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Note on Using C compiler for RL78 Family and 78K0R of
MCUs (CA78K0R), C compiler for 78K0R of MCUs

(CC78K0R) and Assembler for 78K0R of MCUs
(RA78K0R)

When using the C compiler for the RL78 family and 78K0R of MCUs (CA78K0R), the C compiler
for 78K0R of MCUs (CC78K0R) and the assembler for 78K0R of MCUs (RA78K0R), take note of
the following problems:

With incorrect code being output for the processing of multiple casts of floating-point
constants
With incorrect code being output for processing of the near/far qualifier for array pointers
With incorrect code being output from multiplication, division, remainder arithmetic, and
indirect reference expressions
With the assert function not operating normally
With return of an error when a one-bit-wide bit field is used in a Conditional Expression
With the conversion of character strings by the strtol and strtoul functions producing
incorrect numerical values
With incorrect address reference being made in the case of reference to a symbol resolved
by the assembler for the RL78-S1 core
With incorrect code being output for the CALL directive
With the BR and CALL directives producing errors

1. Problem with Incorrect Code Being Output for the Processing of Multiple
   Casts of Floating-Point Constants
1.1 Products and Versions Concerned
    CA78K0R V1.20 to V1.60
      (included in the integrated development environment CubeSuite+)
    CA78K0R V1.00 to V1.10
      (included in the integrated development environment CubeSuite)
    CC78K0R V1.00 to V2.13
      (bundled with the integrated development environment PM+)



1.2 Description
    Multiple casting of floating-point constants produces incorrect
    results of operations.

1.3 Conditions 
    This problem arises if the following conditions are all met:
    (1) A floating-point constant or constant cast to a floating-point type
        is cast to a floating-point type.
    (2) The constant described in condition (1) above is cast to an integer
        type.
    (3) The result of the operation described by condition (2) above is used
        in an operation other than the following:
          - Simple assignment operation: =
          - Logical operation: && or ||
          - Conditional operation: ? :
          - unary operation: !

1.4 Example
    -----------------------------------------------------------------
    [*.C]
    #define A ((long)((double)6031.0))  // Conditions (1) and (2)
    void func(void)
    {
        long x;
        x=A<<1;                         // Condition (3)
    }
    -----------------------------------------------------------------
    The result is not x = 12062 (= 6031 * 2).

1.5 Workaround
    Do not cast a floating-point constant or constant cast to a
    floating-point type to a floating-point type.
    -----------------------------------------------------------------
    #define A ((long)6031.0)
    void func(void)
    {
        long x;
        x=A<<1;
    }
    -----------------------------------------------------------------
    The result is x = 12062 (= 6031 * 2), which is correct.

2. Problem with Incorrect Code Being Output for Processing of the Near/Far
   Qualifier for Array Pointers
2.1 Products and Versions Concerned



    CA78K0R V1.20 to V1.60
      (included in the integrated development environment CubeSuite+)
    CA78K0R V1.00 to V1.10
      (included in the integrated development environment CubeSuite)
    CC78K0R V1.00 to V2.13
      (bundled with the integrated development environment PM+)

2.2 Description
    Incorrect code may be output because the near or far qualifier is not
    effective on the array pointer at the point where the type name in the
    expression is described. In addition, in that case, a warning message
    may not be correctly output.

2.3 Conditions 
    This problem arises if any of the following conditions are met:

    Condition 1:
      Incorrect code is output when all three conditions listed below
      are met. In addition, in that case, a warning message may not be
      correctly output.
      (1) The small model (-ms option) or the medium model (-mm option) of
          the compiler is used, or the type of the memory model is not
          changed. (see NOTE)
      (2) A pointer to a far array is used as the type name in an operand
          for the cast operator.
      (3) A far address is included in the operand cast in item (2) above.

      NOTE:
        If the type of the memory model is not changed, the problem arises
        because the medium model is selected by default.

    Example for condition 1:
    -----------------------------------------------------------------
    [*.C]
    typedef __far int *P;
    typedef __far int (*PA)[10];

    P p2;
    PA pa1, pa2;
    int i1;
    void func(void)
    {
     . . . . . . . . . . . . . . . . . . .
        pa2 = (__far int (*)[10])p2;        // (2), (3) and
                                            // the following (a)



        i1 = (*(__far int (*)[10])pa1)[0];  // (2), (3) and
                                            // the following (b)
     . . . . . . . . . . . . . . . . . . .
    }
    -----------------------------------------------------------------
    In the example above, (int (*)[10]) is used in the cast
    because the far qualifier is not effective. Thus, it is interpreted as
    (__near int (*)[10]) in the small and medium models and, as a result,
    incorrect code is output.

