
Tool News

RENESAS TOOL NEWS on January 28, 2014: 140128/tn1

Note on Using C compiler for RL78 Family and 78K0R of
MCUs (CA78K0R), C compiler for 78K0R of MCUs

(CC78K0R) and Assembler for 78K0R of MCUs
(RA78K0R)

When using the C compiler for the RL78 family and 78K0R of MCUs (CA78K0R), the C compiler
for 78K0R of MCUs (CC78K0R) and the assembler for 78K0R of MCUs (RA78K0R), take note of
the following problems:

With incorrect code being output for the processing of multiple casts of floating-point
constants
With incorrect code being output for processing of the near/far qualifier for array pointers
With incorrect code being output from multiplication, division, remainder arithmetic, and
indirect reference expressions
With the assert function not operating normally
With return of an error when a one-bit-wide bit field is used in a Conditional Expression
With the conversion of character strings by the strtol and strtoul functions producing
incorrect numerical values
With incorrect address reference being made in the case of reference to a symbol resolved
by the assembler for the RL78-S1 core
With incorrect code being output for the CALL directive
With the BR and CALL directives producing errors

1. Problem with Incorrect Code Being Output for the Processing of Multiple
 Casts of Floating-Point Constants
1.1 Products and Versions Concerned
 CA78K0R V1.20 to V1.60
 (included in the integrated development environment CubeSuite+)
 CA78K0R V1.00 to V1.10
 (included in the integrated development environment CubeSuite)
 CC78K0R V1.00 to V2.13
 (bundled with the integrated development environment PM+)

1.2 Description
 Multiple casting of floating-point constants produces incorrect
 results of operations.

1.3 Conditions
 This problem arises if the following conditions are all met:
 (1) A floating-point constant or constant cast to a floating-point type
 is cast to a floating-point type.
 (2) The constant described in condition (1) above is cast to an integer
 type.
 (3) The result of the operation described by condition (2) above is used
 in an operation other than the following:
 - Simple assignment operation: =
 - Logical operation: && or ||
 - Conditional operation: ? :
 - unary operation: !

1.4 Example

 [*.C]
 #define A ((long)((double)6031.0)) // Conditions (1) and (2)
 void func(void)
 {
 long x;
 x=A<<1; // Condition (3)
 }

 The result is not x = 12062 (= 6031 * 2).

1.5 Workaround
 Do not cast a floating-point constant or constant cast to a
 floating-point type to a floating-point type.

 #define A ((long)6031.0)
 void func(void)
 {
 long x;
 x=A<<1;
 }

 The result is x = 12062 (= 6031 * 2), which is correct.

2. Problem with Incorrect Code Being Output for Processing of the Near/Far
 Qualifier for Array Pointers
2.1 Products and Versions Concerned

 CA78K0R V1.20 to V1.60
 (included in the integrated development environment CubeSuite+)
 CA78K0R V1.00 to V1.10
 (included in the integrated development environment CubeSuite)
 CC78K0R V1.00 to V2.13
 (bundled with the integrated development environment PM+)

2.2 Description
 Incorrect code may be output because the near or far qualifier is not
 effective on the array pointer at the point where the type name in the
 expression is described. In addition, in that case, a warning message
 may not be correctly output.

2.3 Conditions
 This problem arises if any of the following conditions are met:

 Condition 1:
 Incorrect code is output when all three conditions listed below
 are met. In addition, in that case, a warning message may not be
 correctly output.
 (1) The small model (-ms option) or the medium model (-mm option) of
 the compiler is used, or the type of the memory model is not
 changed. (see NOTE)
 (2) A pointer to a far array is used as the type name in an operand
 for the cast operator.
 (3) A far address is included in the operand cast in item (2) above.

 NOTE:
 If the type of the memory model is not changed, the problem arises
 because the medium model is selected by default.

