perspective Switch window appears, press Switch to go ahead.

Figure 4-6. Debug Perspective Launch (3)

3. When Debug Perspective is opened, Program Counter (PC) should be located at the top of

Entry_Function_S and Reset_Handler for CM33 and CR8 sample project, respectively. Then, press the
button shown in Figure 4-7.

RZ/V2H Quick Start Guide for RZ/V Multi-OS Package

R01QS0077EJ0330 Rev.3.30 Page 9 of 30
Jan.13.26

Figure 4-7. How to start to debug Sample Project (1)

4. PC should be stopped at the top of main function. Then, click the same button in the previous step to

continue.

Figure 4-8. How to start to debug Sample Project (2)

5. CM33/CR8 Sample Project starts to work and wait for the launch of CA55 RPMsg Sample Program.

RZ/V2H Quick Start Guide for RZ/V Multi-OS Package

R01QS0077EJ0330 Rev.3.30 Page 10 of 30
Jan.13.26

4.4.2 CM33/CR8 Sample Program invocation from u-boot
Here is the example of procedure for invoking CM33/CR8 sample program from u-boot:

1. Place rzv2h_<cpu>_rpmsg_demo.bin in SD card where Linux kernel and Device Tree Blob are stored.
2. Insert the SD card into SD1 of RZ/V2H EVK.
3. Turn on RZ/V2H EVK. Then, you should see the following message on the console associated with CN12

of RZ/V2H EVK.

U-Boot 2021.10 (Jun 14 2024 - 18:14:19 +0000)

CPU: Renesas Electronics CPU rev 1.0
Model: Renesas EVK Version 1 based on r9a09g057h4
DRAM: 15.9 GiB
MMC: mmc@15c00000: 0, mmc@15c10000: 1
(snip)
Net: eth0: ethernet@15c30000, eth1: ethernet@15c40000
Hit any key to stop autoboot: 3

4. Hit any key within 3 sec. to stop autoboot.
5. Carry out the following setup of u-boot to kick CM33 and/or CR8:

• For CM33
=> setenv cm33start 'dcache off; mw.l 0x10420D2C 0x02000000; mw.l 0x1043080c
0x08003000; mw.l 0x10430810 0x18003000; mw.l 0x10420604 0x00040004; mw.l
0x10420C1C 0x00003100; mw.l 0x10420C0C 0x00000001; mw.l 0x10420904 0x00380008;
mw.l 0x10420904 0x00380038; ext4load mmc 0:2 0x08001e00
boot/rzv2h_cm33_rpmsg_demo_linux-rtos.bin; mw.l 0x10420C0C 0x00000000; dcache on'
=> saveenv
=> run cm33start

• For CR8_Core0

=> setenv cr80start 'dcache off; mw.l 0x10420D24 0x04000000; mw.l 0x10420600
0xE000E000; mw.l 0x10420604 0x00030003; mw.l 0x10420908 0x1FFF0000; mw.l 0x10420C44
0x003F0000; mw.l 0x10420C14 0x00000000; mw.l 0x10420908 0x10001000; mw.l 0x10420C48
0x00000020; mw.l 0x10420908 0x1FFF1FFF; mw.l 0x10420C48 0x00000000; ext4load mmc 0:2
0x12040000 boot/rzv2h_cr8_core0_rpmsg_linux-rtos_demo_itcm.bin; ext4load mmc 0:2
0x08180000 boot/rzv2h_cr8_core0_rpmsg_linux-rtos_demo_sram.bin; ext4load mmc 0:2
0x40800000 boot/rzv2h_cr8_core0_rpmsg_linux-rtos_demo_sdram.bin; mw.l 0x10420C14
0x00000003; dcache on;'
=> saveenv
=> run cr80start