    (a) The warning message below is output and incorrect code is output
        due to the mismatch between the sizes of the pointers on the right
        and left sides as the right side did not include a cast to _far.
        Warning:
        --------------------------------------------------------------------
            CC78K0R warning W0416: Illegal type and size (far/near) pointer combination
        --------------------------------------------------------------------

        Example of code output for (a) under condition 1:
        --------------------------------------------------------------------
        ; line    X :     pa2 = (__far int (*)[10])p2;
        ;        Incorrect code                          Correct code
                 movw ax,!_p2                          ; movw ax,!_p2
                 mov  _@SEGAX,#0FH ; 15   ;
                 cmpw ax,#00H              ; 0     ;
                 sknz                                           ;
                 clrb _@SEGAX                        ;
        ?L0004:                                             ;
                 movw !_pa2,ax                        ; movw !_pa2,ax
                 mov  a,_@SEGAX                   ; mov  a,!_p2+2
                 mov  !_pa2+2,a                       ; mov  !_pa2+2,a
        --------------------------------------------------------------------

    (b) The incorrect code is output without a warning message as the
        types of the right and left sides match due to the indirect
        reference on the right side.

        Example of code output for (b) under condition 1:
        --------------------------------------------------------------------
        ; line    xx :     i1 = (*(__far int (*)[10])pa1)[0];
        ;        Incorrect code              Correct code
                 movw de,!_pa1             ; movw de,!_pa1
                                                         ; mov  a,!_pa1+2
                                                         ; mov  ES,a
                 movw ax,[de]                 ; movw ax,ES:[de]



                 movw !_i1,ax                 ; movw !_i1,ax
        --------------------------------------------------------------------

    Condition 2:
      Incorrect code is output when both of the conditions below are met:
      (1) The small model (-ms option) or the medium model (-mm option) of
          the compiler is used, or the type of the memory model is not
          changed. (see NOTE)
      (2) A pointer to a far array is used as the type name in an operand
          for the sizeof operator. 

      NOTE:
        If the type of the memory model is not changed, the problem arises
        because the medium model is selected by default.

    Example for condition 2:
    -----------------------------------------------------------------
    [*.C]
    int i3;

    void func(void)
    {
    . . . . . . . . . . . . . . . . . . 
        i3 = sizeof(__far int (*)[10]);  // (2)
    . . . . . . . . . . . . . . . . . . 
    }
    -----------------------------------------------------------------
    In the example above, the size returned is that of (int (*)[10])
    because the far qualifier is not effective. Thus, it is interpreted as
    (__near int (*)[10]) in the small and medium models and, as a result,
    the size is output by mistake.

    Example of code output under condition 2:
    -----------------------------------------------------------------
    ; line    22 :     i3 = sizeof(__far int (*)[10]);
    ;        Incorrect code                     Correct code
             movw    ax,#02H ; 2           ; movw ax,#04H ; 4
             movw    !_i3,ax                   : movw !_i3,ax
    -----------------------------------------------------------------

    Condition 3:
      Incorrect code is output when both conditions below are met:
      (1) The large model (-ml option) of the compiler is used. 
      (2) A pointer to a near array is used as the type name in an operand
          for the sizeof operator. 



    Example for condition 3:
    -----------------------------------------------------------------
    [*.C]
    int i4;

    void func(void)
    {
    . . . . . . . . . . . . . . . . . . .
        i4 = sizeof(__near int (*)[10]);  // (2)
    . . . . . . . . . . . . . . . . . . .
    }
    -----------------------------------------------------------------
    In the example above, the size returned is that of (int (*)[10])
    because the near qualifier is not effective. Thus, it is interpreted as
    (__far int (*)[10]) in the large model, and, as a result,
    the size is output by mistake.