 Example for condition 1:

 [*.C]
 typedef __far int *P;
 typedef __far int (*PA)[10];

 P p2;
 PA pa1, pa2;
 int i1;
 void func(void)
 {

 pa2 = (__far int (*)[10])p2; // (2), (3) and
 // the following (a)

 i1 = (*(__far int (*)[10])pa1)[0]; // (2), (3) and
 // the following (b)

 }

 In the example above, (int (*)[10]) is used in the cast
 because the far qualifier is not effective. Thus, it is interpreted as
 (__near int (*)[10]) in the small and medium models and, as a result,
 incorrect code is output.

 (a) The warning message below is output and incorrect code is output
 due to the mismatch between the sizes of the pointers on the right
 and left sides as the right side did not include a cast to _far.
 Warning:
 --
 CC78K0R warning W0416: Illegal type and size (far/near) pointer combination
 --

 Example of code output for (a) under condition 1:
 --
 ; line X : pa2 = (__far int (*)[10])p2;
 ; Incorrect code Correct code
 movw ax,!_p2 ; movw ax,!_p2
 mov _@SEGAX,#0FH ; 15 ;
 cmpw ax,#00H ; 0 ;
 sknz ;
 clrb _@SEGAX ;
 ?L0004: ;
 movw !_pa2,ax ; movw !_pa2,ax
 mov a,_@SEGAX ; mov a,!_p2+2
 mov !_pa2+2,a ; mov !_pa2+2,a
 --

 (b) The incorrect code is output without a warning message as the
 types of the right and left sides match due to the indirect
 reference on the right side.

 Example of code output for (b) under condition 1:
 --
 ; line xx : i1 = (*(__far int (*)[10])pa1)[0];
 ; Incorrect code Correct code
 movw de,!_pa1 ; movw de,!_pa1
 ; mov a,!_pa1+2
 ; mov ES,a
 movw ax,[de] ; movw ax,ES:[de]

 movw !_i1,ax ; movw !_i1,ax
 --

 Condition 2:
 Incorrect code is output when both of the conditions below are met:
 (1) The small model (-ms option) or the medium model (-mm option) of
 the compiler is used, or the type of the memory model is not
 changed. (see NOTE)
 (2) A pointer to a far array is used as the type name in an operand
 for the sizeof operator.

 NOTE:
 If the type of the memory model is not changed, the problem arises
 because the medium model is selected by default.

 Example for condition 2:

 [*.C]
 int i3;

 void func(void)
 {

 i3 = sizeof(__far int (*)[10]); // (2)

 }

 In the example above, the size returned is that of (int (*)[10])
 because the far qualifier is not effective. Thus, it is interpreted as
 (__near int (*)[10]) in the small and medium models and, as a result,
 the size is output by mistake.

 Example of code output under condition 2:

 ; line 22 : i3 = sizeof(__far int (*)[10]);
 ; Incorrect code Correct code
 movw ax,#02H ; 2 ; movw ax,#04H ; 4
 movw !_i3,ax : movw !_i3,ax

 Condition 3:
 Incorrect code is output when both conditions below are met:
 (1) The large model (-ml option) of the compiler is used.
 (2) A pointer to a near array is used as the type name in an operand
 for the sizeof operator.

 Example for condition 3:

 [*.C]
 int i4;

 void func(void)
 {

 i4 = sizeof(__near int (*)[10]); // (2)

 }

 In the example above, the size returned is that of (int (*)[10])
 because the near qualifier is not effective. Thus, it is interpreted as
 (__far int (*)[10]) in the large model, and, as a result,
 the size is output by mistake.

 Example of code output under condition 3:

 ; line 23 : i4 = sizeof(__near int (*)[10]);
 ; Incorrect code Correct code
 movw ax,#04H ; 4 ; movw ax,#02H ; 2
 mov ES,#highw (_i4) ; mov ES,#highw (_i4)
 movw ES:!_i4,ax ; movw ES:!_i4,ax

2.4 Workarounds
 Use a typedef to describe the type name when defining a type of
 the array pointer for processing of the near or far qualifier.