• For CR8_Core1

=> setenv cr81start 'dcache off; mw.l 0x10420D24 0x04000000; mw.l 0x10420600
0xE000E000; mw.l 0x10420604 0x00030003; mw.l 0x10420908 0x1FFF0000; mw.l 0x10420C44
0x003F0000; mw.l 0x10420C14 0x00000000; mw.l 0x10420908 0x10001000; mw.l 0x10420C48
0x00000020; mw.l 0x10420908 0x1FFF1FFF; mw.l 0x10420C48 0x00000000; ext4load mmc 0:2
0x12080000 boot/rzv2h_cr8_core1_rpmsg_linux-rtos_demo_itcm.bin; ext4load mmc 0:2
0x081C0000 boot/rzv2h_cr8_core1_rpmsg_linux-rtos_demo_sram.bin; ext4load mmc 0:2
0x41800000 boot/rzv2h_cr8_core1_rpmsg_linux-rtos_demo_sdram.bin; mw.l 0x10420C14
0x00000003; dcache on;'
=> saveenv
=> run cr81start

RZ/V2H Quick Start Guide for RZ/V Multi-OS Package

R01QS0077EJ0330 Rev.3.30 Page 11 of 30
Jan.13.26

4.4.3 CM33 Sample Program Invocation from remoteproc
Here is the procedure for invoking CM33 Sample Program with remoteproc:

1. Booting up Linux by following RZ/V2H EVK Getting Started.
2. Invoke the command stated below to specify the sample program to be loaded:

root@rzv2h-evk-ver1:~# echo rzv2h_cm33_rpmsg_linux-rtos_demo.elf >
/sys/class/remoteproc/remoteproc0/firmware

3. Kick CM33 by invoking the command below:

root@rzv2h-evk-ver1:~# echo start > /sys/class/remoteproc/remoteproc0/state

If CM33 Sample Program starts to work successfully, the following message should be shown on Linux
console:

root@rzv2h-evk-ver1:~# echo start > /sys/class/remoteproc/remoteproc0/state

[737.289773] remoteprocremoteproc0: powering up cm33

[737.348226] remoteprocremoteproc0: Booting fwimage rzv2h_cm33_rpmsg_linux-rtox_demo.elf, size 1347660

[737.356732] remoteprocremoteproc0: unsupported resource 4

[737.366255] remoteproc0#vdev0buffer: assigned reserved memory node vdev0buffer@0x43200000

[737.374784] remoteproc0#vdev0buffer: registered virtio0 (type 7)

[737.380989] remoteprocremoteproc0: remote processor cm33 is now up

4.5 CA55 Sample Program Invocation
This section describes how to invoke RPMsg sample program running on CA55 side.

1. Boot up Linux by executing the following command on u-boot for example:

=> run bootcmd

2. Login as root.

rzv2h-evk-ver1 login: root

3. Invoke RPMsg sample program as shown below:

root@rzv2h-evk-ver1:~# rpmsg_sample_client

4. If the sample program started to work successfully, you can see the following message on Linux console:

https://renesas-rz.github.io/rzv_ai_sdk/6.00/getting_started_v2h.html

RZ/V2H Quick Start Guide for RZ/V Multi-OS Package

R01QS0077EJ0330 Rev.3.30 Page 12 of 30
Jan.13.26

[xxx] proc_id:0 rsc_id:0 mbx_id:1
metal: info: metal_uio_dev_open: No IRQ for device 10480000.mbox-uio.
[xxx] Successfully probed IPI device
metal: info: metal_uio_dev_open: No IRQ for device 42f00000.rsctbl.
[xxx] Successfully open uio device: 42f00000.rsctbl.
[xxx] Successfully added memory device 42f00000.rsctbl.
metal: info: metal_uio_dev_open: No IRQ for device 43000000.vring-ctl0.
[xxx] Successfully open uio device: 43000000.vring-ctl0.
[xxx] Successfully added memory device 43000000.vring-ctl0.
metal: info: metal_uio_dev_open: No IRQ for device 43200000.vring-shm0.
[xxx] Successfully open uio device: 43200000.vring-shm0.
[xxx] Successfully added memory device 43200000.vring-shm0.
metal: info: metal_uio_dev_open: No IRQ for device 43100000.vring-ctl1.
[xxx] Successfully open uio device: 43100000.vring-ctl1.
[xxx] Successfully added memory device 43100000.vring-ctl1.
metal: info: metal_uio_dev_open: No IRQ for device 43500000.vring-shm1.
[xxx] Successfully open uio device: 43500000.vring-shm1.
[xxx] Successfully added memory device 43500000.vring-shm1.
metal: info: metal_uio_dev_open: No IRQ for device 42f01000.mhu-shm.
[xxx] Successfully open uio device: 42f01000.mhu-shm.
[xxx] Successfully added memory device 42f01000.mhu-shm.
[xxx] Initialize remoteproc successfully.
[xxx] proc_id:1 rsc_id:1 mbx_id:1
[xxx] Initialize remoteproc successfully.
[xxx] proc_id:0 rsc_id:0 mbx_id:2
[xxx] Initialize remoteproc successfully.
[xxx] proc_id:1 rsc_id:1 mbx_id:2
[xxx] Initialize remoteproc successfully.
[xxx] proc_id:0 rsc_id:0 mbx_id:3
[xxx] Initialize remoteproc successfully.
[xxx] proc_id:1 rsc_id:1 mbx_id:3
[xxx] Initialize remoteproc successfully.