    Example of code output under condition 3:
    -----------------------------------------------------------------
    ; line    23 :     i4 = sizeof(__near int (*)[10]);
    ;        Incorrect code              Correct code
             movw ax,#04H   ; 4          ; movw ax,#02H   ; 2
             mov  ES,#highw (_i4)      ; mov  ES,#highw (_i4)
             movw ES:!_i4,ax               ; movw ES:!_i4,ax
    -----------------------------------------------------------------

2.4 Workarounds
    Use a typedef to describe the type name when defining a type of
    the array pointer for processing of the near or far qualifier.

    Workaround for condition 1:
    -----------------------------------------------------------------
    typedef __far int (*PA)[10];

    void func(void)
    {
    . . . . . . . . . . . . . . . 
        pa2 = (PA)p2;   // (a)
        i1 = (*(PA)pa1)[0];  // (b)
    . . . . . . . . . . . . . . . 
    }
    -----------------------------------------------------------------

    Workaround for condition 2:



    -----------------------------------------------------------------
    typedef __far int (*PA)[10];

    void func(void)
    {
    . . . . . . . . . . . . . .
        i3 = sizeof(PA);
    . . . . . . . . . . . . . .
    }
    -----------------------------------------------------------------

    Workaround for condition 3:
    -----------------------------------------------------------------
    typedef __near int (*PA)[10];

    void func(void)
    {
    . . . . . . . . . . . . . .
         i4 = sizeof(PA);
    . . . . . . . . . . . . . .
    }
    -----------------------------------------------------------------

3. Problem with Incorrect Code Being Output from Multiplication, Division,
   Remainder Arithmetic, and Indirect Reference Expressions
3.1 Products and Versions Concerned
    CA78K0R V1.20 to V1.60
      (included in the integrated development environment CubeSuite+)
    CA78K0R V1.00 to V1.10
      (included in the integrated development environment CubeSuite)
    CC78K0R V1.00 to V2.13
      (bundled with the integrated development environment PM+)

3.2 Description
    In some cases, the output code may be incorrect if the operand of a
    multiplication, division, or remainder arithmetic operation in the
    char, signed char or unsigned char type includes an array element
    whose subscript is not a constant or an indirect reference expression
    using a pointer.

3.3 Conditions 
    This problem arises if the following conditions are all met:
    (1) -qc optimization is made effective by a compiler option.
        Any of the following actions makes -qc effective.
          - Using the -qc option



          - Using the -qx (x = 1, 2, 3) option 
          - Using the -q option by omitting the optimization type
          - Omitting the -q option
    (2) There is a binary operation in the char, signed char, or unsigned
        char type.
    (3) The operand on the left of item (2) above is the result of an
        operation on an operand of the char, signed char, or unsigned char
        type.
    (4) The operand on the right of the expression described by (2) above is
        the result of a multiplication, division, or remainder arithmetic
        operation on an operand of the char, signed char, or unsigned char
        type. 
    (5) The operand on the left or right of the expression described by (4)
        above includes an array element expression whose subscript is not a
        constant or an indirect reference expression using a pointer.

3.4 Example
    -----------------------------------------------------------------
    [*.C]
    unsigned char x1, uca1[5], uc1, uc2;
    unsigned int ui1;
    void func(void)
    {
        x1 = (uc1 + 1) & (uca1[ui1] * uc2);   // (2),(3),(4) and (5)
    }
    -----------------------------------------------------------------

    Example of code output:
    -----------------------------------------------------------------
    ; line       5 :     x1 = (uc1 + 1) & (uca1[ui1] * uc2);
        mov    a,!_uc1
        inc       a                       ; The results of the (uc1 + 1) operation
                                              ; remain in the A register.
        movw   bc,!_ui1
        mov      a,_uca1[bc]     ; The register is overwritten.
        mov      x,!_uc2
        mulu    x
        mov     a,b
        and      a,x
        mov      !_x1,a
    -----------------------------------------------------------------

3.5 Workaround
    Provide a temporary variable to perform the operation while substituting
    the results of the operation on one-byte data to a temporary variable.



    Example:
    -----------------------------------------------------------------
    unsigned char x1, uca1[5], uc1, uc2;
    unsigned int ui1;
    void func()
    {
        unsigned char temp; // temp variable provided.
        temp = uc1 + 1;    // Operation results on one-byte data
                              assigned to temp variable.
        x1 = temp & (uca1[ui1] * uc2); // Operate temp variable and
                                          indirect reference expression.
    }
    -----------------------------------------------------------------

4. Problem with the Assert Function Not Operating Normally
4.1 Products and Versions Concerned
    CA78K0R V1.20 to V1.60
      (included in the integrated development environment CubeSuite+)
    CA78K0R V1.00 to V1.10 
      (included in the integrated development environment CubeSuite)
    CC78K0R V1.00 to V2.13
      (bundled with the integrated development environment PM+)

4.2 Description
    When the small model or medium model is selected as the type
    of the memory model, or the type of the memory model is not changed
    (see NOTE), the assert function does not operate normally.