 Workaround for condition 1:

 typedef __far int (*PA)[10];

 void func(void)
 {

 pa2 = (PA)p2; // (a)
 i1 = (*(PA)pa1)[0]; // (b)

 }

 Workaround for condition 2:

 typedef __far int (*PA)[10];

 void func(void)
 {

 i3 = sizeof(PA);

 }

 Workaround for condition 3:

 typedef __near int (*PA)[10];

 void func(void)
 {

 i4 = sizeof(PA);

 }

3. Problem with Incorrect Code Being Output from Multiplication, Division,
 Remainder Arithmetic, and Indirect Reference Expressions
3.1 Products and Versions Concerned
 CA78K0R V1.20 to V1.60
 (included in the integrated development environment CubeSuite+)
 CA78K0R V1.00 to V1.10
 (included in the integrated development environment CubeSuite)
 CC78K0R V1.00 to V2.13
 (bundled with the integrated development environment PM+)

3.2 Description
 In some cases, the output code may be incorrect if the operand of a
 multiplication, division, or remainder arithmetic operation in the
 char, signed char or unsigned char type includes an array element
 whose subscript is not a constant or an indirect reference expression
 using a pointer.

3.3 Conditions
 This problem arises if the following conditions are all met:
 (1) -qc optimization is made effective by a compiler option.
 Any of the following actions makes -qc effective.
 - Using the -qc option

 - Using the -qx (x = 1, 2, 3) option
 - Using the -q option by omitting the optimization type
 - Omitting the -q option
 (2) There is a binary operation in the char, signed char, or unsigned
 char type.
 (3) The operand on the left of item (2) above is the result of an
 operation on an operand of the char, signed char, or unsigned char
 type.
 (4) The operand on the right of the expression described by (2) above is
 the result of a multiplication, division, or remainder arithmetic
 operation on an operand of the char, signed char, or unsigned char
 type.
 (5) The operand on the left or right of the expression described by (4)
 above includes an array element expression whose subscript is not a
 constant or an indirect reference expression using a pointer.

3.4 Example

 [*.C]
 unsigned char x1, uca1[5], uc1, uc2;
 unsigned int ui1;
 void func(void)
 {
 x1 = (uc1 + 1) & (uca1[ui1] * uc2); // (2),(3),(4) and (5)
 }

 Example of code output:

 ; line 5 : x1 = (uc1 + 1) & (uca1[ui1] * uc2);
 mov a,!_uc1
 inc a ; The results of the (uc1 + 1) operation
 ; remain in the A register.
 movw bc,!_ui1
 mov a,_uca1[bc] ; The register is overwritten.
 mov x,!_uc2
 mulu x
 mov a,b
 and a,x
 mov !_x1,a

3.5 Workaround
 Provide a temporary variable to perform the operation while substituting
 the results of the operation on one-byte data to a temporary variable.

 Example:

 unsigned char x1, uca1[5], uc1, uc2;
 unsigned int ui1;
 void func()
 {
 unsigned char temp; // temp variable provided.
 temp = uc1 + 1; // Operation results on one-byte data
 assigned to temp variable.
 x1 = temp & (uca1[ui1] * uc2); // Operate temp variable and
 indirect reference expression.
 }

4. Problem with the Assert Function Not Operating Normally
4.1 Products and Versions Concerned
 CA78K0R V1.20 to V1.60
 (included in the integrated development environment CubeSuite+)
 CA78K0R V1.00 to V1.10
 (included in the integrated development environment CubeSuite)
 CC78K0R V1.00 to V2.13
 (bundled with the integrated development environment PM+)

4.2 Description
 When the small model or medium model is selected as the type
 of the memory model, or the type of the memory model is not changed
 (see NOTE), the assert function does not operate normally.

 NOTE:
 If the type of the memory model is not changed, the problem arises
 because the medium model is selected by default.