**
* rpmsg communication sample program *
**

1. communicate with CM33 ch0
2. communicate with CM33 ch1
3. communicate with CR8 core0 ch0
4. communicate with CR8 core0 ch1
5. communicate with CR8 core1 ch0
6. communicate with CR8 core1 ch1
7. communicate with CM33 ch0 and CR8 core0 ch1
8. communicate with CM33 ch0 and CR8 core1 ch1
9. communicate with CR8 core0 ch0 and CR8 core1 ch1

e. exit

please input
>

5. By typing either of 1 to 9 corresponding to the communication you would like to try, the sample program
starts to work.

6. By typing e, the sample program should be terminated with the message shown below:

RZ/V2H Quick Start Guide for RZ/V Multi-OS Package

R01QS0077EJ0330 Rev.3.30 Page 13 of 30
Jan.13.26

please input
> e
[xxx] 42f00000.rsctbl closed
[xxx] 43000000.vring-ctl0 closed
[xxx] 43200000.vring-shm0 closed
[xxx] 43100000.vring-ctl1 closed
[xxx] 43500000.vring-shm1 closed
[xxx] 42f01000.bhu-shm closed

4.6 Overview of Sample Program’s behavior
This section describes the overview of sample program’s behavior.

1. When the CA55 sample program is successfully executed, the communication channel among CA55,
CM33 and CR8 is established.

2. The CA55 sample program starts to send the message to CM33 and/or CR8 with incrementing the
message size from the minimum value 17 to the maximum value 488. During the communication, the
message as shown below is displayed on your console:

[xxx] Sending payload number 148 of size 165

3. When CM33 and/or CR8 sample program receives the message sent from CA55, the echo reply is sent
back to CA55 sample program.

4. When CA55 receives the echo reply, the message below should be displayed on your console:

[xxx] received payload number 148 of size 165

5. After the 488-byte sized payload is sent from CA55 to CM33/CR8 and CM33/CR8 sends back the echo
reply, the message indicating the termination of the communication channel is sent from CA55 to
CM33/CR8. Then, the CA55 sample program outputs the following log messages to your console:

[xxx] ************************************
[xxx] Test Results: Error count = 0
[xxx] ************************************
[xxx] Quitting application .. Echo test end
[xxx] Stopping application...

RZ/V2H Quick Start Guide for RZ/V Multi-OS Package

R01QS0077EJ0330 Rev.3.30 Page 14 of 30
Jan.13.26

4.7 Notes for Linux-RTOS Sample Program
When trying 7. Communication with CM33 ch0 and CR8 core 0 ch1, be sure to invoke CM33 RPMsg sample
program first followed by CR8 sample program beforehand. If the sample program works as expected, the
communications between CA55 and CM33 and between CA55 and CR8 work concurrently as shown in the
log below:

[XXX] thread start
[CR8] creating remoteproc virtio
[XXX] thread start
[CR8] initializing rpmsg shared buffer pool
[CR8] initializing rpmsg vdev
[CR8] 1 - Send data to remote core, retrieve the echo and validate its
integrity ..
[CM33] creating remoteproc virtio
[CR8] Remote proc init.
[XXX] cond signal 1 sync:0
[CM33] initializing rpmsg shared buffer pool
[CM33] initializing rpmsg vdev
[CM33] 1 - Send data to remote core, retrieve the echo and validate its
integrity ..
[CM33] Remote proc init.
[CR8] RPMSG endpoint has created. rp_ept:0xffffa4c67870
[CR8] register sig:2 succeeded.
[CR8] register sig:15 succeeded.
[CM33] RPMSG endpoint has created. rp_ept:0xffffa5468870
[CR8] RPMSG service has created.
[CR8] sending payload number 0 of size 17
[XXX] cond signal 0 sync:0
[CM33] RPMSG service has created.
[CM33] sending payload number 0 of size 17
[XXX] cond signal 1 sync:0
[CR8] received payload number 0 of size 17
[XXX] cond signal 0 sync:0
[CM33] received payload number 0 of size 17

(snip)

[CR8] received payload number 469 of size 486
[CR8] sending payload number 470 of size 487
[331] cond signal 1 sync:0
[CR8] received payload number 470 of size 487
[CR8] sending payload number 471 of size 488
[XXX] cond signal 1 sync:0
[CR8] received payload number 471 of size 488
[CR8] ************************************
[CR8] Test Results: Error count = 0
[CR8] ************************************
[XXX] cond signal 1 sync:0
[CM33] Quitting application .. Echo test end
[CM33] Stopping application...
[CR8] Quitting application .. Echo test end
[CR8] Stopping application...

RZ/V2H Quick Start Guide for RZ/V Multi-OS Package

R01QS0077EJ0330 Rev.3.30 Page 15 of 30
Jan.13.26

4.8 Notes for RTOS-RTOS Sample Program
The current rtos-rtos program is designed to support communication between CM33 and CR8_Core0. To
demonstrate communication between CM33 and CR8_Core1, please go to src/platform_info.h in the cm33
rtos-rtos demo and change the value of the TO_CR8_CORE flag from 0 to 1.
 #define TO_CR8_CORE (1) /* 0: CR8 core0, 1: CR8 core1 */

If the sample program works as expected, the communications between CM33 and CR8_CoreX work
continuously, and the log will be displayed via RTT Viewer as shown below:

00> Successfully probed IPI device
00> Successfully open uio device: 42f00000.rsctbl.
00> Successfully added memory device 42f00000.rsctbl.
00> Successfully open uio device: 43100000.vring-ctl1.
00> Successfully added memory device 43100000.vring-ctl1.
00> Successfully open uio device: 43500000.vring-shm1.
00> Successfully added memory device 43500000.vring-shm1.
00> Initialize remoteproc successfully.
00> creating remoteproc virtio
00> initializing rpmsg shared buffer pool
00> initializing rpmsg vdev
00> 1 - Send data to remote core, retrieve the echo and validate its
integrity ..
00> RPMSG service has created.
00> sending payload number 0 of size 9
00> echo test: sent : 9
00> received payload number 0 of size 9
00> sending payload number 1 of size 10
00> echo test: sent : 10
00> received payload number 1 of size 10
00> sending payload number 2 of size 11
00> echo test: sent : 11
00> received payload number 2 of size 11

(snip)

00> sending payload number 468 of size 477
00> echo test: sent : 477
00> received payload number 468 of size 477
00> sending payload number 469 of size 478
00> echo test: sent : 478
00> received payload number 469 of size 478
00> sending payload number 470 of size 479
00> echo test: sent : 479
00> received payload number 470 of size 479
00> sending payload number 471 of size 480
00> echo test: sent : 480
00> received payload number 471 of size 480
00> ************************************
00> Test Results: Error count = 0
00> ************************************
00> Quitting application .. Echo test end

RZ/V2H Quick Start Guide for RZ/V Multi-OS Package

R01QS0077EJ0330 Rev.3.30 Page 16 of 30
Jan.13.26

5. CA55 1.8GHz configuration support at CA55 cold boot mode
This chapter describes how to configure 1.8GHz as operational frequence of CA55 at CA55 cold boot.

