

Challenges on Solid-State Lighting Offline Driver Design

Jerry Zheng VP, Technical Marketing

iWatt Inc, Los Gatos, CA jjzheng@iWatt.com

Contents

- Review the challenges with replacing incandescent lamps
- Review LED lamp driver basics
- Approaches to improve power factor
- Isolated solutions without opto-coupler
- Dimmable LED driver solutions

SSL LED Lamps

Incandescent Lamps	DC-LED Lamps	Dimmable DC-LED Lamps		
AC ()				
Pure resistive load				
Phase-out	Switch-mode Power Drivers	Switch-mode Power Drivers		
Simple	EMI, Size, Safety	Various Dimmers		
	Thermal	EMI, Size. Safety, Thermal		

Offline LED Lamp Basics

Luminous efficacy =

(LED luminous efficacy) x (Driver efficiency) x (LED thermal efficiency) x (Optics efficiency)
Where LED Luminous Efficacy is visible lumens/optical watt

Maximum allowed Input Power	Total Lumens	LED luminous efficacy	Thermal Efficiency	Optics and Fixture	Required Driver Efficiency	
(W)	lms	lms/W	(%)	(%)	(%)	
10	900	150	85%	85%	83%	
17	1500	150	85%	85%	81%	

Offline LED Lamp Driver Topologies

Driver should be Isolated or Non-isolated?

- Isolation between AC socket and the exposed surface is required
- Isolation can be done in the driver board by transformer
- Or isolation can be done between the emitter and heatsink

Isolated here?

Or the whole lamp is isolated

Isolated drivers	Non-isolated drivers		
Suitable for high-power high-current low-voltage	Suitable for low-power high-voltage low-current		
More components, less power efficiency	Simple, low cost		
Easy for mechanical design and thermal management	Easy for electric driver board design		
Easy for EMI design, Easy for Safety	Challenges for EMI and safety		

SSL LED Standards Relate to the Driver

- ENERGY STAR® Program Requirements for Integral LED Lamps
- FCC requirements
 - 47 CFR part 15
 - Class A and Class B
- Harmonic Emission limits and related power quality
 - ANSI C82.77-2002
 - IEC 61000-3-2
- Safety
 - UL8750
 - IEC 60950 Part 1
- Line Transient protections (Lighting Surge)
 - IEEE C62.41-1991; Class A, 100kHz ring wave, 2.5kV combine
- Audible Noise
 - Class A

Challenges to Promote LED lamp

- LED lamp challenges to be overcome in order to enter into home lighting market:
 - Cost
 - Driver BOM cost should be below 15% of total lamp cost
 - Thermal efficiency
 - Any milliwatt loss inside driver certainly reduces the efficiency (lumens per input watt) and reliability.
 - Reliability and Life time
 - Multi-layer protections for OTP, OCP, short circuit, open circuit
 - Single fault protection for any case
 - Less component count
 - Regulatory and Safety
 - EMI
 - Power Factor and Harmonic
 - Line Isolation and less leakage current
 - Dimmable
 - No visual Flicker
 - Wide Dimming Range

Approaches to Improve Power Factor

Basic Flyback: Single-stage Solution

Advantage

- Simple
- No bulk e-cap

Disadvantage

- Line frequency ripple current
- Boost + Flyback: Two-stage solutions

Advantage

- No flickers
- High PF

Disadvantage

Cost

Simple Passive Valley-fill PFC Circuits

Example: Valley-fill filter LED Driver

■iW3620 for 15-30W LED driver

Measurements: Power Factor and THD

Vin_230V PF=0.93

Harmonic_3rd 15% 5th_25%

$$PF = \frac{\cos \varphi}{\sqrt{1 + THD^2}}$$

A simple SEPIC Active High PF Design

Operations

Measurements: Power Factor and THD

Active PFC with iW3620

Isolated solutions without Opto-coupler

- Isolated Solutions has many benefits to optimize the total costperformance tradeoff
- Opto-coupler is typically used for isolated-solution to control the LED current; It becomes the weak component that reduces the life time of LED lamps.
- Primary-side constant current regulation eliminates the opto-coupler, and can also precisely control the LED current

Benefits on Primary-side control

- Line Isolation
 - Easy for heat sink design
 - Easy for heat spreading
 - Easy to meet safety regulation
- More reliable and longer life time
 - No opto
 - No Y-cap
- High Efficiency design
 - Isolated current transformer is easy for optimize efficiency