4.3 Workaround
 Use the assert_f function instead of the assert function.

5. Problem with Return of an Error When a One-Bit-Wide Bit Field is Used in
 a Conditional Expression
5.1 Products and Versions Concerned
 CA78K0R V1.50 to V1.60
 (included in the integrated development environment CubeSuite+)
 (see NOTE)

 NOTE:
 For the version of CubeSuite+ V1.03.00 or later.

5.2 Description
 In some cases, the error "C0101: Internal error" may be returned
 when a one-bit-wide bit field is used in a conditional expression.

5.3 Conditions
 This problem arises if the following conditions are all met:
 (1) The following operator is used for a conditional expression.
 - Comparison (equality and inequality) operators:
 ==, !=, <, >, <=, and >=
 (2) The operand on the left of the expression described by (1) above is
 a constant and either 0 or 1.
 (3) The operand on the right of the expression described by (1) is a
 one-bit-wide bit field having a constant even address in the range
 from 0FFE20H to 0FFFFFH.

5.4 Example

 struct _st {c
 unsigned int b0:1;
 unsigned int b1:1;
 unsigned int b2:1;
 };
 #define bitsfr(n) (((struct _st *)0xffd0)->b ## n) // (3) Bit field
 // in 0ffd0H
 int i;

 void func(void)
 {
 if (0 == bitsfr(1)) i++; // (1) and (2)
 }

5.5 Workaround
 Rearrange the conditional expression so that the constant is on the
 right.

 Example:

 struct _st {
 unsigned int b0:1;
 unsigned int b1:1;
 unsigned int b2:1;
 };
 #define bitsfr(n) (((struct _st *)0xffd0)->b ## n)

 int i;

 void func(void)
 {
 if (bitsfr(1) == 0) i++; // Constant rearranged on the right.
 }

6. Problem with the Conversion of Character Strings by the Strtol and
 Strtoul Functions Producing Incorrect Numerical Values
6.1 Products and Versions Concerned
 CA78K0R V1.20 to V1.60
 (included in the integrated development environment CubeSuite+)
 CA78K0R V1.00 to V1.10
 (included in the integrated development environment CubeSuite)
 CC78K0R V1.00 to V2.13
 (bundled with the integrated development environment PM+)

6.2 Description
 When character strings are converted into numerical values by the strtol
 and strtoul functions, in some cases, the value may overflow and be
 returned as conversion has not been performed correctly.

6.3 Conditions
 This problem arises if the following conditions are all met:
 (1) Character strings are converted into numerical values by the strtol
 and strtoul functions.
 (2) In the processing of functions described in (1) above, conversion to
 numerical values is performed from the head of a character and
 a carry for each 0x10000 is produced during conversion.
 A carry for each 0x10000 is produced when the conditions below
 is met while conversion is being performed.
 ((N * base) / 0x10000) != ((N * base + c) / 0x10000)
 N: The value obtained by converting a character string from
 its head to the n-th character
 base: The radix
 c: The value of the n + 1-th character

 Example:
 When strtol ("65537", &err, 10) is executed, 6553 (the value obtained by
 converting up to the 4th character), 10 (the radix), and 7 (the 5th
 character) are obtained.

 Left side = ((6553 * 10) / 0x10000) = 0
 Right side = ((6553 * 10 + 7) / 0x10000) = 1

 Left side != right side is true, and the value returned has overflowed.

6.4 Workaround
 When the radix is 10 in the strtol function, replace it with the atol
 function.
 When the radix is 10 in the strtoul function and the value obtained by
 the conversion can be expressed by a signed long integer, replace it
 with the atol function.
 If the method above does not work, there is no workaround.

7. Problem with Incorrect Address Reference Being Made in the Case of
 Reference to a Symbol Resolved by the Assembler for the RL78-S1 Core
7.1 Products and Versions Concerned
 CA78K0R V1.50 to V1.60
 (included in the integrated development environment CubeSuite+)
 (see NOTE)

 NOTE:
 For the version of CubeSuite+ V1.03.00 or later.