    NOTE:
      If the type of the memory model is not changed, the problem arises
      because the medium model is selected by default.

4.3 Workaround
    Use the assert_f function instead of the assert function.

5. Problem with Return of an Error When a One-Bit-Wide Bit Field is Used in
   a Conditional Expression
5.1 Products and Versions Concerned
    CA78K0R V1.50 to V1.60
      (included in the integrated development environment CubeSuite+)
      (see NOTE)

      NOTE:
        For the version of CubeSuite+ V1.03.00 or later.



5.2 Description
    In some cases, the error "C0101: Internal error" may be returned
    when a one-bit-wide bit field is used in a conditional expression.

5.3 Conditions
    This problem arises if the following conditions are all met:
    (1) The following operator is used for a conditional expression.
          - Comparison (equality and inequality) operators: 
            ==, !=, <, >, <=,  and >=
    (2) The operand on the left of the expression described by (1) above is
        a constant and either 0 or 1.
    (3) The operand on the right of the expression described by (1) is a
        one-bit-wide bit field having a constant even address in the range
        from 0FFE20H to 0FFFFFH.

5.4 Example
    -----------------------------------------------------------------
    struct _st {c
        unsigned int b0:1;
        unsigned int b1:1;
        unsigned int b2:1;
    };
    #define bitsfr(n)   (((struct _st *)0xffd0)->b ## n) // (3) Bit field
                                                         // in 0ffd0H
    int i;

    void func(void)
    {
        if (0 == bitsfr(1)) i++; // (1) and (2)
    }
    -----------------------------------------------------------------

5.5 Workaround
    Rearrange the conditional expression so that the constant is on the
    right.

    Example:
    -----------------------------------------------------------------
    struct _st {
        unsigned int b0:1;
        unsigned int b1:1;
        unsigned int b2:1;
    };
    #define bitsfr(n)   (((struct _st *)0xffd0)->b ## n)



    int i;

    void func(void)
    {
        if (bitsfr(1) == 0) i++;   // Constant rearranged on the right.
    }
    -----------------------------------------------------------------

6. Problem with the Conversion of Character Strings by the Strtol and
   Strtoul Functions Producing Incorrect Numerical Values
6.1 Products and Versions Concerned
    CA78K0R V1.20 to V1.60
      (included in the integrated development environment CubeSuite+)
    CA78K0R V1.00 to V1.10
      (included in the integrated development environment CubeSuite)
    CC78K0R V1.00 to V2.13
      (bundled with the integrated development environment PM+)

6.2 Description
    When character strings are converted into numerical values by the strtol
    and strtoul functions, in some cases, the value may overflow and be
    returned as conversion has not been performed correctly.

6.3 Conditions
    This problem arises if the following conditions are all met:
    (1) Character strings are converted into numerical values by the strtol
        and strtoul functions.
    (2) In the processing of functions described in (1) above, conversion to
        numerical values is performed from the head of a character and
        a carry for each 0x10000 is produced during conversion.
        A carry for each 0x10000 is produced when the conditions below
        is met while conversion is being performed.
          ((N * base) / 0x10000) != ((N * base + c) / 0x10000)
            N: The value obtained by converting a character string from
               its head to the n-th character
            base: The radix
            c: The value of the n + 1-th character

    Example:
    When strtol ("65537", &err, 10) is executed, 6553 (the value obtained by
    converting up to the 4th character), 10 (the radix), and 7 (the 5th
    character) are obtained.

        Left side = ((6553 * 10) / 0x10000) = 0
        Right side = ((6553 * 10 + 7) / 0x10000) = 1



    Left side != right side is true, and the value returned has overflowed.

6.4 Workaround
    When the radix is 10 in the strtol function, replace it with the atol
    function.
    When the radix is 10 in the strtoul function and the value obtained by
    the conversion can be expressed by a signed long integer, replace it
    with the atol function.
    If the method above does not work, there is no workaround.