Digital Power Control on LED Constant Current Regulation

Adaptive Primary-side LED Constant Current Regulation

Intelligent Digital Power Control Benefits

- Digital Primary-Feedback Technology Patented
 - No Opto, No TL431, No current sensor, No secondary control circuits
 - **☐** Better performance than traditional design
- Adaptive cycle-by-cycle Digital Regulates Constant Current
- Multi-layer advanced protection features
 - Isense short protection and other single-point fault protections
 - Brown-out / recovery
 - OVP, UVP, short circuit,
- More...
 - Low cost, Less components
 - More reliable

Example: Low-cost LED Driver for 1~3W

Measurement: Efficiency and Thermal

Efficiency

V_{IN}=90Vac, 3X1W LED V_{IN}=264 Vac,3X1W LED Item Temp.(°C) Rising Temp. (°C) Temp.(°C) Rising Temp. (°C) Input Bulk_Cap(C8) 78 13 73 10 15 74 Input Bulk_Cap(C1) 80 11 IC1(iW1696) 75 10 74 11 Transformer(T1) 85 20 84 21 Power Transistor(Q1-BV42) 23 23 88 86 Output Schotty Diode(D9) 92 27 90 27 65 63 Ambient (GU10 Housing) Temp.

• Temperature

Example: High Power LED Drivers 5-30W

Measurements Efficiency and V-I curve

Challenges For Dimmable LED Driver Requirements

- ✓ The first challenge is to replace the socket of A-lamps with LED lamp, while maintaining compatibility with existing dimmers.
- Existing wall dimmers are designed to drive purely resistance A-lamp loads. When it drives a capacitive load or current source, the dimmer may not work properly.

LED lamp needs to operate with different dimmer types:
Leading-edge dimmers, Trailing-edge dimmers, Smart Dimmers
In case the LED lamp can not work properly with certain dimmers, the LED lamps should provide certain safety protections to prevent fire, high leakage current etc.
Dimming Performance

- □ AC-cycle inrush current
- High Power Factor at maximum dimming level

☐ Wide dimming range 1% to 100%

□ Residential > 0.7

■ No visible Flicker

☐ Commercial > 0.9

Knowing Wall Dimmers

- Dimmer types:
 - Leading-edge
 - Trailing-edge
 - Smart dimmers, adaptive adjust the turn-on angle to minimum the line distortion; could be leading-edge, could be trailing-edge
 - More..
- Dimmer impedance and power level also varies
 - -R
 - R-L
 - R-C
 - 400W, 600W etc

 This requirement creates the issue for switch-mode power supply where the impedance is not purely resistive (reactive load = current not in phase with voltage).

Knowing Wall Dimmers

Trailing edge dimmer

When trailing edge dimmer works with low power LED driver, it is difficult to detect the falling edge.

Leading edge dimmer

The TRIAC has a minimum gate trigger current (IGT) to turn the TRIAC on. It also requires a minimum holding current to hold the TRIAC on once conducting. When the current drops below the holding current, the TRIAC turns off.

A Simple Configuration to Combine the Dimmer Detection and PFC

- Unique Method to Configure the Dimmer Type
- Provide the Pure resistive impedance to Wall Dimmer
- Line current shape to improve power factor
- Reduce AC-cycle Inrush current

Overview iW3610 Simplified Schematic

Chopping Control Scheme

Dimming Detection

0.00 V △0.00

- Smart Dimmer Detection
 - At configuration state, Detect:
 - Leading-edge

LED

Current

Thermal Drifting and Protection

Example: 5W Dimmable LED Lamp

Example: 17W Dimmable LED Lamp

Measurements: Efficiency Regulations

	Vin	Pin	Vout	lout	efficiency	PF
# of LEDs	(V)	(VV)	(V)	(A)		
	85	16.82	26.53	0.515	81.23%	0.70
	90	16.69	26.53	0.515	81.88%	0.69
71.500	100	16.53	26.54	0.515	82.68%	0.70
7LEDs	110	16.24	26.54	0.515	84.17%	0.72
	120	16.03	26.54	0.515	85.27%	0.71
	130	15.95	26.54	0.515	85.69%	0.69
	135	15.83	26.55	0.515	86.36%	0.64

Conducted EMI Result

120V_{AC}/60Hz

PKScan

AVScan

Test Conditions:LED Full load. Output Ungrounded.

Full Dimmable LED Lighting Solution with Wall Dimmers

Complete Solutions for Indoor General Lighting

Complete Solutions for T8 /T12

- □15W, 18W, 20W
- ☐ High efficiency > 85%
- □Power factor > 0.9

Thanks

iWatt, your partner to deliver green power