7.2 Description
 For the RL78-S1 core, incorrect code is returned for reference to a
 symbol belonging to a segment specified as an absolute address by
 either of the following:
 - Directives having "#word", "ES:!addr16", "ES:word[B]", "ES:!word[C]"
 or "ES:word[BC]" as an operand
 - DW or DG directive

7.3 Conditions
 This problem arises if the following conditions are all met:
 (1) A microcontroller with the RL78-S1 core is in use.
 (2) Reference is made to a symbol that belongs to a segment specified by
 an absolute address.
 (3) The symbol reference format described in (2) above is any of those
 listed below.
 (a) ES:!addr16
 (b) ES:word[B]
 (c) ES:word[C]
 (d) ES:word[BC]
 (e) #word
 (f) DW word
 (g) DG lword

7.4 Example

 [Sample.ASM] (Assembler source file)
 --
 C1 CSEG AT 30H ; Condition (2)
 TAB1:
 DB 1
 DB 2

 CSEG
 main:
 MOV A,ES:!TAB1 ; Condition (3)(a)
 MOV A,ES:TAB1[B] ; Condition (3)(b)
 MOV A,ES:TAB1[C] ; Condition (3)(c)
 MOV A,ES:TAB1[BC] ; Condition (3)(d)
 MOVW AX,#TAB1 ; Condition (3)(e)
 MOVW AX,ES:!TAB1 ; Condition (3)(a)
 MOVW AX,ES:TAB1[B] ; Condition (3)(b)
 MOVW AX,ES:TAB1[C] ; Condition (3)(c)
 MOVW AX,ES:TAB1[BC] ; Condition (3)(d)
 RET
 ;
 DW TAB1 ; Condition (3)(f)
 DG TAB1 ; Condition (3)(g)
 END
 --

[Sample.P] (Assemble list file) Condition
--
ALNO STNO ADRS OBJECT M I SOURCE STATEMENT
1 1 ----- C1 CSEG AT 30H (2)
2 2 00030 TAB1:
3 3 00030 01 DB 1
4 4 00031 02 DB 2
5 5
6 6 ----- CSEG
7 7 000CE main:
8 8 000CE 118F3080 MOV A,ES:!TAB1 (3)(a)
9 9 000D2 11093080 MOV A,ES:TAB1[B] (3)(b)
10 10 000D6 11293080 MOV A,ES:TAB1[C] (3)(c)
11 11 000DA 11493080 MOV A,ES:TAB1[BC] (3)(d)
12 12 000DE 303080 MOVW AX,#TAB1 (3)(e)
13 13 000E1 11AF3080 MOVW AX,ES:!TAB1 (3)(a)
14 14 000E5 11593080 MOVW AX,ES:TAB1[B] (3)(b)
15 15 000E9 11793080 MOVW AX,ES:TAB1[C] (3)(c)
16 16 000ED 11793080 MOVW AX,ES:TAB1[BC] (3)(d)
17 17 000F1 D7 RET
18 18 ;

19 19 000F2 3080 DW TAB1 (3)(f)
20 20 000F4 30800F00 DG TAB1 (3)(g)
21 21 END
--

7.5 Workaround
 Comment out the specification of the segment as an absolute address.
 Instead, specify the area where it is allocated in the link directive
 file.

 [Sample.ASM] (Assembler source file)
 --
 C1 CSEG ;AT 30H ; Comment out the specification of the segment
 ; as an absolute address.
 TAB1:
 DB 1
 DB 2

 CSEG
 main:
 MOV A,ES:!TAB1 ; Condition (3)(a)
 MOV A,ES:TAB1[B] ; Condition (3)(b)
 MOV A,ES:TAB1[C] ; Condition (3)(c)
 MOV A,ES:TAB1[BC] ; Condition (3)(d)
 MOVW AX,#TAB1 ; Condition (3)(e)
 MOVW AX,ES:!TAB1 ; Condition (3)(a)
 MOVW AX,ES:TAB1[B] ; Condition (3)(b)
 MOVW AX,ES:TAB1[C] ; Condition (3)(c)
 MOVW AX,ES:TAB1[BC] ; Condition (3)(d)
 RET
 ;
 DW TAB1 ; Condition (3)(f)
 DG TAB1 ; Condition (3)(g)
 END
 --