5.1 Setup of CA55 related stuff
1. Uncomment the following lines in meta-rz-features/meta-rz-multi-os/meta-rzv2h/conf/layer.conf

#MACHINE_FEATURES_append = “ RZV2H_CM33_BOOT”
#MACHINE_FEATURES_append = “ SRAM_REGION_ACCESS”
MACHINE_FEATURES_append = “ CM33_FIRMWARE_LOAD”
MACHINE_FEATURES_append = “ CA55_CPU_CLOCKUP”
#MACHINE_FEATURES_append = " CM33_REMOTEPROC"

Be sure NOT to uncomment the above-mentioned 1st and 5th line when CA55 1.8GHz support is
enabled.

2. Rebuild TrustedFirmware-A as shown below:

MACHINE=rzv2h-evk-ver1 bitbake trusted-firmware-a -c cleansstate
MACHINE=rzv2h-evk-ver1 bitbake firmware-pack -c cleansstate
MACHINE=rzv2h-evk-ver1 bitbake core-image-weston

3. Deploy build artifacts to SD card by following Renesas RZ/V AI | The best solution for starting your AI
applications.

5.2 Setup of CM33 related stuff
1. Import or create RZ/V FSP project for CM33.
2. Open configurator.xml in the project and choose BSP tab.
3. Configure Clock up for CA55 properties as Enable. Also, enabled Launch CA55(core0) if you would like

to configure operational at CM33 cold boot mode.
4. Click Generate Project Content to reflect the changes to your project.

https://renesas-rz.github.io/rzv_ai_sdk/6.00/getting_started_v2h.html#step7
https://renesas-rz.github.io/rzv_ai_sdk/6.00/getting_started_v2h.html#step7

RZ/V2H Quick Start Guide for RZ/V Multi-OS Package

R01QS0077EJ0330 Rev.3.30 Page 17 of 30
Jan.13.26

Figure 5-1. CM33 project setting for CA55 1.8GHz support (CA55 coldboot)

6. Build the project from Project > Build Project.

RZ/V2H Quick Start Guide for RZ/V Multi-OS Package

R01QS0077EJ0330 Rev.3.30 Page 18 of 30
Jan.13.26

Figure 5-2. Build CM33 project for CA55 1.8GHz support

RZ/V2H Quick Start Guide for RZ/V Multi-OS Package

R01QS0077EJ0330 Rev.3.30 Page 19 of 30
Jan.13.26

5.3 Deployment of Build Artifacts to RZ/V2H EVK
This section describes the procedure to program the build artifacts to RZ/V2H EVK.

1. Connect CN12 of RZ/V2H EVK with Host PC and established serial port connection.
2. Configure DSW1-4 and DSW1-5 of RZ/V2H EVK as OFF and ON respectively to specify boot mode as

SCIF download mode.
3. Turn on RZ/V2H EVK. Then, the following message is shown on your terminal:

Figure 5-3. SCIF Download mode

4. Send Flash_Writer_SCIF_RZV2H_DEV_INTERNAL_MEMORY.mot to RZ/V2H EVK via terminal

software. If it’s successfully transferred, the following message is shown on your terminal:

Figure 5-4. Flash Writer invocation

RZ/V2H Quick Start Guide for RZ/V Multi-OS Package

R01QS0077EJ0330 Rev.3.30 Page 20 of 30
Jan.13.26

5. Program bl2_bp_spi-rzv2h-evk-ver1.srec with Flash Writer as shown below:

xls2
===== Qspi writing of RZ/G2 Board Command =============
Load Program to Spiflash
Writes to any of SPI address.
Program size & Qspi Save Address
===== Please Input Program Top Address ============
 Please Input : H'8101E00

===== Please Input Qspi Save Address ===
 Please Input : H'00000
please send ! ('.' & CR stop load)
Erase SPI Flash memory...
Erase Completed
Write to SPI Flash memory.
======= Qspi Save Information =================
SpiFlashMemory Stat Address : H'00000000
SpiFlashMemory End Address : H'00037E57
===