7. Problem with Incorrect Address Reference Being Made in the Case of
   Reference to a Symbol Resolved by the Assembler for the RL78-S1 Core
7.1 Products and Versions Concerned
    CA78K0R V1.50 to V1.60
      (included in the integrated development environment CubeSuite+)
      (see NOTE)

      NOTE:
        For the version of CubeSuite+ V1.03.00 or later.

7.2 Description
    For the RL78-S1 core, incorrect code is returned for reference to a
    symbol belonging to a segment specified as an absolute address by
    either of the following:
      - Directives having "#word", "ES:!addr16", "ES:word[B]", "ES:!word[C]"
        or "ES:word[BC]" as an operand
      - DW or DG directive

7.3 Conditions
    This problem arises if the following conditions are all met:
    (1) A microcontroller with the RL78-S1 core is in use.
    (2) Reference is made to a symbol that belongs to a segment specified by
        an absolute address.
    (3) The symbol reference format described in (2) above is any of those
        listed below.
        (a) ES:!addr16
        (b) ES:word[B]
        (c) ES:word[C]
        (d) ES:word[BC]
        (e) #word
        (f) DW  word
        (g) DG  lword

7.4 Example



    [Sample.ASM] (Assembler source file)
    ------------------------------------------------------------------------
    C1  CSEG    AT  30H         ; Condition (2)
    TAB1:
        DB    1
        DB    2

        CSEG
    main:
        MOV       A,ES:!TAB1        ; Condition (3)(a)
        MOV       A,ES:TAB1[B]     ; Condition (3)(b) 
        MOV       A,ES:TAB1[C]     ; Condition (3)(c)
        MOV       A,ES:TAB1[BC]   ; Condition (3)(d)
        MOVW    AX,#TAB1           ; Condition (3)(e)
        MOVW    AX,ES:!TAB1       ; Condition (3)(a)
        MOVW    AX,ES:TAB1[B]    ; Condition (3)(b)
        MOVW    AX,ES:TAB1[C]    ; Condition (3)(c)
        MOVW    AX,ES:TAB1[BC]  ; Condition (3)(d)
        RET
    ;
        DW    TAB1              ; Condition (3)(f)
        DG     TAB1              ; Condition (3)(g)
        END
    ------------------------------------------------------------------------
    

[Sample.P] (Assemble list file) Condition  
--------------------------------------------------------------------------------------------------------  
ALNO STNO ADRS OBJECT M I SOURCE STATEMENT 
1 1 ----- C1 CSEG AT 30H (2)
2 2 00030 TAB1:
3 3 00030 01 DB 1
4 4 00031 02 DB 2
5 5
6 6 ----- CSEG
7 7 000CE main:
8 8 000CE 118F3080 MOV A,ES:!TAB1 (3)(a)
9 9 000D2 11093080 MOV A,ES:TAB1[B] (3)(b)
10 10 000D6 11293080 MOV A,ES:TAB1[C] (3)(c)
11 11 000DA 11493080 MOV A,ES:TAB1[BC] (3)(d)
12 12 000DE 303080 MOVW AX,#TAB1 (3)(e)
13 13 000E1 11AF3080 MOVW AX,ES:!TAB1 (3)(a)
14 14 000E5 11593080 MOVW AX,ES:TAB1[B] (3)(b)
15 15 000E9 11793080 MOVW AX,ES:TAB1[C] (3)(c)
16 16 000ED 11793080 MOVW AX,ES:TAB1[BC] (3)(d)
17 17 000F1 D7 RET 
18 18 ;



19 19 000F2 3080 DW TAB1 (3)(f)
20 20 000F4 30800F00 DG TAB1 (3)(g)
21 21 END
--------------------------------------------------------------------------------------------------------  

7.5 Workaround
    Comment out the specification of the segment as an absolute address.
    Instead, specify the area where it is allocated in the link directive
    file.