 [Sample.DR] (Link directive file)
 --
 MERGE C1 : AT (30H) ; Use the link directive file to specify the
 ; area where it is allocated.
 --

[Sample.P] (Assemble list file) Condition

--
ALNO STNO ADRS OBJECT M I SOURCE STATEMENT
1 1 ----- C1 CSEG AT 30H (2)
2 2 00030 TAB1:
3 3 00030 01 DB 1
4 4 00031 02 DB 2
5 5
6 6 ----- CSEG
7 7 000CE main:
8 8 000CE R118F3000 MOV A,ES:!TAB1 (3)(a)
9 9 000D2 R11093000 MOV A,ES:TAB1[B] (3)(b)
10 10 000D6 R11293000 MOV A,ES:TAB1[C] (3)(c)
11 11 000DA R11493000 MOV A,ES:TAB1[BC] (3)(d)
12 12 000DE R303000 MOVW AX,#TAB1 (3)(e)
13 13 000E1 R11AF3000 MOVW AX,ES:!TAB1 (3)(a)
14 14 000E5 R11593000 MOVW AX,ES:TAB1[B] (3)(b)
15 15 000E9 R11693000 MOVW AX,ES:TAB1[C] (3)(c)
16 16 000ED R11793000 MOVW AX,ES:TAB1[BC] (3)(d)
17 17 000F1 D7 RET
18 18 ;
19 19 000F2 R3000 DW TAB1 (3)(f)
20 20 000F4 R30000000 DG TAB1 (3)(g)
21 21 END
--

8. Problem with Incorrect Code Being Output for the CALL Directive
8.1 Products and Versions Concerned
 CA78K0R V1.20 to V1.60
 (included in the integrated development environment CubeSuite+)
 CA78K0R V1.00 to V1.10
 (included in the integrated development environment CubeSuite)
 RA78K0R V1.31 to V1.80
 (bundled with the integrated development environment PM+)

8.2 Description
 When the CALL directive is used, even if the displacement to the branch
 destination is less than -8000H or more than +7FFFH, branching will not
 be correct as the incorrect code generated is for CALL $!addr20. (see
 NOTE)
 This also becomes applicable to C source code if the CALL directive is
 used in an ASM statement.

 NOTE:
 The CALL $!addr20 is 3bytes directive.

8.3 Conditions
 This problem arises if the following conditions are all met:
 (1) Assembler code includes a CALL directive or an ASM statement in
 C source code contains a CALL directive.
 (2) The CALL directive and symbol for the branch destination are in the
 same file and belong to the same absolute segment or the same
 segment with the BASE relocation attribute.
 (3) The CALL or BR directive is in a lower address in the same segment
 as the symbol for the branch destination. Also, in the CALL or
 BR directive, if either of the following is met:
 - The address where the branch destination is allocated when the
 size of CALL or BR directive in the lower-order address becomes
 minimum is in the range from 0H to 0FFFFH.
 - The address where the branch destination is allocated when the
 size of CALL or BR directive in the lower-order address becomes
 maximum is out of the range from 0H to 0FFFFH.
 (4) Displacement from the CALL directive to the branch destination is
 less than -8000H or more than +7FFFH.

8.4 Workaround
 Write the relevant CALL directive as a CALL directive with immediate
 addressing in the way shown below.

 Example:

 CALL !!addr20

 Give the label for the branch destination as addr20.