6. Program fip-rzv2h-evk-ver1.srec with Flash Writer as shown below:

xls2
===== Qspi writing of RZ/G2 Board Command =============
Load Program to Spiflash
Writes to any of SPI address.
Program size & Qspi Save Address
===== Please Input Program Top Address ============
 Please Input : H'00000

===== Please Input Qspi Save Address ===
 Please Input : H'60000
please send ! ('.' & CR stop load)
Erase SPI Flash memory...
Erase Completed
Write to SPI Flash memory.
======= Qspi Save Information =================
SpiFlashMemory Stat Address : H'00060000
SpiFlashMemory End Address : H'0011C2BE
===

RZ/V2H Quick Start Guide for RZ/V Multi-OS Package

R01QS0077EJ0330 Rev.3.30 Page 21 of 30
Jan.13.26

7. Program CM33 FW (S-record formatted one) with Flash Writer as shown below:

xls2
===== Qspi writing of RZ/G2 Board Command =============
Load Program to Spiflash
Writes to any of SPI address.
Program size & Qspi Save Address
===== Please Input Program Top Address ============
 Please Input : H'00000

===== Please Input Qspi Save Address ===
 Please Input : H'202000
please send ! ('.' & CR stop load)
Erase SPI Flash memory...
Erase Completed
Write to SPI Flash memory.
======= Qspi Save Information =================
SpiFlashMemory Stat Address : H'00202000
SpiFlashMemory End Address : H'002071F2
===

6. CM33 cold boot support
This chapter describes how CA55 and CM33 related stuff should be built for CM33 cold boot.

6.1 Setup of CA55 related stuff
1. Uncomment the following line in meta-rz-features/meta-rz-multi-os/meta-rzv2h/conf/layer.conf.

MACHINE_FEATURES_append = “ RZV2H_CM33_BOOT”
#MACHINE_FEATURES_append = “ SRAM_REGION_ACCESS”
#MACHINE_FEATURES_append = “ CM33_FIRMWARE_LOAD”
#MACHINE_FEATURES_append = “ CA55_CPU_CLOCKUP”
#MACHINE_FEATURES_append = " CM33_REMOTEPROC"

Be sure NOT to uncomment the above-mentioned 3rd and 4th and 5th line when CM33 cold boot support
is enabled.

2. Rebuild TrustedFirmware-A as shown below:

MACHINE=rzv2h-evk-ver1 bitbake trusted-firmware-a -c cleansstate
MACHINE=rzv2h-evk-ver1 bitbake firmware-pack -c cleansstate
MACHINE=rzv2h-evk-ver1 bitbake core-image-weston

3. Deploy build artifacts to SD card by following Renesas RZ/V AI | The best solution for starting your AI
applications.

https://renesas-rz.github.io/rzv_ai_sdk/6.00/getting_started_v2h.html#step7
https://renesas-rz.github.io/rzv_ai_sdk/6.00/getting_started_v2h.html#step7

RZ/V2H Quick Start Guide for RZ/V Multi-OS Package

R01QS0077EJ0330 Rev.3.30 Page 22 of 30
Jan.13.26

6.2 Deployment of CA55 Build Artifacts to RZ/V2H EVK
This section describes how to deploy CA55 Build Artifacts to RZ/V2H EVK. First, please carry out the same
procedure as 1 to 4 stated in 5.3 Deployment of Build Artifacts to RZ/V2H EVK. Then, follow the steps
stated below:

1. Program bl2_bp_spi-rzv2h-evk-ver1.srec with Flash Writer as shown below:

xls2
===== Qspi writing of RZ/G2 Board Command =============
Load Program to Spiflash
Writes to any of SPI address.
Program size & Qspi Save Address
===== Please Input Program Top Address ============
 Please Input : H'8101E00

===== Please Input Qspi Save Address ===
 Please Input : H'100000
please send ! ('.' & CR stop load)
Erase SPI Flash memory...
Erase Completed
Write to SPI Flash memory.
======= Qspi Save Information =================
SpiFlashMemory Stat Address : H'00100000
SpiFlashMemory End Address : H'00136D17
===