    [Sample.ASM] (Assembler source file)
    ------------------------------------------------------------------------
    C1  CSEG    ;AT 30H     ; Comment out the specification of the segment
                                             ; as an absolute address.
    TAB1:
        DB    1
        DB    2

        CSEG
    main:
        MOV       A,ES:!TAB1        ; Condition (3)(a)
        MOV       A,ES:TAB1[B]     ; Condition (3)(b)
        MOV       A,ES:TAB1[C]     ; Condition (3)(c)
        MOV       A,ES:TAB1[BC]   ; Condition (3)(d)
        MOVW    AX,#TAB1           ; Condition (3)(e)
        MOVW    AX,ES:!TAB1       ; Condition (3)(a)
        MOVW    AX,ES:TAB1[B]    ; Condition (3)(b)
        MOVW    AX,ES:TAB1[C]    ; Condition (3)(c)
        MOVW    AX,ES:TAB1[BC]  ; Condition (3)(d)
        RET
    ;
        DW    TAB1              ; Condition (3)(f)
        DG     TAB1              ; Condition (3)(g)
        END
    ------------------------------------------------------------------------

    [Sample.DR]  (Link directive file)
    ------------------------------------------------------------------------
    MERGE C1 : AT (30H)     ; Use the link directive file to specify the
                                                ; area where it is allocated.
    ------------------------------------------------------------------------

[Sample.P] (Assemble list file) Condition  



--------------------------------------------------------------------------------------------------------  
ALNO STNO ADRS OBJECT M I SOURCE STATEMENT 
1 1 ----- C1 CSEG AT 30H (2)
2 2 00030 TAB1:
3 3 00030 01 DB 1
4 4 00031 02 DB 2
5 5
6 6 ----- CSEG
7 7 000CE main:
8 8 000CE R118F3000 MOV A,ES:!TAB1 (3)(a)
9 9 000D2 R11093000 MOV A,ES:TAB1[B] (3)(b)
10 10 000D6 R11293000 MOV A,ES:TAB1[C] (3)(c)
11 11 000DA R11493000 MOV A,ES:TAB1[BC] (3)(d)
12 12 000DE R303000 MOVW AX,#TAB1 (3)(e)
13 13 000E1 R11AF3000 MOVW AX,ES:!TAB1 (3)(a)
14 14 000E5 R11593000 MOVW AX,ES:TAB1[B] (3)(b)
15 15 000E9 R11693000 MOVW AX,ES:TAB1[C] (3)(c)
16 16 000ED R11793000 MOVW AX,ES:TAB1[BC] (3)(d)
17 17 000F1 D7 RET 
18 18 ;
19 19 000F2 R3000 DW TAB1 (3)(f)
20 20 000F4 R30000000 DG TAB1 (3)(g)
21 21 END
--------------------------------------------------------------------------------------------------------  

8. Problem with Incorrect Code Being Output for the CALL Directive
8.1 Products and Versions Concerned
    CA78K0R V1.20 to V1.60
      (included in the integrated development environment CubeSuite+)
    CA78K0R V1.00 to V1.10
      (included in the integrated development environment CubeSuite)
    RA78K0R V1.31 to V1.80
      (bundled with the integrated development environment PM+)

8.2 Description
    When the CALL directive is used, even if the displacement to the branch
    destination is less than -8000H or more than +7FFFH, branching will not
    be correct as the incorrect code generated is for CALL $!addr20. (see
    NOTE)
    This also becomes applicable to C source code if the CALL directive is
    used in an ASM statement.

    NOTE:
      The CALL $!addr20 is 3bytes directive.



8.3 Conditions
    This problem arises if the following conditions are all met:
    (1) Assembler code includes a CALL directive or an ASM statement in
        C source code contains a CALL directive.
    (2) The CALL directive and symbol for the branch destination are in the
        same file and belong to the same absolute segment or the same
        segment with the BASE relocation attribute.
    (3) The CALL or BR directive is in a lower address in the same segment
        as the symbol for the branch destination. Also, in the CALL or
        BR directive, if either of the following is met:
          - The address where the branch destination is allocated when the
            size of CALL or BR directive in the lower-order address becomes
            minimum is in the range from 0H to 0FFFFH.
          - The address where the branch destination is allocated when the
            size of CALL or BR directive in the lower-order address becomes
            maximum is out of the range from 0H to 0FFFFH.
    (4) Displacement from the CALL directive to the branch destination is
        less than -8000H or more than +7FFFH.

8.4 Workaround
    Write the relevant CALL directive as a CALL directive with immediate
    addressing in the way shown below.

    Example:
    -------------------------------------------------------
    . . . . . . . . . 
        CALL   !!addr20
    . . . . . . . . . 
    -------------------------------------------------------
    Give the label for the branch destination as addr20.