9. Problem with the BR and CALL Directives Producing Errors
9.1 Products and Versions Concerned
 CA78K0R V1.20 to V1.60
 (included in the integrated development environment CubeSuite+)
 CA78K0R V1.00 to V1.10
 (included in the integrated development environment CubeSuite)
 RA78K0R V1.31 to V1.80
 (bundled with the integrated development environment PM+)

9.2 Description
 There are cases where the error "E2410: Phase error" is returned when
 a BR or CALL directive is used. This also applies to C source code where
 an ASM statement contains a BR or CALL directive.

9.3 Conditions
 This problem arises if the following conditions are all met:
 (1) Assembler code includes a BR or CALL directive or an ASM statement
 in C source code contains a BR or CALL directive.
 (2) Either the BR directive that makes a forward reference to the label
 for the branch destination or the CALL directive and branch
 destination are in a single absolute segment. Displacement to the
 branch destination is at least 80H.
 (3) The absolute segment in (2) above also contains another BR directive
 or CALL directive. Also, the branch destination of either of these
 directives is in an absolute segment other than (2) above and any of
 conditions from (a) to (c) below apply.
 (a) The branch destination of the BR or CALL directive is near the
 address 10000H. Near the address 10000H shows the following
 point:
 - The point where BR/CALL !addr16 switches to BR/CALL !!addr20
 - The point where BR/CALL !addr16 switches to BR/CALL $!addr20
 (b) Displacement to the branch destination is near 80H for the BR
 directive. Near 80H shows the following point:
 - The point where BR $addr20 switches to BR $!addr20
 - The point where BR $addr20 switches to BR !addr16
 (c) Displacement to the branch destination is near 8000H for the BR
 or CALL directive. Near 8000H shows the following point:
 - The point where BR/CALL $!addr20 switches to
 BR/CALL !!addr20
 (4) A BR or CALL directive in an absolute segment other than (2) above
 is allocated to an address lower than the branch destination label
 of (3) above.

9.4 Example
 E2410: Phase error is returned for the line with the label L1 if the
 code is as shown below.

 [Sample.ASM] (Assembler source file)
 --
 ORG 8000H ; Absolute segment A
 BR L1 ; BR directive under condition (2)
 DS (80H)
 L1: ; Branch destination under condition (2) (label)
 CALL L2 ; CALL directive under condition (3)

 ORG 10000H ; Absolute segment B
 DS (82H)
 BR L3 ; BR directive under condition (4)
 L2: ; Branch destination under condition (3) (c)

 NOP
 L3:
 --

9.5 Workaround
 Comment out the absolute address specification of the segment. Instead,
 use the link directive file to specify the allocation.

 Example:
 [Sample.ASM] (Assembler source file)
 --
 A1 CSEG ; Relocatable segment A1
 ;ORG 8000H ; Comment out the absolute address specification
 ; of segment A.
 BR L1 ; BR directive under condition (2)
 DS (80H)
 L1: ; Branch destination under condition (2) (label)
 CALL L2 ; CALL directive under condition (3)

 B1 CSEG ; Relocatable segment B1
 ;ORG 10000H ; Comment out the absolute address specification
 ; of segment B
 DS (82H)
 BR L3 ; BR directive under condition (4)
 L2: ; Branch destination under condition (3) (c)
 NOP
 L3:
 --

 [Sample.DR] (Link directive file)
 --
 MERGE A1 : AT (8000H) ; Specify the allocation of relocatable
 ; segment A1.
 MERGE B1 : AT (10000H) ; Specify the allocation of relocatable
 ; segment B1.
 --

10. Schedule for Fixing the Problem
 These problems will be fixed in CubeSuite+ CA78K0R compiler V1.70
 (to be published on January 30, 2014).
 For CubeSuite (see NOTE) CA78K0R compiler, PM+ CC78K0R compiler and
 PM+ RA78K0R assembler, we have no plan to fix this problem.

 NOTE:
 CubeSuite is a discontinued product.

[Disclaimer]
The past news contents have been based on information at the time of publication. Now changed or invalid information may
be included. The URLs in the Tool News also may be subject to change or become invalid without prior notice.

© 2010-2016 Renesas Electronics Corporation. All rights reserved.