2. Program fip-rzv2h-evk-ver1.srec with Flash Writer as shown below:

xls2
===== Qspi writing of RZ/G2 Board Command =============
Load Program to Spiflash
Writes to any of SPI address.
Program size & Qspi Save Address
===== Please Input Program Top Address ============
 Please Input : H'00000

===== Please Input Qspi Save Address ===
 Please Input : H'280000
please send ! ('.' & CR stop load)
Erase SPI Flash memory...
Erase Completed
Write to SPI Flash memory.
======= Qspi Save Information =================
SpiFlashMemory Stat Address : H'00280000
SpiFlashMemory End Address : H'0033C2BE
===

6.3 Setup of CM33 related stuff
1. Import or create RZ/V FSP project for CM33.
2. Open configurator.xml in the project and choose BSP tab.
3. Configure Launch CA55(core0) as Enabled. Also, enabled Clock up for CA55 if you would like to

configure operational frequency of CA55 as 1.8GHz.
4. Click Generate Project Content to reflect the changes to your project.

RZ/V2H Quick Start Guide for RZ/V Multi-OS Package

R01QS0077EJ0330 Rev.3.30 Page 23 of 30
Jan.13.26

Figure 6-1. CM33 project setting for CM33 cold boot

5. Build the project from Project > Build Project.
6. Click Run > Debug Configurations... , expand Renesas GDB Hardware Debugging and choose

<project name> Debug_Flat.

Figure 6-2. Debug Configuration Launch

RZ/V2H Quick Start Guide for RZ/V Multi-OS Package

R01QS0077EJ0330 Rev.3.30 Page 24 of 30
Jan.13.26

7. Choose Debugger > Connection Settings and specify Yes to Reset after download.

Figure 6-3. Connection Settings

8. Choose Startup and change the Load type of Program Binary to Symbols only.

Figure 6-4. Startup Settings (1)

RZ/V2H Quick Start Guide for RZ/V Multi-OS Package

R01QS0077EJ0330 Rev.3.30 Page 25 of 30
Jan.13.26

9. Click Add... > Workspace…, choose <project name>.srec and click OK.

Figure 6-5. Startup Settings (2)

10. Click Debug to launch Debug Perspective. Note that DSW1-1, 4, 5 and 7 of RZ/V2H EVK should be

specified as OFF, OFF, OFF and ON, respectively before the launch. Then, CM33 program starts, loads
CA55 build artifacts from QSPI Flash ROM and kick CA55.

For details on CM33 program invocation with e2studio, please see Getting Started with RZ/V Flexible
Software Package.

https://www.renesas.com/document/apn/rzv-getting-started-flexible-software-package
https://www.renesas.com/document/apn/rzv-getting-started-flexible-software-package

RZ/V2H Quick Start Guide for RZ/V Multi-OS Package

R01QS0077EJ0330 Rev.3.30 Page 26 of 30
Jan.13.26

7. Remoteproc support
This chapter describes how to invoke the CM33 firmware with remoteproc on Linux.

7.1 Setup of CM33 related stuff
Here are the steps to develop your own project based on the projects that support remoteproc included in
this package.

1. Import the following projects as base projects.

 rzv2h_cm33_rpmsg_linux-rtos_demo

2. Change the project name (if you need).

In Project Explorer, right-click on the project name and select “Rename...”

Figure 7-1. Rename project

RZ/V2H Quick Start Guide for RZ/V Multi-OS Package

R01QS0077EJ0330 Rev.3.30 Page 27 of 30
Jan.13.26

3. Implement application code.
Replace the contents of main_task_entry function in src/main_task_entry.c with the following and
implement the application code.

/*
* Copyright (c) 2020 - 2024 Renesas Electronics Corporation and/or its affiliates
*
* SPDX-License-Identifier: BSD-3-Clause
*/

#include "main_task.h"
/* Main Task entry function */
/* pvParameters contains TaskHandle_t */
#include "openamp/open_amp.h"
#include "platform_info.h"
#include "rsc_table.h"

extern int app (struct rpmsg_device * rdev, void * platform, unsigned long svcno);

void main_task_entry(void *pvParameters)
{
 unsigned long proc_id = *((unsigned long*)pvParameters);
 unsigned long rsc_id = *((unsigned long*)pvParameters);
 struct rpmsg_device * rpdev;
 void * platform;
 int ret;

 ret = init_system();
 if (ret)
 {
 LPERROR("Failed to init remoteproc device.\n");
 goto err1;
 }

 ret = platform_init(proc_id, rsc_id, &platform);
 if (ret)
 {
 LPERROR("Failed to create remoteproc device.\n");
 goto err1;
 }

 // Add your code here

err1:
 vTaskDelete(NULL);

}

Figure 7-2. Implement application code.