9. Problem with the BR and CALL Directives Producing Errors
9.1 Products and Versions Concerned
    CA78K0R V1.20 to V1.60
      (included in the integrated development environment CubeSuite+)
    CA78K0R V1.00 to V1.10
      (included in the integrated development environment CubeSuite)
    RA78K0R V1.31 to V1.80
      (bundled with the integrated development environment PM+)

9.2 Description
    There are cases where the error "E2410: Phase error" is returned when
    a BR or CALL directive is used. This also applies to C source code where
    an ASM statement contains a BR or CALL directive.



9.3 Conditions
    This problem arises if the following conditions are all met:
    (1) Assembler code includes a BR or CALL directive or an ASM statement
        in C source code contains a BR or CALL directive.
    (2) Either the BR directive that makes a forward reference to the label
        for the branch destination or the CALL directive and branch
        destination are in a single absolute segment. Displacement to the
        branch destination is at least 80H.
    (3) The absolute segment in (2) above also contains another BR directive
        or CALL directive. Also, the branch destination of either of these
        directives is in an absolute segment other than (2) above and any of
        conditions from (a) to (c) below apply.
        (a) The branch destination of the BR or CALL directive is near the
            address 10000H. Near the address 10000H shows the following
            point:
              - The point where BR/CALL !addr16 switches to BR/CALL !!addr20
              - The point where BR/CALL !addr16 switches to BR/CALL $!addr20
        (b) Displacement to the branch destination is near 80H for the BR
            directive.  Near 80H shows the following point:
              - The point where BR $addr20 switches to BR $!addr20
              - The point where BR $addr20 switches to BR !addr16
        (c) Displacement to the branch destination is near 8000H for the BR
            or CALL directive. Near 8000H shows the following point:
              - The point where BR/CALL $!addr20 switches to
                BR/CALL !!addr20
    (4) A BR or CALL directive in an absolute segment other than (2) above
        is allocated to an address lower than the branch destination label
        of (3) above.

9.4 Example
    E2410: Phase error is returned for the line with the label L1 if the
    code is as shown below.

    [Sample.ASM] (Assembler source file)
    ------------------------------------------------------------------------
            ORG     8000H   ; Absolute segment A
            BR        L1            ; BR directive under condition (2) 
            DS        (80H)
    L1:                                ; Branch destination under condition (2) (label)
            CALL    L2           ; CALL directive under condition (3)

            ORG     10000H  ; Absolute segment B
            DS        (82H)
            BR        L3            ; BR directive under condition (4)
    L2:                                ; Branch destination under condition (3) (c)



            NOP
    L3:
    ------------------------------------------------------------------------

9.5 Workaround
    Comment out the absolute address specification of the segment. Instead,
    use the link directive file to specify the allocation.

    Example:
    [Sample.ASM] (Assembler source file)
    ------------------------------------------------------------------------
    A1      CSEG                  ; Relocatable segment A1
              ;ORG     8000H   ; Comment out the absolute address specification
                                            ; of segment A.
               BR        L1           ; BR directive under condition (2)
               DS        (80H)
    L1:                                   ; Branch destination under condition (2) (label)
               CALL    L2           ; CALL directive under condition (3)

    B1      CSEG                   ; Relocatable segment B1
              ;ORG     10000H  ; Comment out the absolute address specification
                                             ; of segment B
              DS         (82H)
              BR         L3            ; BR directive under condition (4)
    L2:                                    ; Branch destination under condition (3) (c)
              NOP
    L3:
    ------------------------------------------------------------------------
    
    [Sample.DR]  (Link directive file)
    ------------------------------------------------------------------------
    MERGE   A1 : AT (8000H)  ; Specify the allocation of relocatable
                             ; segment A1.
    MERGE   B1 : AT (10000H) ; Specify the allocation of relocatable
                             ; segment B1.
    ------------------------------------------------------------------------

10. Schedule for Fixing the Problem
    These problems will be fixed in CubeSuite+ CA78K0R compiler V1.70
    (to be published on January 30, 2014).
    For CubeSuite (see NOTE) CA78K0R compiler, PM+ CC78K0R compiler and
    PM+ RA78K0R assembler, we have no plan to fix this problem.

    NOTE:
      CubeSuite is a discontinued product.
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