RZ/V2H Quick Start Guide for RZ/V Multi-OS Package

R01QS0077EJ0330 Rev.3.30 Page 28 of 30
Jan.13.26

4. Enable remoteproc.
Change the value of the ENABLE_REMOTEPROC macro in src/platform_info.h to 1.

Figure 7-3. Enable remoteproc.

5. Build the project

Figure 7-4. Build the project.

RZ/V2H Quick Start Guide for RZ/V Multi-OS Package

R01QS0077EJ0330 Rev.3.30 Page 29 of 30
Jan.13.26

6. Copy the image to rootfs.
Copy the elf file you created in the previous step to the /lib/firmware folder on the SD card that contains
the Linux rootfs you created in 3.4 Deployment of RZ/V2H AI SDK.

7.2 How to run CM33 firmware from remoteproc
Follow the steps in chapter 4.4.3 CM33 Sample Program Invocation from remoteproc.

However, change the echo argument in step 2 to match the file name of the file you copied in step 6 in the
previous chapter.

8. Reference Documents
• R01AN6240 RZ/V2L, RZ/V2H, RZ/V2N Getting Started with Flexible Software Package
• R12UZ0147 RZ/V2H Evaluation Board Kit (Secure type) Hardware Manual

RZ/V2H Quick Start Guide for RZ/V Multi-OS Package

R01QS0077EJ0330 Rev.3.30 Page 30 of 30
Jan.13.26

Revision History

Rev. Date
Description
Page Summary

3.00 Mar.11.2025 - Extract RZ/V2H related description from Release Note of RZ/V
Multi-OS Package v2.1.0.

3.10 May.22.2025 - Updated to align with RZ/V2H AI SDK v5.2.0.
3.11 Jun.13.2025 - Update Multi-OS Package version to 3.1.1.
3.20 Aug.29.2025 - Update Multi-OS Package version to 3.2.0.
3.30 Jan.13.2026 - Updated to align with RZ/V2H AI SDK v6.0.0.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2026 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Specifications
	2. Verified Operation Conditions
	3. Sample Program Setup
	3.1 Flexible Software Package Setup
	3.2 Integration of Multi-OS Package related stuff
	3.3 Note for integration
	3.4 Deployment of RZ/V2H AI SDK

	4. Sample Program Invocation on RZ/V2H
	4.1 Hardware Setup
	4.2 CM33/CR8 Sample Program Setup
	4.3 Note for CR8 Sample Project
	4.4 CM33/CR8 Sample Program Invocation for communicating with Linux
	4.4.1 CM33/CR8 Sample Program Invocation using Segger J-Link
	4.4.2 CM33/CR8 Sample Program invocation from u-boot
	4.4.3 CM33 Sample Program Invocation from remoteproc

	4.5 CA55 Sample Program Invocation
	4.6 Overview of Sample Program’s behavior
	4.7 Notes for Linux-RTOS Sample Program
	4.8 Notes for RTOS-RTOS Sample Program

	5. CA55 1.8GHz configuration support at CA55 cold boot mode
	5.1 Setup of CA55 related stuff
	5.2 Setup of CM33 related stuff
	5.3 Deployment of Build Artifacts to RZ/V2H EVK

	6. CM33 cold boot support
	6.1 Setup of CA55 related stuff
	6.2 Deployment of CA55 Build Artifacts to RZ/V2H EVK
	6.3 Setup of CM33 related stuff

	7. Remoteproc support
	7.1 Setup of CM33 related stuff
	7.2 How to run CM33 firmware from remoteproc

	8. Reference Documents
	Revision History

